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Executive Summary

The following document presents measurements conducted to determine and
manipulate the beam bunch length in an electron linear accelerator at TRIUMF’s
new ARIEL facility. This method uses a radiofrequency resonant cavity that oper-
ates in a mode with transverse electromagnetic fields on axis. These fields deflect
electrons by a magnitude dependent on the phase of the radiofrequency fields at
the arrival time of the electron. Therefore, it is possible to convert the spread of
electrons after the deflection to a profile of the beam in the time domain before
it reached the deflecting cavity.

This relationship between bunch length and vertical spread after the deflecting
cavity requires that certain properties of the cavity be measured. In particular, the
effective shunt impedance must be known, a parameter that gives the relationship
between input power and effective cavity voltage. To obtain this measurement,
we look at the effect of the deflecting cavity on the beam and compare this with
results obtained from simulations using a 3D beam dynamics program, General
Particle Tracer. Preliminary results suggest the effective shunt impedance of the
deflecting cavity is 0.81 MΩ, however this should be confirmed with further data
collection.

In addition to beam bunch length measurements, this project characterized the
bunching cavity, a radio-frequency resonant cavity designed to focus the beam in
the time domain. Using the bunching cavity in conjunction with the deflector
cavity, we were able to measure the nominal bunching power for optimal focusing
at the deflecting cavity to be 48.5W. When compared with computer simulations,
the shunt impedance of the buncher was calculated to be 0.326MΩ. Thiis shunt
impedance can be used to determine the input power required for optimal tem-
poral focusing of the beam at any point along the beamline. This is important as
a focused bunch is highly desirable for downstream users.

As these results are only a first estimate, it would be useful to do further
data collection to confirm these values and obtain error bounds. In addition,
the computer simulations could be improved by using more recent estimates of
the input beam characteristics (standard deviation of the bunch in the x, y and
z directions, beam energy, etc...). Having obtained the most accurate results
possible for the shunt impedance of the deflecting cavity, a final recommendation
would be to develop a program that can rapidly analyze images of the beam after
the deflector and output the beam bunch length.
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Chapter 1

Background and Motivation

1.1 The ARIEL Project

TRIUMF, Canada’s national laboratory for particle and nuclear physics, is en-
tering an exciting new phase with the upcoming completion of the Advanced Rare
IsotopE Laboratory (ARIEL) project. This facility will triple TRIUMF’s current
capability for producing rare isotope beams used by researchers in fields ranging
from astrophysics to materials engineering to particle physics, as well as in cancer
treatment and radiation therapy. This will be accomplished by the installation of
a 50MeV, 10mA continuous wave electron linear accelerator (e-LINAC) that will
operate using highly efficient superconducting radiofrequency technology1.

Figure 1.1: An overview of the E-LINAC project

1http://www.triumf.ca/ariel/e-linac
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1.1.1 The e-LINAC

The first stages of the e-LINAC project are already well under way as TRIUMF
works with collaborators from the Variable Energy Cyclotron Center (VECC) in
Kolkata, India to commission the injection line. This injection line will be used to
emit and accelerate the electrons up to relativistic speeds necessary for optimal
acceleration in the superconducting resonant cavities. As pictured in figure 1.2,
the injector consists of a thermionic electron gun (on the far left), followed by
several devices to focus and steer the beam, as well as diagnostic devices to de-
termine beam characteristics. The electrons are emitted from the electron gun in
bunches with a length that depends on the cathode bias of the gun. Electrons
will only be emitted from the gun when the sinusoidal RF gun voltage is higher
than the cathode bias. This phase window is called the conduction angle.

From the gun, the beam proceeds downstream until it reaches the dipole mag-
net, shown as a rotated green box in figure 1.2, where depending on the state
of the magnet, the beam will either be bent 90◦ into the analyzing leg of the
injection line, or will continue straight through to the end of the line. While the
beam currently stops at a beam dump on the far right, as other stages of the
accelerator are completed, the beam will continue through to the next stage (i.e.
the accelerating cavities).

Figure 1.2: A diagram of the injector line for the ARIEL e-LINAC
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1.2 Beam Diagnostics

Apart from ensuring the beam is of a high enough energy, an important con-
sideration for accelerator engineers is the quality of the beam reaching the down-
stream users. Diagnostic devices are interspersed along the injection line that
allow us to measure characteristics of the beam such as the cross sectional distri-
bution of the beam in the x−y plane and the average beam current. Characteris-
tics that are not as easy to measure include the temporal distribution of the beam
as well as its canonical conjugate, the energy distribution of the beam. Having
a beam that is focused in time and with small energy spread is as important as
obtaining a small cross sectional area.

1.2.1 Bunch Length Measurement

With a bunch length on the order of 85 picoseconds long, it would require a
very high resolution device to analyze the beam in the time domain. There are
devices installed in the beamline that are capable of very high sampling rates, such
as a fast faraday cup which outputs a current proportional to the rate of electrons
hitting the cup. This current is converted to a voltage and sampled by a high speed
digital oscilloscope. Another possible method of determining the bunch length is
using a non intercepting monitor (NIM) that picks up the harmonic content of
the beam. From this signal, one can measure not only the bunch length, but also
the phase of the electrons in the bunch relative to the gun RF phase. Both of
these options have been tested in conjunction with an RF bunching cavity that
focuses the beam in the longitudinal direction (i.e shortens the time spread of the
bunch). Unfortunately, the fast faraday cup does not produce a reliable signal
without very high beam current, while the NIM installed in the injector can not
sample quickly enough to give anything other than the average phase content of
the beam.

1.2.2 The Deflecting Cavity

Fortunately, there is a third device that has been designed specifically for
these measurements. Pictured in green and labeled RF Sweep in figure 1.2, the
low power, room temperature deflecting cavity is a resonant cavity that deflects
electrons depending on their arrival time. The transverse electromagnetic fields
inside the resonant cavity have a time dependence, resulting in the electrons expe-
riencing different forces depending on the RF phase of the cavity when the electron
enters. Essentially, this device maps from the time domain to the space domain,
where we already have several high resolution devices capable of measuring the
beam position and profile.

The deflecting cavity for the ARIEL e-LINAC, pictured installed in the ana-
lyzing leg of the injector line in figure 1.3, was commissioned over the summer.
However, to utilize the cavity as a means of determining the bunch length mea-
surement, we must know the relationship between the arrival time of an electron
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Figure 1.3: The deflector cavity installed in the injector line

at the cavity, and its position in the x− y plane at the diagnostic box on the end
of the analyzing leg (pictured in blue in figure 1.2). This relationship depends on
several factors, including the RF characteristics of the deflecting cavity, the input
power to the cavity, the energy and position of the beam when it reaches the cav-
ity and the focusing elements in place after the cavity. Indeed, the relationship is
significantly complicated by a solenoid focusing element in between the deflector
and the measurement point (shaded in red); this solenoid is necessary to collimate
the beam before the diagnostic box but couples the x and y elements of the beam
trajectory. This results in a rotated x-y axis after the solenoid, evident on the
screen at DB1.

The main characteristic of the deflecting cavity that needs to be determined
to obtain the relationship between vertical spread and bunch length is called
the shunt impedance of the cavity. This gives us the relationship between input
power to the cavity (known), and the effective voltage of the cavity (unkown). If
we know the effective deflecting voltage, we can determine the energy imparted
to an electron in the y direction, and from this we can get a relationship between
vertical spread and bunch length. Theoretically, this value can be calculated from
RF simulations using programs such as CST Microwave Studio, however due to
differences in the actual constructed cavity and the computer model, the shunt
impedance needs to be measured.
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Pcavity =
V 2

Rsh
(1.1)

1.2.3 Bunch Energy Spread Measurements

We have discussed how to obtain the bunch length of the electron beam, but as
mentioned, the energy spread of the beam is equally important. This is also a
measurement that is difficult to obtain using standard diagnostic devices, but a
clever method of measuring energy spread has been built directly into the accel-
erator design. The analyzing leg has specifically been placed at a 90 degree angle,
with a dipole magnet used to direct the beam.The magnet will bend the trajectory
of the electron with a radius of curvature given by equation 1.2, where B is the
magnetic field of the dipole magnet, m0 is the rest mass of an electron and q is
the charge of an electron.

