
A Brief History of High Level Applications at TRIUMF

C. Barquest

March 16, 2019

Abstract

In this document, I recollect–to the best of my knowledge–the history of so-called “High
Level Applications” at TRIUMF. I have attempted to motivate the need for control room
web applications, summarize our previous efforts at deploying application servers, outline
decisions which lead us to where we are today, and sketch out considerations we have for
future improvements. This documentation does not rise to the level necessary to maintain
each implementation detailed here, but instead is meant as an informal introduction and
description of our current, former, and hopefully future, operations.

Contents

1 Motivation: What We Needed 4

2 Server History: Where We’ve Been 4
2.1 The Original beamphys server . 5
2.2 The hlaweb, hladevel, and hlaprod Servers . 6

2.2.1 Deploying Applications . 7
2.2.2 Communicating with EPICS . 9

3 Current Servers: Where We Are 10
3.1 hla, devel.hla, staging.hla, beta.hla . 11

3.1.1 Deploying Applications . 13
3.1.2 Communicating with EPICS . 16

3.2 Application Highlights . 19
3.2.1 beam app . 20
3.2.2 acc library . 20

4 Future Servers: Where We’re Going 21
4.1 beam app inverted . 21
4.2 completely separated servers . 21
4.3 Docker Framework . 21

5 References: Tools We Use 22
5.1 GitLab . 22
5.2 JupyterHub . 22
5.3 Flask Framework . 22

6 Notes and Thoughts 24

1

Acknowledgements

There are many people I wish to recognize whose contributions to this project form the foundation
which made this all possible from the start. I am grateful to each and every one of them for the roles
they have played in taking High Level Applications from an ambitious concept to an achievable
reality. We have seen this project through many iterations, and navigated the interactions between
the many independent groups that have come together to realize our ultimate goal.

I want to begin by thanking Thomas Planche and Paul Jung. Thomas’ vision has been a driving
force since the very beginning of this project, and his dedication and spirit truly inspired me. He
has been my biggest support, and challenged me when needed. This has helped me grow and I
want to thank him for being truly a great teammate. In every sense he is the reason the project is
where it is today. I am also grateful for Paul’s contributions in driving forward the project in each
new step it takes. His focus and attention to detail have created a better organization and overall
structure for the project and its applications. I will always cherish the times when Thomas, Paul,
and myself would hold whiteboard sessions to brainstorm. I am so grateful for our teamwork.

I would also like to acknowledge Evgeniy Tikhomolv who dedicated much effort into this project.
Although it evolved beyond the setup he originally built, his work was crucial in helping us establish
requirements and bringing the project to maturity. My work would not have been possible without
his initial contributions. I’d also like to thank the leadership and supervision of Friedhelm Ames
and Oliver Kester for supporting this endeavor while giving us the freedom to branch out in new
and exciting ways. Their open-mindedness and trust in our vision has let us pursue cutting-edge
technology and aim this project towards truly the best version we could imagine.

In this pursuit, I owe a great debt to Spencer Kiy and Olivier Shelbaya. They both have helped
drive this project from the beginning of the HLA Task Force and have carried on its leadership
since my departure. Spencer has quickly adapted to the demands of system administration on
the back-end, and has methodically organized requirements and coordinated work. Olivier has
readily taken on the responsibilities of leading meetings and interfacing with front-end application
needs. Together, their enthusiasm, teamwork, and leadership excite me for what’s to come with
this team’s bright future. I am forever grateful for their work and dedication.

As part of this team, I’d like to thank Stephanie Rädel, who contributed to the eLINAC
portion of the acc database, as well as designed our logos and made them look as polished and
professional as they do. I will always be thankful for her enthusiasm and energy. I’d also like to
thank Brad Schultz for his vision in bringing HLAs to the CANREB project at TRIUMF. I would
like to sincerely thank the controls team, and especially Keiko Ezawa, Kyle LeBlanc, and Juan
Pon for their work. Keiko always had time for me when I had questions; Kyle helped teach me
the fundamentals of PyEpics; and Juan has helped give insight on the legacy cyclotron controls
and how we can connect with them in the future.

