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To learn, this lecture

Compared to other rings, what’s special in cyclotron case.
1D resonances, their order; integer, half-integer, etc.
ODEs to describe them
Hamiltonian approach and perturbation theory
Fun Mathematica apps, stable/unstable fixed points
Intrinsic resonances
Fast passage through resonances; not the same as static case.
Coupling resonances, their characteristics
Walkinshaw resonance behaviour (through Mathematica app) and
why important for cyclotrons
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Bowling Alley Analogue
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Tune Diagram

It’s a frequency domain space:
Horizontal fequency is νx (νr in
the plot, sorry), vertical is νz.

For all integers, (nx, nz,m),
the condition

nxνx ± nzνz = m (1)

is a resonance. Why?
These are lines in this
space.
5 examples. What’s
peculiar about cyclotrons?
The most dangerous lines
are the boldest.
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Going to explain in 4 different ways:
hand-wavy,
ODEs roughly,
Canonical transformations,
Mathematica.
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Hand-wavy

Circular orbit, integer tune. Closed orbit anywhere.
If not an integer, excursion crossover points move along orbit. If
an integer, they are frozen.
Half integer seems self cancelling. But wait, what about envelope?
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e.g. Half-integer

In general, ν = m/n pulls phase
space in n directions...

As cyclotrons start from νx = 1, a 2-sector cyclotron is not possible.
Why?
A 3-sector cyclotron can reach γ = 3/2? No, it can hardly reach
180 MeV for protons.
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Some theory

We write the Hamiltonian as (SHM plus perturbation)

H =
p̃2

2
+
ν2x2

2
+
(m
n
bmn

)
xn cos(mθ + θm) (2)

where (m
n
bmn

)
:=
R2

Bρ

1

n!

∂n−1Bm
∂xn−1

(3)

x′ = ∂H
∂p̃ , p̃′ = −∂H

∂x , gives:

x′′ + ν2x = − (m bmn) xn−1 cos(mθ + θm) (4)
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Action-angle coordinates (J, ψ):

x =
√

2J/ν cosψ, p̃ =
√

2Jν sinψ (5)

The transformed Hamiltonian:

H = νJ +
mbmn
n

(
2J

ν

)n/2
cosn ψ cos(mθ + θm) (6)
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Solution

J ′ = −∂H
∂ψ

= mbmn

(
2J

ν0

)n/2

cosn−1 ψ sinψ cos(mθ + θm), (7)

or, expanding the trig powers,

J ′ = mbmn

(
J

2ν0

)n/2

[sin(nψ −mθ − θm) + other terms] (8)

We retain the designated term because it is the only one with slow variation
with θ, and does so when the resonance condition

nν0 = m (9)

is met; the other terms will vary too rapidly to make a net contribution,
because Eqn. 8 is quite easily integrated under the condition of a fixed tune,
since

ψ′ =
∂H

∂J
= ν + oscillatory term, (10)

and so to a good approximation, within a constant, ψ = ν0θ.
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The xn for order n gives an n times νθ dependence, and the harmonics m
give mθ. Product gives terms where if nν = m, the θ-dependence vanishes
for one of the harmonic terms.

So J ′ ∝ Jn/2 or converting back to A =
√
J , J = A2, J ′ = 2AA′ ∝ Jn/2 = An,

A′ ∝ An−1. This confirms: n = 1 means A grows linearly, n = 2 means A
grows exponentially.

Also notice that there is a 2n in the denominator; for every trig power there is
a factor 2 reduction. This with n! means resonances fall in importance with n.

But nth derivatives of B grow with n if B ∝ γ. This means very high energy
cyclotrons, (in multi-GeV range, none ever built) could get challenging.
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Mathematica Demo’s...
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Intrinsics

Perturbing fields often called “error fields”, but that’s not always the
case. For N sectors, we have intrinsic harmonics for all integer
multiples of N . So nν = mN are called intrinsics or ‘structural’
resonances.

Expect a strong resonance at νx = 3/2 (γ = 3/2 or proton energy
470 MeV), but if it’s intrinsic like in a 3-sector cyclotron, cannot cross it
or even get close.

There is also a zero intrinsic. This is relevant for vertical tune at
injection in compact (non-ring) cyclotrons, and will also be shown to be
relevant for coupling resonances.
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‘Fast’ Resonance passage

See eqn.10. On a resonance, ψ = νθ, so easy to calculate growth rate:
A′ ∝ An−1.