R =
γm0βc

qB
(1.2)

Depending on the energy of the electron (represented by γ in equation 1.2),
the radius of curvature of the electron will change and thus the trajectory after
the dipole magnet will be related to the electron’s energy before the dipole. In
particular, because the magnet is bending the beam in the x direction, an energy
spread before the dipole magnet will map to a spread in the x direction after
the dipole. Similarly to the deflector cavity mapping from the time domain to
the space domain (y direction), the dipole magnet is mapping from the energy
domain to the space domain (x direction). Figures 1.4 and 1.5 demonstrate this
concept, showing simulations of a beam going through the dipole magnet with
and without a large energy spread.

Figure 1.4: A beam bending through the dipole magnet with small energy spread.
The y axis represents the x direction, and the x axis represents the z direction
(direction of travel of the beam after the dipole).
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Figure 1.5: A beam bending through the dipole magnet with energy spread 100
times larger than in the previous figure. The spread in the x direction (y axis) is
much larger after the dipole.

Therefore, we can measure the spread in the x direction using the diagnostic
box at the end of the analyzing leg, represented by a brown rectangle in figure
1.2, and use this measurement to determine the energy spread of the beam before
it reached the dipole magnet.

1.2.4 The Buncher Cavity

There is one final element in the injector beamline that is very important when
considering both the time and energy spread of the beam. The buncher cavity,
depicted in figure 1.2 by the first green rectangle on the left, is a radiofreqency
room temperature resonant cavity that is designed to focus the beam bunches
in time. It does this by slowing down electrons at the front of the bunch and
accelerating electrons at the back of the bunch. This is accomplished using a
sinusoidal RF field, such that depending on the time of arrival of the electron, it
will experience a different phase of the RF as it passes through the resonant cavity.

For the buncher to properly focus, it must be operated at the correct phase,
as shown in figure 1.6, called the bunching phase. If operated ±90◦ away from
the bunching phase, the bunch will experience a maximum net acceleration or de-
celeration while if operated at 180◦ away from the bunching phase, fast electrons
will be accelerated and slow electrons further decelerated causing an increase in
the time spread of the bunch (this is the debunching phase).

It is important to note that in bunching the beam, the buncher reduces the
spread in time but in doing so, imparts further energy spread in the beam. A more
detailed discussion of the buncher cavity RF and determination of the optimal
buncher power can be found in Appendix A.
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Figure 1.6: A sinusoid depicting the fields in an RF bunching cavity. The middle
of the bunch reaches the cavity at the zero crossing point while electrons arriving
at a later phase (lagging) undergo acceleration and electrons arriving at an earlier
phase (leading) undergo deceleration.

1.3 Beam Dynamics Simulations

In the preceding sections, we have discussed the importance of knowing the
time and energy spread of our bunched beam as well as the tools required to con-
vert these parameters into the space domain, where they can be measured. These
tools consist of the deflecting cavity and a dipole, used to map from the time and
energy domains respectively. We also have access to a buncher cavity designed to
focus the bunch in the time domain at the expense of increasing the energy spread.

As we can see from figure 1.2, the aforementioned devices are not the only
elements acting on the beam. There are also focusing solenoids, magnetic steerers
and collimators used to remove electrons that are too far from the center of the
beam in the radial (x-y) direction. All of these devices will affect the beam profile
and must be taken into account when determining the time and energy spread
from the y and x spread of the beam.

As the factors mentioned above depend on design parameters unique to the
e-LINAC, there is clearly no off-the-shelf solution to this problem but rather a
model must be derived from first principles where possible, and the results of
computer simulations. Fortunately, while the exact beam optics set-up is unique,
modeling beam dynamics is a common problem and there are numerous 2D and
3D computer simulations to model beam dynamics [5, 2]. In addition, the use of
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deflector cavities is fairly common in accelerator engineering and there are several
papers discussing methods of measuring the longitudinal beam profile from the
deflection of the individual particles. The TRIUMF e-LINAC deflecting cavity is
based off a design used by Cornell which has considerable documentation ([1, 4, 3])
regarding bunch length diagnostics and beam dynamics using the code, General
Particle Tracer (GPT) 2.

While the codes already exist, it is not necessarily straightforward to solve for
the trajectory; all of the input parameters must be defined, and if more than one
code is necessary to simulate the multiple features in the beamline, it will be nec-
essary to merge the simulation results. As the parameters also change depending
on the operating conditions (beam current, beam energy, etc...) this model must
be versatile, with the option to easily adjust such parameters. For this project,
the RF fields for the buncher and deflector cavities were simulated using CST Mi-
crowave Studio, and then these fields were used in a GPT simulation that modeled
the entire injection line up to the diagnostic box at the end of the analyzing leg.

This beam dynamics simulation in GPT can be used to compare with results
obtained experimentally, and useful information regarding the RF cavities as well
as beam characteristics can be obtained.

1.4 Project Objectives

The main purpose of this project is to provide accelerator engineers and down-
stream users of the ARIEL project with a rapid and straightforward method of
determining the electron beam bunch length of the e-LINAC. This will be in the
form of a MATLAB program that takes input parameters such as the RF charac-
teristics and input power of the deflecting cavity, and the current of the solenoid.
It will then uses the raw data obtained from the diagnostic box after the deflector
cavity to output the bunch length.

There are varying degrees to which this program can be implemented, with
the final objective being a one-click solution where the program interfaces with
the existing framework to obtain all required input parameters and measurement
data. However, the scope of this project will be limited due to time constraints
and most likely will not reach that level of functionality.

The following list shows what this project expects to accomplish by the middle
of January, 2013:

2http://www.pulsar.nl/gpt/
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USER INPUTS

• Deflector Cavity Shunt Impedance,
Q factor and Input Power

• Solenoid Current

• RF Gun Voltage (Initial electron
energy)

• Field of the bending dipole magnet

• Conduction Angle

• Beam position measurements after
the deflector

PROGRAM OUTPUT

• The length of the bunch ±5 ps

• The energy spread of the bunch ±1
keV

• A profile of the beam in the time
domain, in the form of a graph of
beam current vs. longitudinal po-
sition (if possible)

1.5 Project Scope and Limitations

The preceding section outlined the intended project objectives, however as the
project progressed it became clear that this would be well beyond what could be
accomplished by one individual given the time constraints at hand. In addition,
while the original objectives focused only on the deflector cavity, the final project
includes analysis of the bunching cavity as well.

Although the computer application described above ended up being outside
the scope of this project, significant progress was made in characterizing the RF
cavities of the injection line so that it would now be possible to continue with
such a program. Several of the following accomplishments were required before
the primary objective, given in section 1.4, could be addressed. There are also
several that pertain to the bunching cavity which were not included in the original
project scope.

• Determined the optimal beam optics set-up for measuring the time and
energy spread of the beam bunches

• Developed operating procedures for the buncher and deflector cavity

• Worked on the experimental set-up (the injection line) so that data could
be collected. This was more involved than was expected, and due to sev-
eral projects underway in the VECC area, it was difficult to maintain the
experimental set-up in the configuration necessary for our data collection.

• Provided quantitative and qualitative evidence that the buncher and deflec-
tor cavity were working as expected

• Determined the RF characteristics of the buncher and deflector cavity as
installed in the injection line including power losses through the input cables
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and the shunt impedance of the cavities, which is the most important quality
in determining the relationship between effective voltage and input power

• Developed, in collaboration with members of the beam optics group and
collaborators from VECC, a model of the injection line in General Particle
Tracer, a 3D computer simulation software.
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Chapter 2

Discussion

2.1 Experimental Set-Up and Data Collection

To fully characterize the RF devices (buncher and deflector), we needed to
look at their effect on the beam. This was done by running beam in the injection
line and comparing the output of the diagnostics at various RF power levels and
phases. The buncher and deflector were tested separately, looking solely at the
effect of one while the other was turned off, and then finally the deflector was used
in combination with the buncher to determine the nominal bunching power. Fig-
ure 2.1 shows the injection line, highlighting the RF devices that were adjusted,
as well the diagnostic box where the data was collected; we chose this diagnostic
box, DB1, as it is the only one that placed after all of the devices in question,
including the dipole magnet.

