$$\beta\gamma=\sqrt{\gamma^2-1}=\sqrt{(\gamma-1)(\gamma+1)}$$

Commonly, one knows $\gamma - 1$, not γ , through what is usually called the "energy", but is in fact the energy E_k that's been added to the rest energy. $\frac{E_k}{mc^2} = \gamma - 1$; let us call this η . So

$$eta\gamma=\sqrt{\eta(\eta+2)}$$
 and finally $eta=rac{\sqrt{\eta(\eta+2)}}{\eta+1}$

This gives β for any added energy E_k , without loss of precision. But for non-relativistic, this is simply

 $\beta_{\text{nonrel}} = \sqrt{2\eta}.$