I would especially like to thank Kel Raywood and Dan Thompson for their immense support
as computing experts. Kel is the reason we were able to adapt our servers into the virtual machine
framework in the first place, and his time and patience with me is probably the single most
significant contribution to this project’s success that I can name. I am forever grateful for his help.
In addition, Dan has become an integral part to this project’s success, in setting up Kubernetes
and also with his help in instilling best practices. His advice and help have been exceptional, and
it is because of his unique skills that this project’s deployment is advancing to where we envisioned
it from the beginning. I cannot thank the computing group enough for their support which has
been an integral part to our success, and led to many tools being deployed for use site-wide across
TRIUMF. I am so grateful that they have enabled this for all to benefit.

2

Next I’d like to thank the operator members of the HLA Task Force: David Prevost, Eric Chap-
man, and Kevin Lucow. Kevin especially has taken taken the opportunity to develop applications
and I appreciate his willingness to test out new software frameworks and give feedback. David and
Eric also provide valuable feedback during meetings, and I appreciate their time dedicated to this
project. In addition, there are many operators who have helped give feedback on applications, and
I’d especially like to thank Tiffany Angus for her contributions in this regard. It’s only when we
have expert feedback that our applications can be developed into their best form.

In addition, although they were not involved directly in the HLA project, I would like to thank
many members of the Beam Physics group who have supported me throughout my post-doc at
TRIUMF. I would like to thank Shane Koscielniak for his helpful advice on leading meetings, and
refering me to Robert’s Rules of Order which helped me in taking down meeting minutes. I’d
like to thank Fred Jones for conversations on coding, hardware, and the evolution of technology
at TRIUMF and for inspiring me to pursue a career where I could become a techincal expert as
well. I’d also like to thank Yuri Bylinski, Dobrin Kaltchev, Yi-Nong Rao, Suresh Saminathan, and
Marco Marchetto, who have provided valuable feedback and inspiration as well.

I also want to acknowledge the co-op students whose work on high-level applications with
the Beam Physics group helped drive our concept forward: Samantha Marcano, David Tattan,
Dan Sehayek, Vishvam Mazumdar, Margaret Corwin and Megan Stewart. Their work has been
invaluable, and I cherish the time I have been able to spend as a mentor and supervisor. I appreciate
the opportunity to be able to grow in my career at the same time helping these students experience
the possibility of pursuing a career in science and technology. Their engagement has meant a lot
to me, and I am thankful for all the interactions that I was able to have with them.

Finally I would like to thank my supervisor, Rick Baartman. His leadership of the Beam
Physics group as well as his expert knowledge and kind nature have truly inspired me throughout
my years at TRIUMF. He supported and encouraged our efforts in developing solutions without
enforcing any one specific approach, but rather by providing guidance grounded in fundamental
physics concepts and his years of expertise. I am thankful for having the opportunity to be a part
of his team, where each member’s hard work and dedication is inspired and thrives in part because
of him. I will always cherish this time as a member of the Beam Physics group and I hope that
each person who gets a chance to interact with this group realizes how fortunate they are.

I myself have personally gained much from this experience. I will always be beholden to my
team at TRIUMF who, for me, embody Aristotle’s saying that “the whole is greater than the sum
of its parts.” I hope to be so lucky as to find this synergistic energy elsewhere as I take on other
pursuits throughout my career. In all, I hope this summary serves as useful documention of the
work achieved on the HLA project at TRIUMF for the time I was involved. I eagerly anticipate
the successes of this project to come.

3

1 Motivation: What We Needed

Many different types of applications are needed in an accelerator control room, from diagnostics
tools to beamline models. Specialized applications are often developed as MATLAB GUIs because
of the low barrier to entry for creating such programs. However, proprietary-software-based ap-
plications can be suboptimal for the simple reason that every computer running the application
needs access to a license.

This constraint presents a few issues beyond the obvious upfront cost of maintaining these
license subscriptions. For the sake of argument, let’s assume it is cost-effective to have a site-wide
license available. After all, tools like MATLAB are used in scientific labs for much more than just
building control room applications.

Even if every computer in the control room has a license, there is still the issue of keeping
each application running with the most up-to-date version of the software. This perpetual cycle
of “upgrade-break-update, repeat” can lead to a reluctance to upgrade, or worse yet: multiple
version dependencies within the same control room, an IT nightmare.