2.1.1 Beam Optics

While eventually the intent is to use the buncher and deflector to adjust and
probe the beam, for this experiment we are essentially doing the opposite, using
the beam to probe the RF devices. As such, the first aspect of setting up the ex-
periment was to tune the beam optics (devices used to steer and focus the beam)
so that the beam had a very small emittance (tightly focused) before the deflector
cavity. This is necessary for several reasons; in particular, if the beam isn’t tightly
focused as it passes through the deflector, electrons far from the reference trajec-
tory will see fields that are considerably different than the on axis fields. This will
skew the results obtained at DB1. In addition, if we are trying to compare the
beam spread in the x and y directions after the deflector, we want these values to
be very small so that the effect of the deflector will be more noticeable.

We obtained a tightly focused beam by adjusting the solenoid settings (solenoids
are shown in red in figure 2.1) and by placing two collimators in the beamline be-
fore the dipole magnet. These collimators consist of a thin strip of metal with two
slits at 90 degree angles, and a small hole with a 1mm radius, as shown in figure
2.2. The collimator is inserted into the beamline in such a way that it blocks the
beam, with a small portion of the beam passing through one of the slits or the
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Figure 2.1: The experimental set-up.

hole in the middle, depending on the position of the collimator. By placing the
hole in the center of the beamline, we limited the beam size at the collimating
point to a radius of 1mm, blocking off any electrons that were further from the
reference trajectory.

The beam optics settings, i.e. the current drawn by the steering and focusing
elements, were saved and are attached in Appendix B. Note that the dipole
magnet current setting is incorrect as it is no longer controlled by the VECC user
interface, but by an external power supply. The setting for the dipole magnet
was approximately 170mA, although this is not necessarily repeatable as work
has been done on the dipole magnet since the data was collected.

2.1.2 Experimental Procedure

Having completed the experimental set-up, data collection could begin. Data
was collected on several occasions, and this data was used to ensure the buncher
and deflector were properly connected and the low level RF was functioning cor-
rectly. The data collected earlier in the project was also used to develop a final
experimental procedure, answering questions such as how the beam should be
set-up and whether or not the focusing solenoid after the deflector was necessary.
The project supervisor, Bob Laxdal, wrote the majority of the final experimental
procedure, however I have attached it in Appendix C for completeness. I have
also revised this experimental procedure to accurately reflect the process used
during the most recent round of data collection on November 26, 2012, which is
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Figure 2.2: Depending on the depth of insertion (collimator enters on a 45 degree),
the beam will pass through one of the slits or the hole, reducing the beam size to
the shape of the collimating slit or hole.

the primary data set that will be discussed in this report.

Summarizing the experimental procedure, the first goal is to set up the beam
correctly, as discussed in the previous subsection. The deflector can then be set
up with the buncher off; this includes finding an input power that provides a rea-
sonable vertical smear on the screen at DB1, and determining the phase which
produces no deflection, and max deflection (0 degree phase). Having set up the
deflector it should be turned off and the buncher can be configured, which includes
determining the accelerating and decelerating phases, at 90 degrees to the bunch-
ing and debunching phases. The bunching phase can be determined by turning
on the deflector at the predetermined operating power and deflecting phase, and
identifying the buncher phase at which the vertical spread is minimized. The
optimal bunching power, at which point the beam is maximally focused in time
at the deflector, can be determined by slowly increasing the buncher power and
determining the point at which the vertical spread in the beam at DB1 is mini-
mized. At some point the beam spread will start increasing because the buncher
is overfocusing in which case the beam is optimally focused in time at a point
closer to the buncher than the deflector. Using the analogy of the human eye,
overbunching is equivalent to nearsightedness, with the eye focusing light before
the retina.

Data was collected with the deflecting cavity at a forward power of 17W. Con-
sidering the 3dB loss in the input cable this actually corresponds to a cavity input
power of 8.52W. This is less than the expected nominal power of around 20-50W
depending on bunch length, which is probably due to the time spread being much
greater than expected as the gun was not specifically set-up to output a beam with
short bunch length. Space charge would also increase the amount of deflection
obtained at a given input power and bunch length.

The conduction angle (bunch length) could have been reduced by increasing
the cathode bias. In our case, we ran the cathode bias at 101V, while it has been
operated at voltages exceeding 240V. For this test, however, a small time spread
was not needed as we were solely interested in measuring it, which is possible
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(a) Beam with no RF devices
on

(b) The deflector at maximum
deflecting phase (0◦)

(c) The deflector at the peak
amplitude phase (90◦)

Figure 2.3: Effect of the Deflector Cavity on the Beam at DB1

as long as the bunch length is significantly less than one period of the deflector
RF. The buncher was then turned on, with the deflector off, to a forward power
of 15W. Accounting for the 1dB loss in the input cable, this corresponded to a
cavity power of 11.9W. The bunching phase was identified, and with the deflector
on at 8.5W forward power, the nominal power could be determined. The collected
data was then analyzed, and the results are discussed in the following subsection.

2.1.3 Data Analysis and Results

The Deflecting Cavity

As discussed in the introduction, the purpose of the deflector cavity is to map
from the time domain to the space domain; we therefore expect that by turning the
deflector on, the vertical spread of the beam will increase significantly, reflecting
the fact that the bunch is spread out in time. This was very clearly demonstrated
in the collected data with the deflector on at 8.5W. Figure 2.3 compares pictures
of the beam at the screen at DB1 with and without the deflector on (in all cases
the bunching cavity is off).

Note that in this figure, particularly 2.3(b), the spread is not perfectly in the
y direction but on an angle. As mentioned in section 1.2.2, the focusing solenoid
after the deflector cavity rotates the x-y axes. While the spread induced by the
deflector is really only in the y direction, it appears on an angle because of the
effects of the solenoid. Through image processing of the data collected for the
deflector and buncher in Matlab, it was determined that the coordinate system is
rotated by approximately 36 degrees with the solenoid operating at 1.3A.

Figure 2.3 also demonstrates the effect of the deflector operating phase on the
beam. As explained earlier, it is because the RF fields have a sinusoidal time
dependence that the deflection is a function of time, and this is what provides
the spread in the y direction. However, this also means that average deflection
seen by the bunch will be a function of the RF phase at which the center of the

20



bunch reaches the deflecting cavity. In figure 2.3(b) the deflector is operating such
that the middle of the bunch reaches the deflector at the 0 degree phase so the
center electrons experience no net deflection. Comparatively, in figure 2.3(c) the
deflector is operating such that the middle of the bunch reaches the deflector at
the 90 degree phase. At this point, there isn’t much spread in the y direction
because the top of a sinusoid is relatively flat (ie, electrons at the extremities of
the bunch experience very similar fields to the center of the bunch). As a whole,
the bunch experiences maximum deflection, which explains why we see a relatively
focused beam with y centroid at a maximum distance from the y centroid with
the deflector off.

The phase dependence is clearly illustrated in figure 2.4, where the rotated
(solenoid coupling taken into account) y centroid of the beam is plotted as a
function of deflector phase offset. In this figure the phase is relative to the electron
gun RF, so is somewhat arbitrary. Clearly from this plot we can identify that
the maximum deflecting phase (0 degree) occurs at approximately -90◦ and 100◦

according to the low level RF phase relative to the electron gun. Note the low
level RF period isn’t exactly 360◦ as it should be, meaning that changing the
phase by 1 degree on the user interface changes the actual RF phase by slightly
less than 1 degree.

Figure 2.4: The rotated y centroid position (in pixels) as the deflector phase is
scanned.

21



(a) Beam with no RF devices
on

(b) The buncher at a non
accelerating (bunching or de-
bunching) phase

(c) The buncher at an acceler-
ating phase

Figure 2.5: Effect of the Bunching Cavity on the Beam at DB1

The Bunching Cavity

Similarly to identifying the deflecting phase of the deflector cavity, the first
objective when running the buncher was to determine the bunching phase, as de-
picted in figure 1.6. The effect of the buncher on the beam at the screen at DB1
is shown in figure 2.5. Figure 2.5(b) is clearly one of the non accelerating phases
(either the bunching or de-bunching phase), but we cannot determine which with-
out operating the deflector as the image does not give us any information about
the time spread.

