Shortcut to finding β

$\beta \gamma=\sqrt{\gamma^{2}-1}=\sqrt{(\gamma-1)(\gamma+1)}$
Commonly, one knows $\gamma-1$, not γ, through what is usually called the "energy", but is in fact the energy E_{k} that's been added to the rest energy. $\frac{E_{k}}{m c^{2}}=\gamma-1$; let us call this η. So
$\beta \gamma=\sqrt{\eta(\eta+2)}$ and finally $\beta=\frac{\sqrt{\eta(\eta+2)}}{\eta+1}$
This gives β for any added energy E_{k}, without loss of precision. But for non-relativistic, this is simply
$\beta_{\text {nonrel }}=\sqrt{2 \eta}$.