And even if every application is perfectly maintained to continue working with each software
update, these applications are by definition stand-alone applications, each heavily influenced by
the developer who has their own personal aesthetic and feeling for how the user-interface should
be designed. They also do not benefit from a central database of functions available to them from
previous applications developers.

One other drawback to this model of application development is that there are awesome ap-
plications developed for specific beamlines and the other beamlines in the lab cannot benefit from
this development. If instead the application was initialized from an accelerator database, it could
easily be ported over to deploy for multiple beamlines through the lab.

So all of these considerations lead the Beam Physics group to search for a different paradigm
that could break the cycle and also provide additional benefits beyond keeping applications up-to-
date without needing costly license subscriptions. Here the idea of an application server complete
with central accelerator database was devised.

Although this endeavor had its origins in the Beam Physics group, we knew it could not be
done alone. For these applications to be a success, it would involve coordinating effort across
many groups: Beam Physics, Beam Delivery, Operations, Controls, and Computing. To this
end, a High Level Applications Task Force was established with members from each group. The
following section is a retrospective on the Beam Physics group’s servers that were deployed before
the creation of the High Level Applications Task Force. This history proved the concept and layed
the groundwork for the central effort that followed.

2 Server History: Where We’ve Been

This section highlights the evolution of the hardware and software through each implementation, as
well as the maintainer(s) of each setup. We started with a single desktop computer maintained as
a side project by a Beam Physics group member. When this was deemed unsustainable, resources
were invested into three new servers to be maintained by a dedicated Beam Physics group member.
Although this was a step in the right direction, there were shortcomings to this approach as well.
So finally, a solution was realized when we approached the Computing group and determined that
they would be able to provide us with virtual machines and logical volumes running on their
existing server cluster, a maintainable and expandable solution suitable for future growth.

4

2.1 The Original beamphys server

Our first web server incarnation, beamphys, runs on a salvaged desktop located in Room 105 (See
Fig. 1). The operating system is some flavor of linux (CentOS?) running Apache for its web server.
It provided a central location for Beam Physics group members to ssh into where they could share
files from their home folders, controlling access through standard .htaccess files.

Figure 1: The original beamphys server: a Dell desktop computer located in Room 105.

Because this server was deployed by a group member with an already full-time work schedule
to maintain, it was conceptualized as a bare-bones web-server with relatively meager security
measures. Although logs were checked semi-regularly, it is accessible from off-site, does not require
ssh-keys for login, and allows logins from all members of the Beam Physics group. In summary:
it was an excellant platform to begin playing around with, but was probably never intended as a
long-term solution. In order to determine requirements though, sometimes the best approach is to
dive right in, which is where this server really shined.

I believe it was on this computer that the first study1 by the Beam Physics group into con-
trol room web applications at TRIUMF began in 2015 with Tune Display and Beam Envelopes,
“implementations of tools already being used” (See TRI-BN-15-13). This study proved that web
applications could be a viable approach for control room applications, but that it would need more
dedicated resources. For example, a developer testing out updates would have to take down the
actively running application because there was only one deployed instance.

So while this setup worked well for sharing team members’ static files, it lacked a standard
approach for deploying interactive applications and further yet, a method for communicating with
EPICS. It also goes without saying that better solutions exist than to keep critical functions
running on hardware in an office space where a cord can accidentally be kicked or the power
button accidentally bumped (yes, this has happened multiple times!).

At this point, the functionality of external publication, internal development, and control room
production were separated out into the hlaweb, hladevel, and hlaprod servers respectively.

1I have since learned that there was actually a previously deployed devel-xal server (now shut down) on a
machine managed by Controls which supported XAL control room applications. This experience taught a valuable
lesson: we need to be able to properly articulate our vision, and have something under our own control.

5

http://lin12.triumf.ca/text/design_notes/TRI-BN-15-13_Jung.pdf

2.2 The hlaweb, hladevel, and hlaprod Servers

The next generation of servers consists of the trio of hlaweb, hladevel, and hlaprod servers.2

The hardware for these servers can be seen in Fig. 2. An obvious improvement in this setup is that
the hardware has better performance specs than a single desktop computer, and also is no longer
stored in an office setting. I don’t know if these servers have an automatic external backup–this is
something to look into–but a system of backing up files was enabled locally, as seen by the external
usb drives located on top in Fig. 2b.