We can identify the phase as being fairly close to the non-accelerating phase
because the x centroid is in approximately the same position as the x centroid
with the buncher off, which is what we’d expect when the buncher is operating
at a zero crossing point. Because the slope of a sinusoid is maximum at the zero
crossing point, we would also expect to see a beam that is very wide in the x
direction as the spread in energy imparted by the buncher is greater at this phase.
This larger energy spread manifests itself as a horizontal smear due to the effect
of the dipole (section 1.2.3). Once again, due to the solenoid coupling, the axes
are rotated, so the smear actually appears on an angle of around 36 degrees.

Contrasting the non accelerating phase, figure 2.5(c) shows the beam when the
buncher is operating in one of the maximum accelerating phases. We can most
likely identify this as the maximum deceleration phase because the center of mass
is on the left of the reference beam (figure 2.5(a)), suggesting the beam had a
smaller radius of curvature than the reference trajectory. From equation 1.2, this
implies the beam had a lower energy. Another trait of the maximum accelerating
phases is that the spread in energy imparted by the buncher will be significantly
less because the slope of a sinusoid is at a minimum when the amplitude is at a
maximum. In comparing the beam in figure 2.5(c) with figure 2.5(b), we can see
that there is significantly less spread in the rotated x direction.
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The sinusoidal dependence of the x centroid position on the buncher phase
when the electrons arrive at the cavity can be seen quantitatively in figure 2.6. We
can identify the non accelerating phases from the fitted curve with more accuracy
than by looking solely at the images. These phases occur at the intersect of the
red and blue lines, at approximately 180◦ and -10◦. These are not 180 degrees
apart, as we would expect, which is due to the fact that there is clearly a slight
constant offset, such that the average of the buncher x centroid position is not
quite the same as the the centroid position of the reference beam. The actual non
accelerating phases are therefore closer to 175◦ and -5◦.

Figure 2.6: The rotated x centroid position (in pixels) as the buncher phase is
scanned.

Having identified the non accelerating phases, the deflector needed to be turned
on to determine the bunching phase. When collecting the data we used -98 de-
grees as our deflecting phase, which is very close to the -90 degree deflecting phase
identified in figure 2.4. Therefore, in determining the bunching phase and nominal
buncher power, we turned the deflector on at a power of 17W forward (8.5W with
losses) and phase of -98◦ . We were then able to identify that the buncher phase
was approximately −20◦, close to the -5◦ expected from figure 2.6. The effect of
turning on the buncher at a forward power of 14.2W (cavity power of 11.3 W after
input losses) is shown in figure 2.7.
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(a) Beam with no RF devices
on

(b) Deflector at 8.5W and -98◦ (c) Deflector at 8.5W and -
98◦ and buncher at 11.3W and
−20◦

Figure 2.7: Effect of bunching on the deflector induced vertical smear at DB1

Keeping in mind that the solenoid is still rotating the axes, we can see that
the buncher has significantly decreased the vertical smear evident when only the
deflector is on, in figure 2.7(b). However, in doing so, the x spread of the beam
has increased, as expected due to the increased energy spread imparted by the
buncher cavity. This reciprocity between reducing the time spread and increasing
the energy spread is due to what is known as Liouville’s theorem, which states
that the phase space volume of a system of particles is constant in time. As time
is the canonical conjugate of energy, by decreasing the spread in time, Liouville’s
theorem implies there must be an increase in the spread in energy.

Having determined the bunching phase, the final step was to identify the nom-
inal bunching power. This was done by keeping the deflector and buncher at the
same settings described above, but by slowly increasing the buncher power, taking
screenshots of the screen at DB1 throughout. The nominal bunching power will
be the point at which the spread in time of the bunch is at a minimum, implying
the length of the beam in the y direction is also minimized. Using Matlab to
conduct image processing on the data collected, figure 2.8 was produced, showing
a minimum in the y spread at a setpoint of approximately 450, corresponding
to a buncher power of 61.1W (48.5W including losses). Returning to Liouville’s
theorem, figure 2.9 shows a maximum in the energy spread (x spread at DB1) at
the same setpoint.

From this analysis, it is clear that the experimentally determined nominal
bunching power is approximately 48.5W ± 5W. Compared to the theoretically
calculated nominal power of 5W, determined in Appendix A, this is significantly
higher. There are several factors that contribute to the increased actual buncher
power. Space charge makes it more difficult to focus the beam as the electrons are
repelling each other. In addition, the trajectory of the electrons depends on the
energy imparted by the buncher and the time of arrival at the deflector will vary
depending on the path the electron takes (this is not considered in my theoretical
analysis). Finally, the fact that there is already energy spread in the beam when it
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Figure 2.8: The rotated y length (in pixels) as the buncher phase is scanned.

reaches the buncher is not taken into account in the theoretical analysis, but could
play a role in increasing the required bunching power. An electron that reaches
the buncher first will probably have a higher energy, so even in slowing down the
electron, it won’t be going as slow as an electron arriving early but with the same
energy as the center electrons, which is what was assumed in my calculations.

2.2 Beam Dynamics Simulations

2.2.1 General Set-Up

General Particle Tracer (GPT) was used to simulated the beam, starting at
the beginning of the injection line and going all the way to the diagnostic box
at the end of the analyzing leg, DB1. It was necessary to simulate the entire
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Figure 2.9: The rotated x length (in pixels) as the buncher setpoint is increased.

beamline because the output on the screen at DB1 is not only a function of the
buncher, dipole magnet and deflector cavity, but also the various other elements
in the beamline. The effects of one element on the beam will propagate down the
entire line and must be considered.

GPT is a software package to study 3D charged beam dynamics in electromag-
netic fields. The package consists of the GPT executable, which does all of the
number crunching, as well as various pre- and post-processing tools to analyze
and display the data. In particular, the Windows version includes a graphical
user interface to facilitate running the batch files and viewing the results which
are stored in a custom binary file.
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Figure 2.10: The GPT User Interface

2.2.2 Input Parameters

To determine the beam profile at the output we must first enter the beam
characteristics as the electron bunch leaves the gun. This includes the average
and standard deviation in the x, y and z directions of the beam, which is assumed
to be a Gaussian distribution of particles. Instead of writing the standard devi-
ation in z, however, in the GPT simulation the distribution of the beam is given
in time instead (which is related to z by the speed of the electrons). The initial
time spread of the beam depends on the experimental settings, and was about 16
degrees of 650MHz, or 68ps, in our experiment. We also need to know the average
and standard deviation in the momentum in the x, y and z direction, and finally
the normalized emittance in the x and y directions, εNx and εNy, a measure of
the area of the beam in phase space.

Unfortunately, a simulation of the electron gun output at 85keV and with the
most recent modifications to the gun design has not been conducted, so instead
the input parameters listed below are for a 100keV beam, with a slightly smaller
cathode than the gun currently has. Table 2.1 describes the input parameters
used in the GPT model.

2.2.3 RF Fields

In the GPT simulation, there are pre-defined elements that can be used to
model resonant cavities with time dependent, user defined fields. We used these
elements for the buncher and deflector cavities, obtaining the field profiles from
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Table 2.1: Input Parameters for the GPT Simulation

Name Value Unit

Conduction Angle 16 ◦

x 0 mm

y 0 mm

t 0 ps

βx 0 -

βy 0 -

βz 0.5147 -

σx 0.621286 mm

σy 0.619437 mm

σt 68 ps

εNx 1.32 mm-mrad

εNy 1.30 mm-mrad

σE 0.293365 keV

RF simulations done using CST Microwave Studio. The fields obtained from CST
Microwave Studio are normalized to a cavity energy of 1J. We want to multiply
these fields by a field multiplication factor based on the actual cavity energy. This
can be determined using equation 2.1.

Rsh

Q
=
V 2

ωU
(2.1)

The geometry factor for the deflecting cavity is Rsh/Q = 196Ω. Therefore
the cavity voltage for an energy of 1J is V1J=1.79MV. Similarly, for the buncher
cavity the geometry factor is Rsh/Q = 167Ω and the cavity voltage for an energy
of 1J is V1J=1.65MV.

Our field multiplication factor, F, used in the GPT simulations is then given
in terms of the cavity power as:

F =

√
Pcav ·Rsh

V1J
(2.2)
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2.2.4 Running the Code

Having modeled all of the relevant injection line optics elements in the GPT
simulation, it was necessary to set up the simulation exactly as it was in the actual
beam loaded tests. This involved placing collimators at the appropriate points in
the simulated beamline, and setting the solenoid magnetic fields based on the
solenoid current settings used.

