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what we learn

How to describe magnetic fields.

How to calculate orbits in a cyclotron.

How to find closed orbits.

How to find Courant Snyder parameters at all azimuths, energies.
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Why we can’t have nice simple dipoles

Combined function to get the
focusing, field index to get the
gradient necessary for
isochronism, ... should be simple,
right?

Look at the dashed line and the
blue line.
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...

Key differences is if we know the orbit, we design around it. But for
cyclotrons we don’t: we have to find it. What about just dispersion?
Limited range; orbits cannot change in character, unless scaled. What
is meant by scaling?

Scaling rules... If B(R, θ) = B0(θ)(R/R0)
κ, then all orbits have exact

same character and exact same tune.

But this violates the isochronism rule that B(R) ∝
[
1− (R/R∞)2

]−1/2.
So cannot have scaling isochronous machines.

That means isochronous machines have non-simple (non-integrable)
magnetic fields.
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What do we need?

Hamiltonian mechanics to optimally and efficiently numerically
integrate through the periodic sector fields.

A primer on Hamiltonian dynamics in accelerators can be found in two
of my lectures for a different school.
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Frenet-Serret

(looking down on) coordinate system used for synchrotrons.

N.B.: We continue to use z for vertical, x for horizontal.
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What do we need?

In a synchrotron, one uses the Frenet-Serret coordinate system.
Q:What is it? Let z be vertical, i.e. the direction of the magnetic field on
the median plane. Let s be direction of the reference orbit ~v. Then x is
the direction of the force (~v × ~B). But why can we do this? Because we
start with this orbit. In the cyclotron case, this orbit is not known.

What we do know is the field on some grid (and that’s all we know).

That grid is often, especially for ‘compact’ cyclotrons, on a polar grid.
Let us assume this is so.

In case of “median plane symmetry”, if we have: B(r, θ) on the median
plane, we have enough. Maxwell does the rest. If we do not, the field
components in the plane drive the particles away from the plane.
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Magnetic Field

Since we are interested in orbits on or near the median plane z = 0,
we expand the potential and, hence, the field in powers of z. Since
∇× ~B = ~0, we can set ~B = −∇Ψ, and hence, since ∇ · ~B = 0 also, we
have:

∇2Ψ =
∂2Ψ

∂z2
+∇2

2Ψ = 0, (1)

where ∇2
2 is the 2-dimensional Laplace operator

∇2
2Ψ =

1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2
∂2Ψ

∂θ2
. (2)
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Solution for median plane symmetry

So we just solve Laplace equation with B(r, θ) being the z = 0
boundary condition. The solution is

Ψo := zB − z3

3!
∇2

2B +
z5

5!
∇4

2B − ..., (3)

(subscript meaning “odd”)

Scary but: For most purposes, need only the first term.
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...

...and the field’s three components are given by:

Bz = −B +
z2

2!
∇2

2B −
z4

4!
∇4

2B + ... (4)

Br = −z ∂B
∂r

+
z3

3!

∂∇2
2B

∂r
− ... (5)

rBθ = −z ∂B
∂θ

+
z3

3!

∂∇2
2B

∂θ
− ... (6)

(Again, likely need only the first term of each.)

Thus, the entire field off the median plane can be expressed in terms
of B and its derivatives.
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What if no median plane symmetry?

Then on the median plane, there is a companion field C(r, θ), and an
asymmetric part to the scalar potential:

Ψe := C − z2

2!
∇2

2C +
z4

4!
∇4

2C − ... (7)

Taking only first two terms,

Bz = −B +∇2
2Cz (8)

Br = −∂C
∂r
− ∂B

∂r
z (9)

rBθ = −∂C
∂θ
− ∂B

∂θ
z (10)

For magnetic measurement purposes, it is to be noted that
∂Bz
∂z = ∇2

2C. Thus from a measurement of Bz at the geometric median
plane and a distance ∆z above and below it, the derivatives of C(r, θ)
can be estimated.
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Quiz

Which of the following statements are correct?

1 Any magnetic field distribution in a 2-D plane can be extrapolated
to a 3-D distribution that satisfies Maxwell’s equations (with no
charge, no current source).

2 A 2-D distribution can be extrapolates to 3-D only when assuming
median plane symmetry.

3 The way to extrapolate the magnetic field from 2-D to 3-D is
not unique, and depends on the choice of gauge.

4 Extrapolation far off a 2-D plane is extremely sensitive to the noise
in the 2-D field data.
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Motivating H

Why can’t we just use d~p
dt = q(~E + ~v × ~B)? Even J.D. Jackson in his

E&M textbook uses it in the following form

d~β
dt

=
q

γmc

[
~E + ~β × ~B − ~β(~β · ~E)

]
(11)

(Perhaps not obvious until one realizes that d~p
dt = mγ d~v

dt +m~v dγ
dt .)