(a) Server rack showing all three stand-alone servers. (b) On top, a monitor switch controller.

Figure 2: The hladevel, hlaweb, and hlaprod servers, located outside the cyclotron control room.

Similarly to beamphys, these servers are also CentOS-based, and also run Apache. One of
the more striking differences with these servers in particular is their directory structure follows
a somewhat non-standard approach. I believe these choices were made in order to more easily
assign and divide up disk space, however there could be other underlying motivations that I’m
not aware of as well. One of the most important locations on these servers were their projects

directories. But instead of these projects directory being located at the top level, for instance:
/projects/, this location was softlinked to its actual harddrive location within the space directory,
/space/usr1/projects/. Although this allocation may have been adventageous from a system
administration perspective, it did tend to lead to some confusion when navigating the file system.
Many times while navigating in a terminal, you would find that you could not easily change
directories up and down without getting lost because of a softlink.

A great advantage of this setup, however, was the concept of having three separate servers,
which greatly increased its functionality over the original beamphys server setup. Each of the
three servers were meant to be copies of each other–for easy system maintenance–with only small
differences between them. For instance, I think there was a difference in the EPICS installation
across the servers(?), but in general the directory structure was mirrored across each of the servers.

2From now on, I will denote these as hla* if I need to refer to all three of these servers as a group.

6

The hladevel server acted as a web server, code repository, and multi-user login/workspace. The
hlaweb server is the public-facing duplicate server, along with a deployment of JupyterHub. The
hlaprod server is the private or internal duplicate server, meant for production use inside the
control rooms. Applications were developed and deployed on these servers, exclusively within
what is called the projects directory.

The projects directory, as mentioned earlier, is a special directory on the hla* servers, being
the one location where applications were allowed to be contained and deployed to the web server.
I expect that this setup was meant to simplify the web server hosting, and meant also as a security
measure as well. Inside the projects directory were application directories, one directory per
application. This approach worked very well for stand-alone applications, but began to pose prob-
lems once our applications began growing, becoming connected, and requiring more functionality.
This will become evident in the following discussion of deploying applications on these servers.

2.2.1 Deploying Applications

Developers would work on an application inside the projects directory on the hladevel server.
These applications were originally static HTML (utilizing either PERL or Python libraries?). For
more flexibility in reusing code, such as html templates, and additional functionality such as
dynamic URLs, we began moving towards python-based Flask applications. For these apps, a
static wsgi file is located at the top level of the project’s directory folder.

This project folder was not version-controlled with git, although a GitList viewer was de-
ployed for a separate repo location that contained the project’s code as well. This was not exten-
sively used as I recall, as code had to be manually updated in this location.3 A major debate took
place over whether or not the projects directory should actually be the code repository. Since
developers are able to edit files directly within the projects directory, this would often happen
and then differences would occur between the code repository and the projects directory, and
need to be resolved (see Fig. 3)4.

Figure 3: Manual application deploy to hladevel, with an example URL. Note that development
work could take place directly in the app’s project directory–from which it deployed–while its
repository was stored in a different location. This lead to often out-of-sync versions.

3A more advanced git-based repository was desired, such as GitLab, however this was never able to be successfully
deployed on any of the hla* servers (tools such as GitLab are designed to be deployed independently in any case).

4In flowchart diagrams throughout this paper, I will denote web servers with a dot-dash outline.

7

It was actually quite useful to be able to directly edit files within the projects directory,
because this is how quick debugging could take place. When the app’s wsgi file is touched, it
restarts the application, so the developer can view changes live on the hladevel server.5

When an application was ready for use in the control room, it could be copied over to the
projects directory on the hlaprod server. The hlaweb server was used primarily for group
members to publish externally-facing documentation or files.

One major issue encountered was with the strict structure of the projects directory which
was required for application deployment (I admit I cannot remember why this restriction was in
place–I believe it wsa something required from the web server implementation itself, but I’m not
sure). This restriction meant that every application wound up having two folders with its project
name: the project folder itself (which is the top-level, git-controlled directory) and a subfolder
of the same name, which actually held the contents of the application beyond the app.wsgi and
run.py files. See the “BeamApp” folders in Fig. 4 for an example of what I’m talking about here.

