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Abstract

The implementation of the accelerator tracking code we proposed in Ref. [5]

was successful. Symplectic methods of integration were applied to equations

of motion for both particles and electromagnetic fields, a novel approach

to particle-in-cell simulations. The symplectic integration of particles was

tested by calculating single-particle orbits in a classical AVF Cyclotron field.

The field and multi-particle tracking was tested by simulating the expansion

of a uniform sphere of charge. Further implementation ideas are discussed.
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1 Introduction

The design and study of modern particle accelerators relies heavily on ac-

curate simulations. One physical phenomena observed in accelerators is the

creation of electromagnetic fields by the moving particles; which influence

other particles. Computationally modeling this problem is significantly more

difficult to solve than linear beam dynamics, hence the effects of this phe-

nomena are often not considered.

Recent plasma physics research presented by H. Qin et al. [7] show a

unique approach to plasma simulation. They created a discretized Hamilto-

nian system for a non-relativistic plasma using Hamiltonian field theory. In

Ref. [5] we adapted this method to particle accelerators.

This report provides supplementary material on the implementation and

testing of the symplectic particle-in-cell tracking code we derived in Ref. [5].

It considers the problem of solving a non-linear set of partial differential

equations and approximations that can be made to improve performance.

2 Hamiltonian System

To summarize Ref. [5]: a modified version of the Lagrangian proposed by

F.E. Low [4] yields the Hamiltonian for a collisionless relativistic plasma:

H(x,P ,A,−E ; t) =

¨ √
m̃2 + (P − q̃A(x, t))2dv1dx1 +

ˆ E2

2
+
∇×A2

2
dx1 ,

(1)
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with:

m̃ = f1m, (2)

q̃ = f1q , (3)

where m and q are the mass and charge of the elementary particles and

f1(x1,v1, t1) is the local plasma density distribution at time t1. The system

of units has been chosen such that c = µ0 = ε0 = 1. Vector quantities

are denoted in bold. This Hamiltonian is expressed in terms of canonically

conjugate variables, namely using Poisson bracket notation:

{xi,Pj} = δij , {A(x),−E(y)} = δ(x− y) . (4)

The first term in the Hamiltonian is the relativistic energy of fluid-particles.

The second Hamiltonian term is the energy contained in the electric field E

and magnetic vector potential A produced by the plasma. P is the canonical

momentum density:

P =
m̃ẋ√
1− ẋ2

+ q̃A , (5)

As for the fields, the temporal gauge (or Weyl gauge) condition (the electric

scalar potential Φ = 0) was chosen as L does not depend on Φ̇.

For convenience the definition of the gradient operator is generalized to
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functional derivatives:

∇q =


δ

δq1
...

δ

δqi

 , ∇p =


δ

δp1
...

δ

δpi

 . (6)

The equations of motion are obtained from:

q̇ = ∇pH(q,p) , (7)

ṗ = −∇qH(q,p) , (8)

which leads to:

ẋ =
(P − q̃A)√

m2 + (P − q̃A)2
, (9)

Ṗ = q̃∇(ẋ ·A) , (10)

Ȧ = −E , (11)

Ė = ∇×∇×A− j , (12)

where j is the local current density.

3 Symplectic Integration

Symplectic integration conserves geometric properties of the flow of Hamil-

tionian systems. One consequence of symplecticity as explained by Hairer et
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al. [3, p. 410] is that: “For higher-dimensional systems, symplecticity means

that the flow preserves the sum of the oriented areas of the projections of

ϕt(A) onto the (pi, qi)-coordinate planes, for any two-dimensional bounded

manifold of initial values A” where ϕt(A) is the flow and (pi, qi)-coordinate

planes are two-dimensional Poincaré maps. This can be interpreted as the

conservation of the sum of two-dimensional emittances of the beam:

ε = ε1 + · · ·+ εn , (13)

where:

εi = |pi ∧ qi| . (14)

Since the electromagnetic fields in eq. (1) are canonically conjuagate vari-

ables, symplectically integrating them tracks their evolution while conserv-

ing the two-form A ∧ −E . This is in contrast to other particle-in-cell codes

which recalculate the fields from the particle distribution at each step.

A defining characteristic of an integration method is its order of accuracy,

n. It is related to the truncation error of the numerical solution:

Error(h) ∼ O(hn) , (15)

where h is the step size.
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3.1 Euler Method

The symplectic Euler method is a first order integrator written for general

Hamiltonian systems H(q,p) as:

pn+1 = pn − h∇qH(qn,pn+1) , (16)

qn+1 = qn + h∇pH(qn,pn+1) , (17)

which leads to the implicit equation:

pn+1 − pn + h∇qH(qn,pn+1) = 0 . (18)

Numerical methods for solving this equation are discussed in section 4.1.

Since the Euler method requires that pn+1 is iterated before qn+1, the ap-

plication to the equations of motion eqs. (9) to (11) is not trivial. This

procedure requires that the momenta P and E must be iterated before their

respective coordinates x and A.

A reversed symplectic Euler method, in which qn+1 is calculated before

pn+1 was implemented as well, for the use in section 3.2.