Having done this, the code was run with the input parameters outlined in sec-
tion 2.2.2 and unfortunately, on average only 0.7% of the simulated beam made
it past the first two collimators. This also occurred when doing the beam loaded
testing, however it caused a greater problem in the simulations, as to obtain a
statistically meaningful result at the end, the number of initial particles required
was too great to simulate in a reasonable timeframe.

This problem could be avoided by running the experiment in two stages. The
first stage goes from the start of the beamline to the start of the dipole. The out-
puts from this stage, beam statistics at the start of the dipole magnet, are then
transferred via a MATLAB script to another batch script which uses the results as
the model for a much larger distribution of particles. This new distribution acts
as the input of the second stage of the simulation which extends from the start of
the dipole to the end of the analyzing leg. See Appendix D for the GPT code used.

Figure 2.11: The simulated trajectory of the beam before the dipole. Note the
significant loss of particles due to the collimators in place.
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Figure 2.12: The simulated trajectory of the beam starting at the dipole. Note
the effect of the dipole, bending the beam by 90◦.

2.2.5 Simulation Results

Deflector Cavity

Simulations were first done using solely the deflector cavity, some results of
which are shown in figure 2.13. Comparing with figure 2.3, we can see that quali-
tatively, we have the same beam shape and orientation in our GPT screen output
as in the output from the real screen at DB1. This very promising result confirms
that the model we are using for the experimental set-up in GPT matches fairly
closely the actual set-up.

One significant difference between reality and our simulation is that the de-
flector cavity model in GPT uses the theoretical shunt impedance, and what we
want to determine is the effective shunt impedance of the cavity as installed in
the beamline. If we can obtain this, we will know the relationship between input
power and the effective voltage of the cavity (equation 2.3).

Veff =
√
Pin ·Reff (2.3)

This, in turn, will provide the relationship between the beam bunch length
before the deflector, and the measured vertical spread at DB1:

∆y = f(Veff ,∆t) (2.4)

To obtain this effective shunt impedance, we need to find the simulated de-
flector cavity power that gives us the same magnitude of vertical spread at DB1
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(a) Beam with no RF devices on

(b) Deflector at 8.5W, at the deflecting phase

(c) Deflector at 8.5W, 90◦ from the deflecting
phase

Figure 2.13: GPT Simulation Results: Effect of the deflector on screen output at
DB1
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as was measured in the real injection line. By running simulations at several dif-
ferent powers, it was determined that the simulated input power which produces
the closest results was 16.8 W. Table 2.2 compares the beam parameters at the
virtual (GPT) screen and the real screen.

Table 2.2: Comparison of GPT output and experimental results at DB1 for the
deflecting phase

Name GPT Experimental Unit

Input Power X 8.5 W

∆y 4.3 4.3 mm

∆x 1.0 1.1 mm

Knowing that an actual input power of 8.5W corresponds to a theoretical input
power of Psim = 16.8W, and that the theoretical shunt impedance for a β = 0.51
electron of the deflector is Rsim=1.6MΩ (1P definition), we can determine the
effective shunt impedance of our actual cavity using the relationship in equation
2.5. This gives an effective shunt impedance of 0.81 MΩ.

PinReff = PsimRsim (2.5)

There are several reasons that the effective shunt impedance of our cavity is
much lower than our theoretical shunt impedance. The geometry of the cavity
is slightly different from the cavity model used in GPT, which is mainly due to
adjustments made when tuning the cavity to the correct resonant frequency. The
quality factor of the cavity is also much lower than the theoretical value of 10,
000 and was last measured as 5400.

While I have not calculated error bounds for this value as it is a first estimate
and we would require more data to obtain proper error bounds, it is important to
point out that this number will never be quite accurate either, due to differences in
the beam parameters in real life and in the GPT simulation. While I tried to copy
the experimental set-up exactly in GPT, there will undoubtedly be differences,
resulting in the input voltage of the cavity needing to be slightly different to get
the same deflection. However, this estimate should be a reasonable starting point
for further data collection.

The Buncher Cavity

Figure 2.14 demonstrates some results from the GPT simulation with the de-
flector turned on and the buncher off, at nominal power, and finally at a higher
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(a) Buncher OFF

(b) Buncher at 10.2W (Nominal Power)

(c) Buncher at 35W

Figure 2.14: GPT Simulation Results- Effect of the buncher operating in the
bunching phase on the screen output at DB1.
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power. We can see that at the nominal power, the spread in the y direction is
minimized, and then moving to a higher power, the vertical spread is increased
again, reflecting the fact that the buncher is over-focusing.

We have already determined experimentally what the nominal buncher power
is for optimal focusing at the deflector. By comparing this nominal bunching
power with the value determined using the GPT simulation, we can determine the
effective shunt impedance of the bunching cavity, exactly as was done with the
deflector cavity in the preceding section. This was determined to be 10.2W±1.6W
in the GPT simulation. The error in this number could be reduced with further
simulations.

Comparing this value with our experimentally determined value of 48.5W, this
is significantly lower. This discrepancy arises from several factors, including the
fact that space charge (the repulsion between like charges) is neglected in the cur-
rent GPT model. This will have a large effect on bunching as more power will be
required to focus the electrons when space charge is considered. Similarly to the
deflector, there is also the fact that the actual RF characteristics of the buncher
(Q factor, geometry factor) are not the ideal values used in the GPT simulation.

Finally, with the values for the actual and simulated input power required for
optimal bunching, we can determine that the effective shunt impedance of the
bunching cavity is 0.326 MΩ using equation 2.5 again. Knowing the effective
shunt impedance, we can use this to determine the input power required to obtain
optimal focusing (minimized bunch length) for any point along the beamline.

Once again, there are no error bounds provided on this value, as not enough
data is available. However, this value can now be used to focus further data col-
lection in the right range of buncher input powers.
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Chapter 3

Conclusions

This project set out to measure the beam bunch length for the ARIEL electron
linear accelerator. This required determining the RF characteristics, in particular
the effective shunt impedance, of the deflector cavity which in turn provides a
relationship between vertical spread after the deflector and bunch length. In ad-
dition, work was done to determine the effective shunt impedance of the bunching
cavity, so as to provide a relationship between the optimal focusing distance and
input power.

To accomplish these objectives, a significant part of this project was setting
up the experimental apparatus. This involved adjusting the settings of the beam
optics and RF devices in the injection line, as well as inserting collimators to
obtain a tightly focused beam at the diagnostic box used for data collection. The
experimental procedure was provided by Bob Laxdal, the project sponsor, and
was then adjusted as the data collection proceeded. Both the experimental set-up
and procedure developed during this project will be useful when taking further
data collection. In addition, the tools developed while analyzing the data such
as the GPT simulation, will be relevant for future work on this project as well as
other projects relating to the injection line.

Having collected and analyzed the first round of data, the effective shunt
impedance of the deflecting cavity as installed in the beamline was determined
to be 0.81MΩ. This is significantly different than the ideal shunt impedance of
1.6MΩ, but this is expected due to differences in the computer model of the de-
flector and the actual deflector cavity. Error bounds are not available for this
value, but can and should be obtained by collecting more data points. The value
obtained for the effective shunt impedance can then be used to determine the
relationship between vertical spread at DB1 and bunch length. This will allow us
to use the deflector cavity as a powerful diagnostic device, giving us the length
of the beam bunch in the injection line. Such a measurement is important for
accelerator engineers in optimizing the acceleration and focusing of the beam, as
well as to downstream users who require this type of information when conducting
their experiments.

The effective shunt impedance of the buncher cavity was determined to be
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0.326MΩ, compared with a simulated (theoretical) value of 1.55MΩ for a β = 0.51
particle. The discrepancy in this value is expected not only due to differences in
the ideal buncher and the buncher as installed in the beamline, but also due to
the absence of effects such as space charge in the current GPT simulation model.
The repulsion between electrons will mean that we expect to obtain a lower shunt
impedance as it is harder to focus the electron bunch. We can use this value
for the shunt impedance to determine the power required for optimal focusing
of the bunch at any point in the beamline, allowing us to provide small, tightly
concentrated bunches of electrons to users downstream, a desirable quality in a
beam.
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Chapter 4

Project Deliverables

The following deliverables are to be transferred to the project sponsor. Note
that the results obtained are a first estimate, and should be confirmed with further
data collection (see chapter 5).