Figure 4: Some notes from brainstorming sessions thinking about how we’d like to restructure the
application folders in order to have better version control capabilities.

5The astute reader would at this point realize that multiple developers working on the same application simulta-
neously would lead to conflicts. This did indeed happen, and to try to avoid this, the idea of working in sandboxes

on the hladevel sever was instituted. Each developer could have their own version of an application running and
play around with it in a separate dedicated area. However, this concept was never fully realized as there were some
ongoing issues with its implementation.

8

One difficulty with this structure is that any applications that want to share resources, such
as the same templates, or the same beam path descriptions, end up having to be inside the same
project folder. This resulted in different applications, such as Beam Envelope and Beam Profile, be-
ing version-controlled together (again, see Fig. 4 where mod beam envelope and mod beam profile

are within the same git project). It was desired for each of these projects to be version-controlled
separately, but with some way of linking them, such as putting them in a group, so that it was
clear that these projects use the same resources, but at the end of the day are distinct, individual
projects. This flexibility was not possible with the hla* servers, which was one of the driving
motivators for looking towards a new system.

2.2.2 Communicating with EPICS

I’m not sure exactly how communication with EPICS works on the hla* servers. From what I
gather, a gateway was set up for the hladevel and hlaprod servers to be able to access EPICS
values on at least one of the controls subnets, ISAC. I think that hlaweb was meant for public-
facing projects and documentation, so did not have access to the EPICS values. This section will
definitely need to be fleshed out, as this was the first time a gateway established by the controls
group was accessible by an externally controlled server at TRIUMF, and is a significant milestone
in achieving fully interactive web applications for the control rooms.

Figure 5: Communication with epics on hla*, fuzzy recollection.

I’ve at least attempted to reconstruct a schematic in Fig. 5. A soft-ioc was running on the server
itself, allowing for direct commands such as caget, caput etc. which require EPICS libraries. A
gateway was deployed by the controls group, external to the hla* servers. This gateway interfaced
with the soft-ioc which mirrored live values. Someway these channels were monitored, in order to
enact changes to the real EPICS subnet, but I don’t know the details of how this works.

Suffice it to say, although this is a very sophisticated setup, and has been done professionally
from a controls point-of-view, it still lacks one key element: the ability to get or set PVs from
multiple EPICS subnets through a single application. This single aim, to be able to monitor ISAC
and eLINAC values simultaneously for instance, would be the motivating factor behind the design
and framework of the next generation of HLA-EPICS communication.

9

3 Current Servers: Where We Are

Figure 6a shows some notes from a brainstorming session where we were bouncing around ideas
about what different environments we needed in order to properly develop and deploy control room
applications. Although the hla* servers got us nearly there, there was still room for improvement.
For example, by the definitions put forth in the brainstorming session, hladevel was serving the
purpose of a Development, Integration, and Staging Environment. When a developer wants to
make radical changes on hladevel, they may feel constrained because this is the same location
where other collaborators commit their work–an “Integration Environment”. It is also the only
location where testing is performed for how the app deploys to the server–a “Staging Environment”.

(a) Notes regarding different environment needs. (b) Notes thinking about requirements and tools.

Figure 6: Some notes from brainstorming sessions.

Figure 6b shows a further brainstorming session which refined the environments into three
categories: hladev, hlabeta, and hlaprod. The hladev server is defined as “development and
experimentation”, the hlabeta server is defined as “beta testing and quality assurance”, and the
hlaprod server is defined as “production with feedback to development”. It’s important to note
here that while we were still considering public facing vs TRIUMF IP restricted SSH access, as seen
in Fig. 7, there has been a shift in what we consider the functionality of the separation of servers.
Now instead of having one development server and one production server, there’s a step in between,
showing a growth in maturity of the deployment procedure. Also significantly, there is no longer
an hlaweb exclusive server for public-facing projects–every project is considered public-facing, and
internal restrictions can be accomplished on the server-side as needed (discussed later).

Figure 7: Continuation of notes from brainstorming sessions on different environments.

