TRIUMF	UNIVERSITY OF ALBERTA EDMONTON, ALBERTA				
	Date 2002/02/12	File No. TRI-DNA-02-01			
Author GM Stinson		Page 1 of 14			

Subject A possible revision of the ISAC1 to ISAC2 transfer line

1. Introduction

In early February of this year a design review of the ISAC1 to ISAC2 transfer beamline¹⁾ was held. One comment that arose was that the achromatic sections of the proposed beamline used edge-focusing in the dipoles to obtain adequate vertical beam control and that this should be avoided.

This report presents a possible alternate design that uses rectangular dipoles. To maintain the required vertical focussing, two vertically-focusing quadrupoles have been added between the two dipoles of each of the achromatic sections. With these insertions it becomes necessary to shorten the unit-magnification and matching sections of the transfer beamline.

2. Revision of the existing beamline

Unless otherwise noted, all calculations reported in this section were made for a beam rigidity of $(B \rho)_0 = 1.05842$ T-m and an emittance of 3.6π mm-mr in each of the horizontal and vertical planes. The initial double waist has $\beta_x = 0.2$ and $\beta_y = 0.2$. Consequently, the input beam parameters for TRANSPORT are $(x, \theta, y, \phi) = (\pm 0.085 \text{ cm}, \pm 4.23 \text{ mr}, \pm 0.085 \text{ cm}, \pm 4.23 \text{ mr})$.

2.1 Design parameters

The design parameters for the beamline presented here were as follows.

- 1. No change was made to the design philosophy of the beamline.
- 2. The addition of an extra pair of quadrupoles between the dipoles increases the (optical) length of each achromatic section by 0.76 m.
- 3. To reach the required final image point (see below) it was necessary to *increase* the bend angle of each dipole from 58.259° to 60.792°. All dipoles are rectangular and all are identical.
- 4. Because of the additional quadrupoles, the overall length of the unit-magnification and matching sections is reduced by approximately 1.2 m from that of the original design. However, their relative lengths have been kept in the same ratio (5.43:3.50) as presented in the original design.
- 5. Each achromatic section may be described as a QQ-D-QQ-QQ-D-QQ system that is mirror symmetric about its midpoint.

Each of the 60.792° dipoles is designed with a radius of curvature of 1 m. Consequently, its magnetic field in kG is numerically equal to the magnetic rigidity in kG-m of the particle in question and the arc length of the central trajectory ($s = \rho \theta = 1.06104$ m) is numerically equal to the bend angle in radians.

2.2 The achromatic sections

As noted above, two vertically-focusing quadrupoles have been added between the two dipoles of each of these sections. The sections were kept symmetrical about their midpoints.

Figure 1 shows the beam envelope for the first achromatic section and table 1 lists the TRANSPORT input for this section. The transfer matrix for this section is given in table 3(a).

In table 1 (and other in this section) the listing of TRANSPORT input shows that the half-apertures of the of the quadrupoles have been taken as 100 cm. Consequently, the quadrupole gradients in T-m are simply the listed fields (given in kG) of the quadrupoles divided by ten.

Table 2 lists the TRANSPORT input for the second achromatic section alone. The transfer matrix for this section is given in table 3(b). Beam profiles throughout this section are shown in figure 2.

The program TRANSPORT allows the floor coordinates of the elements to be calculated. As in ref¹), we use a Cartesian coordinate system with its origin at the intersection of the north-south RFQ line and the east-west DTL1 line. The positive x-axis is directed east and the positive y-axis is directed north.

In this coordinate system the final focus of the first achromatic section is found to be located at the point(x, y) = (16.2038 m, 6.0346 m). That point in the calculation of ref¹) was located at the coordinate (x, y) = (16.1443 m, 5.3574 m). Thus the final focus of the first achromatic section is shifted slightly east (by approximately 6 cm) and north (by approximately 68 cm).

In anticipation of results given later, we note that when all sections of the beamline are put together the location of its final focus is found to be at the coordinate (x, y) = (15.6626 m, 18.9821 m). That specified in ref¹⁾ (x, y) = (15.6663 m, 18.9874 m). Given that the design goal was for a final y-coordinate of 19.00 m, the discrepancy of a few millimeters between the two calculations is acceptable and easily fixed if necessary. [Recall that the coordinates given above were calculated by TRANSPORT. Ref¹ specifies a final coordinate of (x, y) = (15.66 m, 19.00 m).]