This formulation neglects that the fields are derivable from potentials.
These potentials are included in the definitions of the canonical
momenta/energy, and so in this formulation, the conservation laws are
not intrinsic to the dynamics. Not only can conservation laws be
violated, but also, the description is not efficient, not optimally
parsimonious: over-described fields can be self-contradictory.
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Equations of Motion

From the basic
(E − qΦ)2 − p2c2 = m2c4 , (12)

knowing the canonical momenta

px = Px − qAx (13)
py = Py − qAy (14)
pz = Pz − qAz, (15)

we find the usual Hamiltonian as Ht = E:

Ht(x, Px, y, Py, z, Pz) =

qΦ + c
√
m2c2 + (Px − qAx)2 + (Py − qAy)2 + (Pz − qAz)2

(16)

but this isn’t the one we want. Why?
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Frenet-Serret

(looking down on) coordinate system used for synchrotrons.

N.B.: We continue to use z for vertical, x for horizontal.
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...

In the case of a synchrotron, we already know the particles are near
some axis of a vacuum tube, we want differential values, w.r.t. the
intended orbit, and time of arrival, and energy deviation. There we use
the Frenet-Serret coordinate system, where the fundamental relation
among the canonical variables is(

E − qΦ
c

)2

= m2c2 +
(Ps − qAs)2(

1 + x
ρ

)2 + (Px − qAx)2 + (Pz − qAz)2 (17)

where ρ = ρ(s) is the radius of curvature of the reference trajectory at
location s.
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...

We want these at distance s along the reference orbit. We’re not
asking what are the particles’ coordinates at given time, but rather
What are they as well as time t, at some s. IOW, we want the
independent variable to be s. In that case, the Hamiltonian is

Hs(x, Px, z, Pz, t, E) = −Ps =

− qAs −
(

1 +
x

ρ

)√(
E − qΦ

c

)2

−m2c2 − (Px − qAx)2 − (Pz − qAz)2

(18)

But. We don’t want this one either, since we do not know the reference
orbit.
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θ, not s
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...

We want some reference close to the eventual closed orbit, so we
choose a circle, IOW, go to polar coordinates. In any case, the
magnetic field is on a polar grid already! In polar coordinates (r, θ, z),
the ordinary momentum consists of the components along these three
directions (pr, pθ, pz) but the corresponding canonical momenta
(Pr, Pθ, Pz) are related to the ordinary ones as follows:

pr = Pr − qAr (19)
pθ = Pθ/r − qAθ (20)
pz = Pz − qAz. (21)

Rick Baartman (TRIUMF) USPAS June 9, 2021 19 / 36



...

The Hamiltonian with θ as the independent variable is
Hθ = −Pθ = −r(pθ + qAθ) and hence solving eqn. 12 for Pθ:

Hθ(r, Pr, z, Pz, t, E) =

− r
[
p(E)2 − (Pr − qAr)2 − (Pz − qAz)2

]1/2 − q r Aθ. (22)

In this case the conjugate pairs are (r, Pr), (z, Pz), and (t,−E). Where
we have defined p:

p(E)2 =
1

c2
(E−qΦ)2−m2c2 = (γ2−1)m2c2 = 2mEk

(
1 +

Ek

2mc2

)
(23)

(since one may want to parameterize using Ek = (γ − 1)mc2 rather
than E).
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Finally, the eom’s

r′ =
r pr√

p2 − p2r − p2z
(24)

p′r =
√
p2 − p2r − p2z + q(r Bz − z′Bθ) + q t′ Er (25)

z′ =
r pz√

p2 − p2r − p2z
(26)

p′z = q(r′Bθ − r Br) + q t′ Ez (27)

t′ =
γ mr√

p2 − p2r − p2z
(28)

E′ = q(r′ Er + r Eθ + z′ Ez) (29)

where ~B is the magnetic field, and ~E is the electric field. (For finding
closed orbits, we set ~E = 0.)
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eom Notes

These are exact and can be used in general orbit codes (e.g.
GOBLIN). The only limit is knowledge of ~B.
We used canonical momenta to derive the equations, but then
reverted to using pr, pz. It’s simpler.
For median plane symmetry, Br = Bθ = 0 when z = 0, and then
z = pz = 0 is a solution. Particles stay on median plane,
so then z and pz are differential quantities with respect to the
closed orbit. But r and pr are not.
With no electric field, E is constant, orbit time (isochronism) is
given by simple integral T = γm

∮
rdθ
pθ

.
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Equations of motion

Try to derive r′ = dr
dθ
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Equations of motion

Try to derive z′ = dz
dθ

Rick Baartman (TRIUMF) USPAS June 9, 2021 24 / 36



Equations of motion

A little more complicated: try to derive p′r = dPr
dθ − q

dAr
dθ
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Closed Orbit

On the (assumed flat) median plane, we have simply

r′ =
r pr
pθ

(30)

p′r = pθ + qr Bz, (31)

where pθ :=
√
p2 − p2r .

Exercise: Use these equations to show the expected behaviour for (1)
Flat field B=constant independent of (r, θ) and pr � p, and (2) Exact
solution for B = 0 (hint: try a substitution pr = p sinψ.)