1. Effective shunt impedance of the buncher cavity

2. Effective shunt impedance of the deflector cavity

3. General Particle Tracer simulation code and results

4. The raw experimental data collected

5. All other plots, images and animations resulting from the data collection
and analysis

6. A final report documenting the project, including recommendations for fu-
ture work
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Chapter 5

Recommendations

While a significant amount of work has been accomplished in the last four months,
there is still much to do to obtain a robust program for beam bunch length mea-
surement, as well as to fully characterize the bunching cavity, necessary for optimal
temporal focusing of the bunch. Now that the groundwork has been laid, future
work can build on this to solidify the results obtained and apply them in a useful
manner.

1. One of the main objectives achieved during this project was the development
of the experimental set-up and procedure. In conjunction with the data
analysis tools developed during the project (GPT simulations, MATLAB
scripts, etc), this has greatly facilitated data collection and analysis. With
the framework in place, this project is at the stage where more data should
be collected to confirm the results obtained, and set error bounds on these
values.

2. The GPT input beam parameters are not actually up to date, and were ob-
tained using an older gun design. While it was assumed that the differences
in beam characteristics would be small, it would be beneficial to obtain the
most up to date results from the electron gun simulations.

3. The original objective of this project was to produce a computer program
that could analyze an image and in combination with user input of some of
the RF and beam parameters, the program would output the beam bunch
length. The results of this project have brought us much closer to this objec-
tive by characterizing the RF cavities involved and providing a relationship
between the spread in time and the vertical smear after the deflector. The
next step would be to use these results in developing this program.

4. As part of the analysis, it would be convenient to determine the relationship
between the current of the solenoid after the deflector, VLBT1 SOL1, and
the rotation of the beam axes. This may not be possible if this relationship
depends on the beam properties, but it could be worth investigating. In
particular, if this relationship were determined, it could be used in conjunc-
tion with the new feature in the viewscreens that allows the user to rotate
the images obtained.
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Appendix A

Buncher Cavity Power
Calculations
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Buncher Power Determination

For a buncher with shunt impedance, Rsh, and transit time factor, T0, we can
determine the approximate power required for optimal focusing after a given drift
length.

In the operational mode, RF electric fields propagating in the buncher are
in the z direction (direction of travel of the beam), and have a sinusoidal time
dependence. We only want to operate in the ascending, linear region of the sinu-
soidal wave, as depicted by figure 1. Electrons that are lagging behind the center
of the bunch will undergo positive acceleration, while leading electrons will be
decelerated.

Figure 1: Operating RF Regime of Buncher Cavity

To optimize the buncher we want the particles at the extremities of the bunch
to undergo acceleration such that by the end of the subsequent drift, d, the beam
is focused in the longitudinal direction. The particle at the center of the beam
undergoes no acceleration, so β = β0. Let’s consider the voltage required for an
electron at a phase offset of φ0 (relative to the RF of the buncher) from the center
of the beam to reach the point d in the same time as the center of the bunch.
Start by solving for the β required. Initially the longitudinal spread is given by:

∆L =
φ0
ω0
∗ β0c (1)

Where ω0 is the resonant frequency of the bunching cavity. For ∆L to be 0 by the
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end of a drift, d, we need (assuming we are using a sin wave and that the middle
of the bunch reaches the buncher at φ = 0):

ttravel|φ=0 = ∆t+ ttravel|φ0 (2)

⇒ d

β0c
=

d

βc
+
φ0β0c

ω0βc
(3)

Solving for β gives:

β = β0 +
φ0cβ

2
0

ω0d
(4)

Given β, we can find the change in energy required:

∆E

E
=(β0γ0)

2β − β0
β0

=(β0γ0)
2φ0β0c

ω0d
(5)

The change in energy of a particle in an electric field, ∆E, in eV, is given by the
voltage, V . We can determine the required Veff , making the following approxi-
mation as we are operating in the linear regime of the sinusoid:

V = Veff sinφ0 ≈ φ0Veff (6)

⇒ Veff =
∆E

φ0
(7)

⇒ Veff = (β0γ0)
3E0

c

ω0d
(8)

For our buncher, ω0 = 2π · 1.3E9, and with the current experimental setup,
E0 = 511keV , β0 = 0.5147, γ0 = 1.166 and our drift length is the distance from
the buncher to the deflector cavity (where we are actually measuring the time
spread, even if the result only shows up at the diagnostic box after the deflector).
This distance is d = 1.53m, assuming a perfect trajectory (centered). Substi-
tuting these values into equation 8, we find that our required effective voltage is
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approximately 2.65kV.

Having solved for the effective voltage, we need to convert this to the actual
required cavity voltage, V0 which will depend on the transit time factor of the
cavity, T0:

V0 =
Veff
T0

(9)

⇒ T0 =

∫∞
−∞E(ρ = 0, z) exp(iω0

z
βc) dz

∫∞
−∞E(ρ = 0, z) dz

(10)

This transit time factor will depend on the speed of the electrons. Using equa-
tion 10, and substituting in the values mentionned above, we obtain T=0.82 for
a β = 1 particle, and T=0.47 for a β = 0.5147 electron.

Finally, we can use the shunt impedance to find the required input power to the
cavity. Note this needs to be divided by 2 if Rsh is given using the 2P definition.

Pin =
V 2
0

Rsh
(11)

The shunt impedance for this buncher cavity (EMMA buncher) was determined
experimentally to be 3.27MΩ using the 2P definition. Therefore, the nominal
bunching power required for optimal focusing of the bunch at the deflector cavity
is:

Pin =
V 2
0

2Rsh
=

(5.64kV)2

2 · 3.27E6 Ω
= 4.87W (12)

3
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Time:     Mon Nov 26 19:00:57 2012
Login ID: veccops (VECC Ops User)
Eff  UID: 1372
Group ID: 24
Keywords: 
Comments: 
Type:     Absolute
Directory /epicsserver/usr1/local/epics/projects/vecc
Req File: /usr1/vecc/burt/vecc.req

RO VGUN:BIAS1:RDCUR.VAL 1 1.367208361943999e-02
RO VGUN:BIAS1:RDVOL.VAL 1 8.505378805218586e+04
RO VGUN:BIAS1:DRVBIT.RVAL 1 1.000000000000000e+00
VGUN:BIAS1:VOL.VAL 1 8.500000000000000e+04
RO VGUN:CHT:RDCUR.VAL 1 1.263980463980464e+03
RO VGUN:CHT:RDVOL.VAL 1 6.520146520146520e+00
VGUN:CHT:VOL.VAL 1 6.399999999999999e+00
VGUN:CHT:CUR.VAL 1 1.485720000000000e+03
RO VGUN:CATHB:RDCUR.VAL 1 2.122100122100122e+00
RO VGUN:CATHB:RDVOL.VAL 1 1.015873015873016e+02
VGUN:CATHB:VOL.VAL 1 1.000000000000000e+02
VGUN:CATHB:CUR.VAL 1 5.042700000000000e+00
RO VLBT:XCB1A:RDCUR.VAL 1 -6.843671320668346e-02
RO VLBT:XCB1A:RDVOL.VAL 1 -3.854428931105516e-01
RO VLBT:XCB1A:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT:XCB1A:CUR.VAL 1 -5.999999999999989e-02
RO VLBT:YCB1A:RDCUR.VAL 1 6.996261539635310e-02
RO VLBT:YCB1A:RDVOL.VAL 1 1.657129777981231e-01
RO VLBT:YCB1A:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT:YCB1A:CUR.VAL 1 9.000000000000000e-02
RO VLBT:SOL1:RDCUR.VAL 1 8.704509040970474e-01
RO VLBT:SOL1:RDVOL.VAL 1 7.427786678873884e+00
RO VLBT:SOL1:DRVBIT.RVAL 1 1.000000000000000e+00
VLBT:SOL1:CUR.VAL 1 8.699999999999999e-01
RO VLBT:XCB1B:RDCUR.VAL 1 -1.266498817425803e-02
RO VLBT:XCB1B:RDVOL.VAL 1 -2.915999084458686e-01
RO VLBT:XCB1B:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT:XCB1B:CUR.VAL 1 -3.000000000000003e-02
RO VLBT:YCB1B:RDCUR.VAL 1 -1.057450217441062e-01
RO VLBT:YCB1B:RDVOL.VAL 1 -9.750514991989014e-02
RO VLBT:YCB1B:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT:YCB1B:CUR.VAL 1 -1.999999999999999e-02
RO VLBT:SOL2:RDCUR.VAL 1 -1.358052948805982e-02
RO VLBT:SOL2:RDVOL.VAL 1 -1.496910048065919e-01
RO VLBT:SOL2:DRVBIT.RVAL 1 1.000000000000000e+00
VLBT:SOL2:CUR.VAL 1 -1.000000000000082e-02
RO VLBT:XCB2:RDCUR.VAL 1 1.149004348821241e-01