10

As also seen in the notes from Fig. 6b, there were many features that we were looking to
improve upon, not only for deployment of control room applications, but also for general group
tasks such as document editing. The lines on “home directory”, “project directory”, and “master
repositories” speak to frustrations experienced with establishing these central working locations
as I’ve touched upon earlier. Version control was implemented later on in the hla* servers, and
this line here was meant to indicate that it needs to be at the very center of our work, the use of
which drives our development, not a feature that is added on a bit as an after-thought.6 Alongside
version control, a greatly desired feature was that of “issue handling”, which can be achieved with
repository tools such as GitHub or GitLab. The reason issue handling is so important is that it ties
in the feedback from users directly to the application developers, and streamlines communication
between developers when bugs are found or new features are requested. Having issues or tickets
gives a place to focus discussions, document work, and archive completed tasks.7

We can’t have multiple developers working on the same directory structure within a server.
Although it was a step up from beamphys implementation, this still was occuring on the hladevel

server. Giving the developers write access to the project directory turned out to be not such a
great idea. A quick fix would be implemented just to make it work for the moment, but that
change would not be captured in the git history because it was just “temporary”. This lead to
different versions and a reluctance to commit changes. Forcing all changes to flow through version
control, and deploy automatically with these commits, was the solution to this problem, and is
seen in the latest incarnation of the hla server.

3.1 hla, devel.hla, staging.hla, beta.hla

The new hla server still runs CentOS, but is distinct from the beamphys and hla* servers in two
major ways: (1) it is in fact a virtual server running on a server cluster, and (2) it uses nginx +
uWSGI as its webserver instead of Apache. Pictures of the computer server room can be seen in
Fig. 8, with closeups of the blade servers shown in Fig. 9.

(a) Left-hand side of computing server room. (b) Right-hand side view of computing server room.

Figure 8: Computing server room, located outside the ISAC control room.

6Versioning of applications was implemented manually, by copying each new application version to a differ-
ently named folder within the application’s folder, for instance R1.2, and then pointing a link for the production
application towards that folder. This works in principle, but was not being used as it was cumbersome to implement.

7A further step we could take would be to do Merge Requests, which we started somewhat, but is a more
advanced development team process. It may be a good habit to adopt in the future, though, as the team matures.

11

(a) Close-up of pizza-box servers. (b) Close-up of blade servers.

Figure 9: Virtual servers run on cluster. It’s awesome.

Running a virtual server on a cluster/farm(?) has several advantages over stand-alone hardware.
The biggest one from the Beam Physics Group’s standpoint is arguably that it is maintained by the
TRIUMF’s Core Computing and Networking (CCN) group, and so frees up resources from our side
and puts the system administration into the hands of the experts. A benefit of working alongside
the Computing Group is that tools that were previously beyond our reach, such as GitLab, can be
deployed site-wide at TRIUMF, and result in a benefit for the entire lab and not just the Beam
Physics Group. Even tools that were able to be running on hladevel, such as JupyterHub, are
greatly beneficial to the rest of the lab when they are deployed site-wide. And furthermore, now
instead of having to maintain our own public-facing webserver and handle all the security details
that are involved therein, we can deploy our applications securely on the network (see Fig. 10 for
a discussion on the different VLANs at TRIUMF).

Figure 10: Some notes from a TRIUMF networking discussion.

12

Beyond the Computing Group being such a valuable resource for us, running with virtual
servers has some distinct advantages as well. Space can be allocated dynamically, and when more
is needed, a simple lvextend command extends the logical volume of the server without having to
restart anything. This way we only use the disk space that we need, and can allocate more as our
server grows. In terms of server hardware maintenance, this fancy system is even equipped with a
“Dell-Phone-Home” feature which will recognize hardware malfunctions, redistribute that server’s
memory to the surrounding blades, and call up Dell to order a replacement part.

3.1.1 Deploying Applications

One of the most important factors in developing application for this new server was to make
sure that application’s code repositories (their version history) were in sync with the application’s
deployment version. We needed to be able to point directly to which version was currently running,
and be able to revert changes easily if necessary. It’s important to know what changes have been
made, who authored those changes, etc.