For varying tune as the beam passes through a resonance, the naı̈ve
approach would be to assume there are some particles at the worst
phase and set the sine to 1 and integrate J to find the growth over a
finite time, for instance over the time it takes to pass through the
stopband. Or half that time since the growth rate varies between zero
and maximum through the stopband. This would be correct for fixed
tune or for rate of change of tune (ν ′ := dν/dθ) to be very small
compared with the amplitude growth rate. It is not true in general.
Instead of fixed ψ, we have a quadratic function of θ:

ψ ≈
∫
νdθ = ν0θ + ν ′θ2/2. (11)

nψ −mθ = n[ν0θ + ν ′θ2/2]−mθ = nν ′θ2/2. (12)
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The action equation is a little simpler if we revert to A =
√

2J/ν0, the
betatron amplitude:

A′

An−1
=
mbmn
2nν0

sin(nν ′θ2/2− θm) (13)

We see that we get a Fresnel integral. The largest amplitude gain
occurs for phase θm = π/4:

∆(A2−n)

2− n
=
mbmn
2nν0

√
2π

nν ′
(14)

Note ν0 = m/n. Also, we prefer the tune change per turn, ντ ≡ 2πν ′,

∆(A2−n)

2− n
=

π

2n−1
bmn

√
n

ντ
(15)

Of course this does not hold for n = 2; in that case, the LHS is
∆(logA).
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Exercise: Take a simple case where beam is injected into a compact
proton cyclotron. Find the static orbit shift per Gauss of first harmonic
field amplitude, assuming an isochronous field. Now also find the fast
passage shift given by the above formula, assuming energy gain per
turn is 100 keV.
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Coupling resonances

This follows same H dynamics, but with extra dimensions. The
advantage of the H is that the two dimensions’ coupling is known from
Maxwell equations. We know e.g. that potentials are like Laplace
solutions: x, z, x2 − z2, xz, x3 − 3xz2, etc. It means for example that if
field has to rise for isochronism, there is an x2 term and there will
result a z2. Etc.

The theory above can be generalized to coupling resonances. We
define positive integers nx, nz,m as referring to the resonance

nxνx ± nzνz = m. (16)

The “order” of the resonance is nx + nz.
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Coupling Hamiltonian term is:

H1 = am

(
Jx
2νx

)nx/2( Jz
2νz

)nz/2

cos(nxψx ± nzψz −mθ), (17)

where:

am = am(nx, nz) =
1

nx!nz!

R2

Bρ

∂nx+nz−1B(x|z)

∂xnx+nz−1

∣∣∣∣∣
m

. (18)

The subscript m means the mth Fourier component of the field
derivative of B and the notation B(x|z) means we take the radial or
x-component of ~B if nz is odd, and the vertical or z-component if it is
even. This can be recognized as respectively the “skew” and “normal”
multipole components of the magnetic field.
New invariant follows from J ′x/nx ∓ J ′z/nz = 0 from J ′ = ∂H/∂ψ. A
sum resonance grows without limit, a difference has a limit: one grows,
the other shrinks.
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First I want to show a real life example of a coupling resonance. 3
masses, 2, and then 1 is where the springing is exactly twice the
swinging freq.

Note there is no driving harmonic, no forced oscillation; only coupling.
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Back to cyclotrons. Again, no driving harmonic; only a second radial
field derivative. Turn down strength to get perfect Lissajous, varying νx
(don’t forget momenta).

Put back onto νx = 2νz, show SFP, UFP at z = 0, invariance of
Jx + Jz/2.

Now show the phase space traj’s., let “turns” self-run.

Remember: There are particles with all initial conditions, covering their
emittance in phase space. Once through a resonance, the phase
spaces are correlated.

This is Walkinshaw and why is it important for cyclotrons? See 7.58
and following, 2nd derivative of Bz with R, automatic when B ∝ γ.
Secondly, it is intrinsic (0×N ). Lastly, cyclotrons have νx ∼ γ, and
avoiding it would keep νz other constantly above γ/2 or below. See
tune diagram again.
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Walkinshaw in cyclotrons.nb
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Walkinshaw in EMMA

Just remember these
characteristics:

νx = 2νz so it’s an
intrinsic.
∆Jx = −(1/2)∆Jz
emittance
exchange.

Note typical oscillations
like diffraction from an
edge.
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Other Coupling

Of course there are other resonances, for example,

νx = νz (19)

is also ‘intrinsic’ and has many of the same features as the
Walkinshaw. But because of the nature of tunes in cyclotrons, this is
rarely crossed, easily avoided.

More common is
νx − νz = 1. (20)

This requires a first harmonic ‘skew quadrupole’ or tilted median plane
field. So it can be corrected with first harmonic correction coils.
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Learned, this lecture

Compared to other rings, what’s special in cyclotron case.
1D resonances, their order; integer, half-integer, etc.
ODEs to describe them
Hamiltonian approach and perturbation theory
Fun Mathematica apps, stable/unstable fixed points
Intrinsic resonances
Fast passage through resonances; not the same as static case.
Coupling resonances, their characteristics
Walkinshaw resonance behaviour (through Mathematica app) and
why important for cyclotrons
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How this relates to your cyclotron design project

The bare minimum is for you to take make a B(r, θ) for your chosen
cyclotron, use CYCLOPS to: (1) demonstrate the isochronism and find
the minimum energy gain per turn to avoid phase slip to deceleration.
(2) Calculate the tunes, plot them on a tune diagram, comment on the
most dangerous resonances, avoid the intrinsic (structural)
resonances.
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