3.2 Störmer-Verlet Method

As explained by Hairer et al., [3] the Störmer-Verlet method is a time-

symmetric second order integration method. It can be implemented using
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the forward and reverse symplectic Euler methods:

pn+ 1
2

= pn −
h

2
∇qH(pn+ 1

2
,qn) ,

qn+ 1
2

= qn +
h

2
∇pH(pn+ 1

2
,qn) ,

(19)

qn+1 = qn+ 1
2

+
h

2
∇pH(pn+ 1

2
,qn+1) ,

pn+1 = pn+ 1
2
− h

2
∇qH(pn+ 1

2
,qn+1) ,

(20)

noting the implicit equations for pn+ 1
2

and qn+1:

pn+ 1
2
− pn +

h

2
∇qH(pn+ 1

2
,qn) = 0 ,

qn+1 − qn+ 1
2
− h

2
∇pH(pn+ 1

2
,qn+1) = 0 .

(21)

Any second-order symplectic integrator, like this one, can be extended via

the Yoshida method [8] to any desired (2n+ 2)th-order.

4 Multidimensional Root-finding Algorithms

4.1 Multidimensional Newton-Raphson Method

The Newton-Raphson method is reccomended by Ref. [6] as a reliable method

for root finding non-linear multidimensional systems. The derivation follows:

let eq. (18) define a vector function, f , where h, pn, and qn are taken to be

constant,

f(pn+1) = 0. (22)
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Taking the Taylor expansion for a small perturbation δp,

f(pn+1 + δp) = f(pn+1) + Jf (pn+1) · δp +O
(
δp2
)
, (23)

where Jf (pn+1) is the Jacobian matrix of the vector field f(pn+1). We require

f(pn+1 + δp) = 0, leading to the following equation for δp;

δp = −f(pn+1) · J−1f (pn+1) . (24)

Which yields the final iterative formula:

pm+1
n+1 = pm

n+1 + h
(
pm
n+1 − pn − h∇qH(pm

n+1,qn)
)
·
[
I + hJp(pm

n+1,qn)
]−1

,

(25)

where m denotes the step of the Newton-Raphson method and n denotes

the step of the symplectic integrator, as before. Jp(pm
n+1,qn) is the Jacobian

matrix of the vector field
[
−∇qH(pm

n+1,qn)
]

and I is the identity matrix. In

Cartesian coordinates, Jp(pm
n+1,qn) can be expressed as:

Jp(pm
n+1,qn)T =


∂px
(
−∇qH(pm

n+1,qn)
)

∂py
(
−∇qH(pm

n+1,qn)
)

∂pz
(
−∇qH(pm

n+1,qn)
)
 . (26)
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This matrix can also be expressed, by the symmetry of derivatives and the

anti-symmetry of the equations of motion:

Jp(p,q) = −Jq(p,q) . (27)

So, the root finding methods for the implicit equations for qn+1 can be found

with a straightforward substitution.

4.2 Quasi-Newton-Raphson Method

The Newton-Raphson method is computationally expensive since it requires

the calculation of J−1f at each iteration. The Quasi Newton-Raphson method

avoids this by taking the following approximation:

Jp(pm
n+1,qn) ≈ Jp(pm0

n+1,qn) . (28)

The accuracy of this approximation depends on the accuracy of the initial

guess. However since the Hamiltonian is reasonably smooth, the difference

between the initial guess and the final root is generally small.

4.3 Newton-Raphson Convergance

Despite the Newton-Raphson method being one of the best for multidimen-

sional systems of equations, there are specific cases where it can fail to find

a root. Firstly, this method fails immediately if the Jacobian matrix Jf is
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not invertible. Another source of error is the initial guess. The initial guess

could send the algorithm into a cycle about the root. The stability of the

algorithm depends on the root being well defined; a root that only exists

in a limit will cause the algorithm to run indefinitely. There are advanced

algorithms for backtracking and using more stable methods to avoid these

errors [6]. However these problems have not been encountered during the

development and testing of the code.

Lastly, if the Jacobian matrix is discontinuous at the root then con-

vergence is not guaranteed. This implies that the interpolator chosen in

section 6.2 must be continuous, at least to second order. Explicitly, if

A ∈ C2(R3,R3) then function f(pn+1) ∈ C1(R3,R3).

4.4 Avoiding Root-Finding

Note that, in the canonical case of a seperable Hamiltonian, where

H(q,p) = T (p) + V (q) , (29)

the implicit equations eq. (18) and eq. (21) become explicit:

pn+1 = pn + ∆t · ṗ(q) ,

qn+1 = qn + ∆t · q̇(p) ,

(30)

eliminating the need for root finding. This simplification applies to the equa-

tions of motion for A eq. (11) and E eq. (12) but does not apply to x eq. (9)
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and P eq. (10).

Solving the implicit equations with root finding techniques is very costly

compared to the explicit eq. (30). E. Forest [2] explains that many different

accelerator physics tracking simulations are based on specific splits of the

relativistic single particle Hamiltionian:

H(x,p) =

√
m2 + (p− qA(x))2 + qΦ(x) (31)

Canonical transformations to Frenet-Serret coordinates allow the use of the

paraxial approximation [1], which leads to a split Hamiltonian. Further work

should be done to implement useful splits of eq. (1) for specific applications

of the code.