RO VLBT:XCB2:RDVOL.VAL 1 4.623483634699016e-02
RO VLBT:XCB2:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT:XCB2:CUR.VAL 1 2.400000000000000e-01
RO VLBT:YCB2:RDCUR.VAL 1 -5.630579079880980e-02
RO VLBT:YCB2:RDVOL.VAL 1 -9.933623254749371e-02
RO VLBT:YCB2:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT:YCB2:CUR.VAL 1 -3.000000000000002e-02
RO VLBT:SOL3:RDCUR.VAL 1 3.509575036240177e-03
RO VLBT:SOL3:RDVOL.VAL 1 1.835660334172579e-01
RO VLBT:SOL3:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT:SOL3:CUR.VAL 1 2.999999999999958e-02
RO VLBT:XCB3A:RDCUR.VAL 1 -8.158999008163577e-01
RO VLBT:XCB3A:RDVOL.VAL 1 -5.699244678416113e-01
RO VLBT:XCB3A:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT:XCB3A:CUR.VAL 1 -9.350000000000003e-01
RO VLBT:YCB3A:RDCUR.VAL 1 -2.186617837796597e-01
RO VLBT:YCB3A:RDVOL.VAL 1 -1.661707484550240e-01
RO VLBT:YCB3A:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT:YCB3A:CUR.VAL 1 -3.399999999999998e-01
RO VLBT:FC0V:SCALECUR.VAL 1 0.000000000000000e+00
VLBT:FC0V:GAIN.RVAL 1 1.000000000000000e+00
VLBT:FC0V:RDVOL.SMOO 1 0.000000000000000e+00
RO VLBT:FC1AV:SCALECUR.VAL 1 -6.347849971007416e-08
RO VLBT:FC1A:STATON.RVAL 1 0.000000000000000e+00
VLBT:FC1AV:GAIN.RVAL 1 6.000000000000000e+00
VLBT:FC1AV:RDVOL.SMOO 1 0.000000000000000e+00
RO VLBT:FC1B:STATON.RVAL 1 0.000000000000000e+00
RO VLBT:FC3V:SCALECUR.VAL 1 4.882961516159551e-09
RO VLBT:FC3:STATON.RVAL 1 0.000000000000000e+00
VLBT:FC3V:GAIN.RVAL 1 1.200000000000000e+01
VLBT:FC3V:RDVOL.SMOO 1 0.000000000000000e+00
RO VLBT:BPM1A:X.VAL 1 -4.619000000000000e+00
RO VLBT:BPM1A:Y.VAL 1 -2.793000000000000e+00
RO VLBT:BPM1A:INTENSITY.VAL 1 6.808800000000001e+01
RO VLBT:BPM1A:ERROR.VAL 1 0.000000000000000e+00
RO VLBT:BPM1B:X.VAL 1 -3.011000000000000e+00
RO VLBT:BPM1B:Y.VAL 1 -6.770000000000000e-01
RO VLBT:BPM1B:INTENSITY.VAL 1 5.409800000000000e+01
RO VLBT:BPM1B:ERROR.VAL 1 0.000000000000000e+00
RO VLBT:IG1:RDVAC.VAL 1 1.248702831369807e-08
RO VLBT:IG1:STATDRV.RVAL 1 1.000000000000000e+00
RO VLBT:IG2:RDVAC.VAL 1 1.969070629206549e-08
RO VLBT:IG2:STATDRV.RVAL 1 1.000000000000000e+00
RO VLBT:IG3:RDVAC.VAL 1 9.999999999999999e-12
RO VLBT:IG3:STATDRV.RVAL 1 0.000000000000000e+00
RO VEMIT:IG1:RDVAC.VAL 1 5.252798246288538e-09
RO VEMIT:IG1:STATDRV.RVAL 1 1.000000000000000e+00



VLBT:BUNCH1:ASET.VAL 1 2.280000000000000e+02
VLBT:BUNCH1:PSET.VAL 1 -4.621760000000000e+01
RO VLBT1:MB0:RDCUR.VAL 1 4.531929503318837e-02
RO VLBT1:MB0:RDVOL.VAL 1 4.206912336919204e-01
RO VLBT1:MB0:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT1:MB0:CUR.VAL 1 0.000000000000000e+00
RO VLBT1:YCB0A:RDCUR.VAL 1 1.525902189669637e-04
RO VLBT1:YCB0A:RDVOL.VAL 1 4.577706569008910e-04
RO VLBT1:YCB0A:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT1:YCB0A:CUR.VAL 1 0.000000000000000e+00
RO VLBT1:XCB0B:RDCUR.VAL 1 -3.462272068360418e-01
RO VLBT1:XCB0B:RDVOL.VAL 1 -2.623025864042115e-01
RO VLBT1:XCB0B:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT1:XCB0B:CUR.VAL 1 -4.000000000000000e-01
RO VLBT1:YCB0B:RDCUR.VAL 1 -3.341725795376516e-02
RO VLBT1:YCB0B:RDVOL.VAL 1 -8.194094758525979e-02
RO VLBT1:YCB0B:DRVBIT.RVAL 1 0.000000000000000e+00
VLBT1:YCB0B:CUR.VAL 1 -1.263999999999994e-01
RO VLBT1:SOL1:RDCUR.VAL 1 1.268482490272373e+00
RO VLBT1:SOL1:RDVOL.VAL 1 2.271915770199130e+00
RO VLBT1:SOL1:DRVBIT.RVAL 1 1.000000000000000e+00
VLBT1:SOL1:CUR.VAL 1 1.300000000000000e+00
RO VLBT1:FC0V:SCALECUR.VAL 1 0.000000000000000e+00
RO VLBT1:FC0:STATON.RVAL 1 0.000000000000000e+00
VLBT1:FC0V:GAIN.RVAL 1 2.400000000000000e+01
VLBT1:FC0V:RDVOL.SMOO 1 0.000000000000000e+00
RO VLBT1:FC1V:SCALECUR.VAL 1 0.000000000000000e+00
RO VLBT1:FC1:STATON.RVAL 1 0.000000000000000e+00
VLBT1:FC1V:GAIN.RVAL 1 4.800000000000000e+01
VLBT1:FC1V:RDVOL.SMOO 1 0.000000000000000e+00
RO VLBT1:IG1:RDVAC.VAL 1 1.465737388299312e-07
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Experimental Procedure- Deflector and Buncher RF Characterization 

Authors: Bob Laxdal, Alysson Vrielink, Chris Gong, Yu Chiu Chao 

November 26th, 2012 

1. With the RF deflector and RF buncher off establish a beam with low transverse emittance around 
the analyzing leg: 

a. Choose a relatively high cathode bias to reduce the conduction angle (~100V) and a high 
duty cycle (~10%-20%). 

b. Align the beam and ensure it is parallel using DB1A and DB1B. 

 

c. Insert the 1mm radius circular collimators (xy slits) at DB1A and DB1B and use SOL1A, SOL1B 
and VLBT1:SOL1 to collimate the beam –optimize dipole magnet for maximum transmission 
to VLBT1:DB1 (~168mA). The optics settings used on November 26th, which proved effective, 

can be found using the save restore feature and loading 121126_1953-vecc.snap. 

 

d. With the collimators in, increase the RF level until high enough current is obtained at FC1 on 
the analyzing leg but less than 1uA. 

e. Insert the screen at VLBT1:DB1. Adjust VLBT1:SOL1 for best beam spot on the screen. 