We can integrate through 2π, but the orbit will not close, so we
simultaneously integrate the differentials of the orbit. We let

r → r + x, pr → pr + px (32)
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Closed Orbit...

where (x, px) are first differentials of (r, pr); they will essentially be
coordinates of betatron motion about the main orbit. By differentiating,
we find:

x′ =
pr
pθ
x+

rp2

p3θ
px (33)

p′x = q

[
Bz + r

∂Bz
∂r

]
x− pr

pθ
px, (34)

The coefficients of (x, px) are here not evaluated locally, but are taken
from the (r, pr) orbit and so these equations are linear as desired, and
therefore generate the transfer matrix for the betatron motion. We
simply start with initial conditions (x, px) = (1, 0) and (0, 1) to generate
the matrix elements.
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Numerical Procedure:

Integrate r and pr for some chosen initial values, but at same time
integrate x and px for initial values x = 1, px = 0, AND x = 0 and
px = 1.

r and pr after one turn tell you how far from closed you are, while the
other 4 values tell you the matrix to be used to correct the initial r and
pr to try again. Then do it again. Converges very quickly, just like
Newton’s method.
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Closed Orbit...

As we have both the (non-closed) orbit and its 2D differential the
transfer matrix, we apply Newton’s method and find the closed orbit.
Since there may be small nonlinearities in the (r, pr) equations of
motion, only a few iterations required.
Explicitly, if the closed orbit at θ = 0 and θ = θf is denoted (rc, prc), the expected behaviour is

(
rc
prc

)
=

(
r(θf )
pr(θf )

)
+Mx

[(
rc
prc

)
−

(
r(0)
pr(0)

)]
. (35)

Solving for the closed orbit, we get:

rc = r(0) +
(M22 − 1)εr −M12εp

M11 +M22 − 2
(36)

prc = pr(0) +
(M11 − 1)εp −M21εr

M11 +M22 − 2
(37)
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and the vertical matrix...

Apply the same treatment to vertical motion: We linearize equations 26
and 27. This omits the p2z in the denominator since it’s higher order,
and the fields come from only the first terms in eqns. 5, 6, which are
linear in z. The result is

z′ =
r

pθ
pz (38)

p′z = q

[
−r∂Bz

∂r
+
pr
pθ

∂Bz
∂θ

]
z (39)

again, r, pr and the field derivatives are evaluated at the (r, pr),
z = pz = 0 orbit, not the local one (r + x, pr + px).

That’s a total of how many ODEs? Count them.
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...

Exercise: Using eqns. 30, 31, 33, 34, 38, 39 show that when B is a
function of r only, we recover the tunes of the classical cyclotron.
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Courant-Snyder parameters

We integrate the equations (usually using Runge-Kutta technique) and
then have the actual horizontal and vertical transfer matrices for one
period (either sector or whole turn); in fact outputting at every
Runge-Kutta step, we have matrices for all θ. From them we first of all
get the betatron phase advance (hence, the tune) from the trace of the
matrix for the period, then can distill the Courant-Snyder parameters
αx, βx, αz, βz in the usual way as done for example for synchrotrons or
periodic transfer lines.
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Courant-Snyder parameters

We want the periodic matrix Mp(θ) which takes the coordinates from θ
to θ + θf . The missing piece is the matrix that takes one from θ to θf .
This is clearly M(θf)M

−1(θ). (Remember: right to left, first backtrack
to zero, then forward-track through the complete sector.) Then we
forward-track a further distance of θ, finally giving:

Mp(θ) = M(θ)M(θf)M
−1(θ) (40)
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CS parameters

Courant-Snyder parameters α(θ), β(θ), γ(θ) are then found by
equating:

Mp(θ) =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
(41)

where µ is the phase advance per period, νθf .
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One tiny detail about Frenet-Serret

Note on symplecticity: The equations of motion for x, px arise from the
Hamiltonian:

Hxθ = −q
[
Bz + r

∂Bz
∂r

]
x2

2
+

[
pr
pθ

]
xpx +

[
rp2

p3θ

]
p2x
2
. (42)

The CS parameters that this generates are not quite the same as the
usual ones. Why? Think of the x direction. In θ-picture, x is always
radial, but in s-picture, x is always perpendicular to the momentum on
the reference orbit. This will mean the β-function while agreeing at rmin

and rmax, it oscillates slightly about it at other values.

Further, we could switch to s as independent variable using
(ds)2 = (dr)2 + (rdθ)2. We could re-derive the Courant-Snyder
Hamiltonian that results in the simpler x′′ +K(s)x = 0, but there’s little
point.
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Integration Details

If measured Bz is on a polar grid, the Runge-Kutta steps can be the
azimuth increments and no interpolation is needed. This is a real
advantage.

If noisy, the field data can be improved by filtering out unphysically high
harmonics. Since there can be no field fluctuations on a length scale
short compared with the magnet gap, Fourier analyze the field with
azimuth, and throw away Fourier components above a certain limit.

In the radial direction, we do need interpolation that gives accurate
values for the field and its derivative. Commonly, the cubic spline is
used, applied to either the fields at constant r, or to the Fourier
components. The same considerations can be applied to the
interpolation regarding noise as for the azimuthal.

The result of field noise will be that the tunes calculated in the orbit code
fluctuate as a function of radius more rapidly than about half the magnet
gap. This can be used to fine tune the field and the interpolation routine.
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