5 Test of Integration Methods

The system chosen to test the integration methods consists of an Azimuthally

Varying Field (AVF) Cyclotron with three sectors and a field modulation,

or flutter, of 1.0. A single 299.792 MeV proton is tracked near the equi-

librium orbit, shown in fig. 1, without tracking the A and E fields. To

compare integration methods, Poincaré maps are produced by perturbing

the initial particle from the equilibrium orbit by ε = 0, 0.05, 0.075, 0.1 where

x0 = xequib(1 + ε) is the initial x position, the intial momentum remains un-

changed; the particle is tracked for 500 turns. A view screen located on the
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Figure 1: Reference orbit of the AVF system, viewed from above.
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x-z plane, for positive x, observes the phase of the particle for each orbit.

The Euler method was used to produce fig. 2 and the Störmer-Verlet method

for fig. 3; both were integrated with a constant step size of 0.00573448s and

their implicit equations of motion were solved using the Newton-Raphson

method. The key feature of these plots is the behaviour of symplectic

integration which is that the phase-space area is conserved in both figures

however, the area and shape of fig. 2 is less accurate than fig. 3; ε = 0 should

correspond to the reference orbit, or a single point on the plot.
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Figure 2: Poincaré map integrated with the Euler method.
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Figure 3: Poincaré map integrated with the Störmer-Verlet method.
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6 Discretization

As of yet, the system is comprised of a continuous field and plasma distribu-

tions. Discretization of these distributions is necessary for computation.

6.1 Macro-Particles

The initial plasma distribution is discretized into a finite number of macro-

particles. Each of which is given a dimensionless weight:

W =
f1

∆x1∆v1

(32)

which is time independent. Where ∆x1∆v1 is the initial phase-space volume

represented by the macro-particle.

6.2 Vector Field

To discretize the field A a third-order continuous polynomial interpolator

was created using the method from Ref. [7]. Using a discrete coordinate grid

with regular spacing, we transform a point in real space into normalized grid

space, in one dimension:

qx =
x− xmin

∆x
. (33)
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Where xmin is the minimal boundary of the grid and ∆x is the grid spacing.

The kernel is the following piecewise polynomial:

W(q) =


q8

3

512
+ q7

3

64
− q6 7

32
+ q4

77

128
− q263

64
+

179

256
, 0 ≤ |q| ≤ 1 ,

−q8 3

512
+ q7

3

64
− q6 7

64
+ q4

7

32
− q + 1, 1 ≤ |q| ≤ 2 ,

0, |q| > 2 .

(34)

In Cartesian coordinates let (qi, qj, qk) represent the normalized space coor-

dinate of the neighbouring discrete value Aijk then:

A(x) =
∑
i

∑
j

∑
k

AijkW (qi − qx)W (qj − qy)W (qk − qz) . (35)

An advantage to this interpolation scheme is the continuous derivative and

second derivative can be computed using the interpolator directly:

∂xA(x) =
∑
i

∑
j

∑
k

Aijk

(
−W ′ (qi − qx)

∆x

)
W (qj − qy)W (qk − qz) , (36)

∂2xA(x) =
∑
i

∑
j

∑
k

Aijk

(
W ′′ (qi − qx)

∆x2

)
W (qj − qy)W (qk − qz) , (37)

where cross derivatives are computed similarly.

The polynomial kernel function samples four discretized points are sam-

pled per dimension, so in total, 64 points are sampled per interpolation.
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7 Test of Field Tracking

The test of field tracking was to simulate the expansion of a uniformly dis-

tributed sphere of charged particles which are initially at rest. The macro-

particles were given a weight factor so that the sphere would double in radius

within ten time steps, non-relativistically. The field A is zero initially and E

is initialized with the analytic solution for a uniformly charged sphere, given

by Gauss’s law. The following test uses a system of 104 particles and a grid

size of 203 in Cartesian coordinates. The time evolution of the self-induced

fields along the x-axis is shown in fig. 5 and fig. 6 where t = 0 corresponds

to the initial conditions. Note the discretization noise in the E field for

t = 0.0267s and t = 0.0334s. This noise does not appear in A, which is the

only field affecting the particles directly, in eq. (9) and eq. (10).
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Figure 4: The time evolution sphere projected on the x-y plane.
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Figure 5: The time evolution of Ax along the x-axis.
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Figure 6: The time evolution of Ex along the x-axis.
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8 Conclusions

The implementation and testing of the code is successful.

Higher-order integration methods, should be used for more accurate and

physical results, dispite the cost of additional computation time.

9 Recommendations

Splits of the Hamiltonian should be derived and the resulting equations of

motion implemented.

More general symplectic integrators should be developed for experiment-

ing with different systems and symmetries; the first of which should be the

Yoshida method.

Explicit integration methods should also be developed for use with the

split Hamiltonian.

A second order polynomial kernel interpolator, could be used instead of

the current third order for additional speed.

The simulation of a physical system such as the TRIUMF cyclotron

should be the next test case.
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