This was difficult to keep on top of with our previous framework, because the code repository
was not a mandatory step in the application deployment process. This meant that when quick
changes had to be made (which often happens when things are broken and the application is needed
immediately in the control room, for instance) they would be performed directly in the projects
directory. Later on we’d often find that it was difficult to establish which version to keep.

An easy solution for this predicament is to tie the deployment of applications to the version
control of the applications themselves, making it an essential component of the deployment proce-
dure. With this setup, it just becomes a developer’s habit to push changes to the repository, and
the versions are immediately in-sync. We accomplish this by configuring gitlab-runners on the
hla server, making it deploy applications automatically from commits to the master branch. This
automatically keeps the latest repository version up-to-date with what is currently being deployed
to the development server. A schematic of this process is shown in Fig. 11.

Figure 11: GitLab deploy to hla. Note that gitlab-runner is installed on the hla server, allowing
it to pull code from the repository through firewalls etc. upon code commits. This enables us to
deploy secure servers without having to expose any public access.

To deploy a new application, there are several steps that need to be done first on the hla server,
outlined in Fig. 12. First, a new app.conf file is manually created within the /etc/nginx/default.d

13

directory. This lets nginx know that a new application is to be hosted. This file maps static file
locations, and configures the uWSGI mount, passing parameters such as the authorization tokens
and configuring the socket for the application running through uWSGI.

Figure 12: How to deploy a brand new app on hla.

Next, in the GitLab Continuous Integration setting, a runner is enabled. This gitlab-runner
can be shared between projects, or a private runner can be registered and enabled if desired.
Once a runner is enabled, then a .gitlab-ci.yml configuration file can be added to the ap-
plication’s GitLab repo, which tells the runner what to do. The sequence of commands given
to this runner, typically a bash-runner, will include a line to create an app.ini file within the
/etc/uwsgi.d/devel/ directory, when pushed to the master branch. Check that this file has
indeed been created.

Finally, running the command sudo systemctl restart nginx will restart the web server
and the application should be deployed to the corresponding web url. Web server error logs
can be viewed when logged in with sudo privileges on hla with the following commands: sudo

journalctl -t uwsgi.devel -e or sudo cat /var/log/nginx/error.log. The uWSGI errors
may occur when the emperors cannot deploy vassal (for instance, if the application does not run
but returns an error message, this is where you will find the output logged). The nginx errors
might occur because of routing/configuration errors; typically in the past these types of errors
have required help from the computing experts to resolve.

Figure 13: How to access hla error logs.

The .gitlab-ci.yml configuration file determines where the gitlab-runner deploys the ap-
plication files to the server. Each application is deployed within the top-level /srv directory,
and has an /srv/apps/ location and a /srv/data location for each of the devel, staging, beta
and prod branches. The original schematic for this is shown in Fig. 14a, where each server was
envisioned as a separate virtual machine. By combining them into one machine with separate
directories within the apps and data directories, this saved much overhead, but gives one distinct
disadvantage that any time nginx is restarted, all of the subdomains are restarted, which is un-
acceptable for a production deployment. This just means that the production server should be
deployed on a separate virtual machine, to decouple the nginx web servers completely.

14

(a) Schematic for thedifferent modes
devel/beta/staging/prod on hla: note
separation of apps and data directories.

(b) Accounts to be created for HLA developers as of late 2017–
note that GitLab’s Mattermost has replaced the chat functionality
of Slack now, so this account is not longer needed.

Figure 14: Some notes from the hla server: directory structure and administrative tasks.

15

3.1.2 Communicating with EPICS

EPICS communication has a bit more of a complicated set up on the back end of this server, but
this is to facilitate easy access to applications, and provide them an API from which they can gain
values. It has gone through several iterations, which I will attempt to summarize here.

Figure 15: Pyepics on hla.

We realized early on that we needed a simple way of getting PV values from EPICS, but did
not want to burden the controls network with having each application make individual requests to
PVs. See Fig. 16 for a visual representation of this relationship.

Figure 16: Establishing a service middle layer reduced direct connections between applications and
EPICS controls subnets.