2. Setting up the deflector: 

a. The LPM0  x-slit can be inserted (position at around 146.5mm) to select a certain energy 
slice if desired.  

b. Turn on deflector to nominal power (see deflector operating procedure) at ~50W, including 
the 3dB loss in input cable.  Scan phase to identify the deflecting and non deflecting phases 



using the screen. The non deflecting phase is the phase at which the y spread in the beam is 
minimized. Note: with VLBT1:SOL1 on, the x-y axis is rotated. 

c. Scanning through the phase, take screenshots every 30 degrees. 

d. Repeat steps b) and c) for several power levels (although the deflecting phase should be 
independent of input power). 

3. Setting up the buncher: 
a. Make sure the LPM0 x-slit isn’t inserted if the intent is to look at the effect of the buncher 

on energy spread of the beam. 

b. Turn on buncher to nominal power (see buncher operating procedure) at ~48.5W, including 
the 1dB loss in the input cable. Scan phase to determine the accelerating and bunching 
phases. The accelerating phase will be evident as the point where the x centroid of the 
beam is farthest away from the x centroid with the buncher off. The non accelerating phases 
should be when the beam is at approximately the same location with the buncher off.  

c. To identify the bunching phase, turn on the deflector at the deflecting phase. The bunching 
phase will show far less vertical smear than the debunching phase if the buncher is close to 
the nominal power. 

4. Determining the nominal buncher power 

a. With the deflector turned on at the nominal power and at the deflecting phase, adjust the 
buncher setpoint, recording the FWD and REV power as read out by the power meter 
connected to the buncher. Determine the setpoint where the vertical smear is minimized. 

5. Longitudinal Emittance Measurements 

 

a. Use the LPM0 slit to select a portion of the dispersed beam and use the deflector to 
measure the time spread 

b. For each slit position record profile with and without deflector on using the deflecting (0 
degree) phase and power level determined in the initial set-up (step 2.) 
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################## Start bunch ####################### 
#   time=1.984e-09; 
#   setfile("beam","test.gdf"); 
#   settransform ("wcs","z",-0.140,"beam"); 
 
    dtmax=1E-11; 
 
    omega=2*Pi*1.3*10^9; 
    ffac=8E3; 
 
    Eo=85;# energy in keV 
    G =(85+511)/511; 
    beta=sqrt(1-G^-2); 
    setparticles("beam",15000,me,qe,-6*10^-9); 
    setxdist("beam","g",0,0.000621286,2,2); 
    setydist("beam","g",0,0.000619437,2,2); 
    settdist("beam","u",0, 6.8E-11); 
    setGBxdist("beam","g",0,0.0113,2,2); 
    setGBydist("beam","g",0,0.01192,2,2); 
    setGdist("beam","g",G,0.293365/511,2,2); 
    SetGBxemittance("beam",2.5E-6); 
    SetGByemittance("beam",2.5E-6); 
 
#Set solenoid field strength based on solenoid currents 
    
   sol1=1.03E-2; 
   sol2=2.24E-4; 
    
###################inputs######################### 
   zend = 1.26;#(1.26+0.15) 
   zdb1a=0.54123; 
   zdb1b=zdb1a+0.48173; 
   zdbvlbt10=0.34406+0.15; 
   zdbvlbt11=0.46196+0.51033+zdbvlbt10; 
########################################################  
 
##################### elements############################ 
      map1D_B("wcs","z",0.01926,"bNW.gdf","z","Bz",sol1); 
 
#     BUNCHER: (COMMENT TO TURN OFF) 
      
map1D_TM("wcs","z",0.59241,"bun.gdf","z","Ez",ffac,phi*Pi/180,om
ega); 
 
      map1D_B("wcs","z",0.91414,"bsol.gdf","z","Bz",sol2); 
 
#     DIAGNOSTIC BOXES 



      rmax("wcs","z",zdb1a,1E-3,5E-3); 
      rmax("wcs","z",zdb1b,1E-3,5E-3); 
 
 
#     screen("wcs","I",zdb1a-10E-3); 
#     screen("wcs","I",zdb1a); 
 
#     screen("wcs","I",zdb1b-10E-3); 
#     screen("wcs","I",zdb1b); 
      screen("wcs","I",zend); 
      tout(0,1e-08,0.1e-09,"wcs"); 



################## Start bunch ####################### 
     
#Set maximum step size 
    dtmax=1E-11; 
#Set field factor for deflector 
   ffac=2.9E-3; 
#  rfphase=phi; 
   rfphase=0; 
 
#Set up beam at point right before dipole 
 
avgGBx=avgBx*sqrt(1/(1-avgBx^2)); 
avgGBy=avgBy*sqrt(1/(1-avgBy^2)); 
avgGBz=avgBz*sqrt(1/(1-avgBz^2)); 
 
stdGBx=stdBx*(1/(1-avgBx^2))^3/2; 
stdGBy=stdBy*(1/(1-avgBy^2))^3/2; 
stdGBz=stdBz*(1/(1-avgBz^2))^3/2; 
 
npar=10000; 
 
#Assume on-axis 
 
    Eo=85;# energy in keV 
    G =(85+511)/511; 
    beta=sqrt(1-G^-2); 
 
    setparticles("beam",npar,me,qe,qe*npar); 
    setxdist("beam","g",0,stdx,2,2); 
    setydist("beam","g",0,stdy,2,2); 
    settdist("beam","g",0,stdt,2,2); 
    SetGBxdist("beam","g",avgGBx,stdGBx,2,2); 
    SetGBydist("beam","g",avgGBy,stdGBy,2,2); 
    SetGBzdist("beam","g",avgGBz,stdGBz,2,2); 
 
    SetGBxemittance("beam",nemixrms); 
    SetGByemittance("beam",nemiyrms); 
 
#Set solenoid field strength based on solenoid currents 
    
   vlbt1sol=1.8E-2; 
    
###################inputs######################### 
   energy = 85; #in keV 
   gamma = (energy+511)/511 ; # value of gamma 
   zend = 1.26;#(1.26+0.15) 
   Rbend = 0.15; # radius of curvature of the dipole in m  



   angle = 90; # bending angle in degree 
   phiin =0 ; # entry cut angle 
   phiout = 0 ; # exit cut angle 
   dl = 0;# offset 
   b1 =0; # dipole fringe field coefficient 
   b2 =0; # ......do................... 
   zdb1a=0.54123; 
   zdb1b=zdb1a+0.48173; 
   zdbvlbt10=0.34406+0.15; 
   zdbvlbt11=0.46196+0.51033+zdbvlbt10; 
########################################################  
 
 
#We actually start at this point 
 
# ---------------dipole magnet---------------------------------- 
      beta = sqrt(gamma*gamma-1)/gamma ; 
      Bfield = -me*c*gamma*beta/(qe*Rbend) ; 
      ccs("wcs", 0,0,0.15, cos(angle/deg),0,-sin(angle/deg), 
0,1,0, "bend"); 
      sectormagnet("wcs","bend", Rbend, Bfield, 30/deg,30/deg, 
dl, b1, b2); 
#---------------------------------------------------------------
--- 
 
#      xymax("bend","z",zdbvlbt10,2E-3,1,5E-3); 
 
 
#     DEFLECTOR: (COMMENT TO TURN OFF) 
     map3D_TM("bend", 
"z",0.51479,"TM.gdf","x","y","z","Ex","Ey","Ez","Bx","By","Bz",f
fac,rfphase*Pi/180,2*Pi*1.3*10^9);  
 
#     VLBT1 SOLENOID  
      map1D_B("bend","z",0.95602,"bsol.gdf","z","Bz",vlbt1sol); 
 
#Switch co-ordinate frame again 
angle1=-30; 
ccs("bend", 0,0,zdbvlbt11, cos(angle1/deg),-sin(angle1/deg),0, 
sin(angle1/deg),cos(angle1/deg),0, "new"); 
 
################################################################
##################### 
 
#     screen("bend","I",zdbvlbt11); 
     screen("bend","I",zdbvlbt11,"new"); 
     tout(0,1.2e-08,0.1e-09,"bend"); 



 
#screen("bend","I",zdbvlbt11); 
#tout(0,1.2e-08,0.1e-09,"bend"); 