In the discussion from December 2017, we brainstormed some names for a pair of gateway
services, as seen at the top of Fig 17. Our first instict was the create two gateway services, one for
getting values, Jaya, and one for setting values, Vijaya. As we learned more about the PyEpics
interface, these roles evolved into one service for getting monitored values, Jaya, and one for
getting/setting individual PVs, Vijaya. This subtle difference is actually clearly delineated by the
PyEpics functions of camonitor vs. caget and caput.

16

Figure 17: Some notes from our PyEPICS discussion.

Figure 18: Some notes from a controls meeting.

17

Figure 19: Some notes on redis as a service on hla.

18

3.2 Application Highlights

(a) TuneX application
screenshot.

(b) Envelope application
screenshot.

Figure 20: Two core HLA applications, TuneX and Envelope.

(a) Trimcoil Binder appli-
cation screenshot.

(b) Magnet Degaussing ap-
plication screenshot.

Figure 21: Examples of specialty HLA applications, Trimcoil Binder and Magnet Degaussing.

(a) Tomography application
screenshot.

(b) ATOM application screen-
shot.

Figure 22: Some examples of student-driven HLA applications, Tomography and ATOM.

19

3.2.1 beam app

The “beam” app is actually a grouping of applications that share a common core: the acc database.
We also required HLA apps to have a common “look and feel” which promted us to try to use
the same templates across applications, which can be accomplished for instance through using
Jinja templates with Flask Blueprints. See Fig. 23 for a schematic of how this application was
structured.

Figure 23: Beam app schematic. Templates are defined in the home Flask app.

3.2.2 acc library

Figure 24: The acc database schematic. Database files are in xml format, while Python libraries
for accessing and manipulating database entries are stored in the lib directory.

20

4 Future Servers: Where We’re Going

We need to be able to tie exact versions of dependencies to each other – this can be accomplished
with Docker. By tagging released versions, you can pull explicit commits into your code so when
for instance the acc database gets updated, it will not break

4.1 beam app inverted

Figure 25: Beam app “inverted” schematic. Templates are now held in the blueprint project, apex.

4.2 completely separated servers

4.3 Docker Framework

21

Figure 26: Kubernetes deploy to ?.

Figure 27: Pyepics in docker containers.

5 References: Tools We Use

5.1 GitLab

5.2 JupyterHub

5.3 Flask Framework

22

(a) GitLab Continuous Integration Board screenshot.

(b) GitLab Issue Board screenshot.

Figure 28: Some relevant GitLab screenshots.

23

6 Notes and Thoughts

In this section here, I’m just talking about each of the figures. Where each paragraph belongs
within the document is to be determined.

Fig. 29 shows notes from a critical time period in and around May 2017.

Figure 29: Some notes on the hla setup in May 2017.

24

Figure 30: Some notes from brainstorming sessions thinking about hla servers where we were to
where we are now.

Figure 31: A caption.

(a) No middle layer–many connections. (b) With middle layer–reduce connections.

Figure 32: Schematic of XML middle layer benefit for reducing connections to maintain.

25

Figure 33: First HLA Task Force Meeting, plus thoughts on structure.

Figure 34: How to undo a pushed tag.

26

Figure 35: How to tag all the things.

27

(a) Manual application deploy to hladevel.

(b) GitLab deploy to hla.

(c) Kubernetes deploy to ?.

Figure 36: Evolution of application deployment.

28

(a) Gateway with hla*.

(b) Pyepics on hla.

(c) Pyepics in docker containers.

Figure 37: Evolution of epics I/O.

29

(a) Authorized user only.

(b) Including unauthorized user.

Figure 38: Whiteboard diagrams from March 13, 2018 depicting injected headers for authorization
scheme, including authorized users in green and unauthorized users in red.

30

Figure 39: Whiteboard diagram of kubernetes structure.

31

	Motivation: What We Needed
	Server History: Where We've Been
	The Original beamphys server
	The hlaweb, hladevel, and hlaprod Servers
	Deploying Applications
	Communicating with EPICS

	Current Servers: Where We Are
	hla, devel.hla, staging.hla, beta.hla
	Deploying Applications
	Communicating with EPICS

	Application Highlights
	beam app
	acc library

	Future Servers: Where We're Going
	beam app inverted
	completely separated servers
	Docker Framework

	References: Tools We Use
	GitLab
	JupyterHub
	Flask Framework

	Notes and Thoughts