2.3 The unit-magnification section

Because of the addition of extra quadrupoles in each of the achromatic sections, it was necessary to revise the unit magnification section. The length of this section in the present design is 4.73 m. This is to be compared with a length of 5.43 m in ref¹). Optically, this section behaves as a simple lens with magnifications of -1 in each of the horizontal and vertical planes.

Table 4 lists the TRANSPORT input for this revised section by itself as well as its transfer matrix. Figure 3 shows the beam envelope of the section.

2.4 The matching section

This short (3.05 m) section of beamline matches beam from the DTL output of ISAC1 to the input of the medium β section of ISAC2. The length of this section in the original design was 3.50 m.

There are two possible operating modes for this section. The first is to do the phase-space matching at the end of the section—that is, at the object point of the second achromatic section. The other is to do the matching at the image point of the second achromatic section thus taking into account any peculiararities of that section. It was found that the latter approach produced a better phase space match.

Again anticipating what follows, we list in table 5 the settings of the matching section for each of these scenarios. Also listed are the beam sizes and the overall transfer matrix elements at the final image point.

2.5 The complete beamline

We now put the first achromatic section, the revised unit-magnification and matching sections, and the second achromatic section together.

Figure 4 shows the resulting beam envelope for the case in which phase-space matching occurs at the exit of the matching section. Similarly, figure 5 shows the beam envelope when phase-space matching is done at the final image point.

File No. TRI-DNA-02-01

3 Discussion

This report presents an alternate approach to the design of the transfer beamline between ISAC1 and ISAC2. The major difference—if, indeed, it be considered such—is the addition of two quadrupoles to each of the achromatic sections of beamline. These were added to compensate for the vertical focusing lost by using wedge angles on each of the dipoles. In the scheme proposed here, all dipoles are rectangular.

Overall, the line presented here and that of ref¹⁾ are very similar. They both would fit into the tunnel between the two ISAC buildings. This is indicated in the line drawing of figure 6. In this figure, the solid line indicates the beamline of ref¹⁾; the dotted line indicates that of the beamline of this report. The tunnel is drawn as it existed in early February. In mid-February the upper-left corner of the tunnel was moved 2.5 feet to the west. This produces t=a tunnel outline as indicated by the dashed line.

References

1. R. E. Laxdal and M. Passini, ISAC-II Optics Specifications, TRI-DN-01-xx, TRIUMF, 2002/02/05.

 $Page \ 4 \ of \ 14$

TRANSPORT input for the first achromatic section TRANSPORT input for the first achromatic section 'FIRST ACHROMATIC SECTION ISAC1>ISAC2 RECT DIPOLES - 02/02/19 0 13. ' ' 12.00000; 16.00 ' 5.00000; 16.00 ' 12.00000; 10.00000 ' BEAM' 0.08485 4.24260 0.09485 4.24260 0.00000; 5.00 'QA1' 0.00000; 5.00 'QA2' 0.32500 43.26300 100.00000; 3.0 ' 0.20000; 5.00 'QA2' 0.32500 43.26300 100.00000; 3.0 ' 0.3039550; 4.0000 'BA1' 1.06104 10.58405 0.00000; 2.0 ' 130.39550; 4.0000 'QA3' 0.18000 105.81201 100.00000; 3.0 ' 0.20000; 5.00 'QA3' 0.18000 105.81201 100.00000; 3.0 100.00000; 3.0 ' 0.20000; 5.00 'QAM' 0.18000 -67.53922 100.00000; 3.0 3.0 100.00000; 3.0 0.0000; 3.038550; <td colspa<="" th=""><th></th><th></th><th>T_{a}</th><th>ole 1</th><th></th><th></th></td>	<th></th> <th></th> <th>T_{a}</th> <th>ole 1</th> <th></th> <th></th>			T_{a}	ole 1		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ידו	R A NSPC	BT input for t	he first achron	natic section		
PIRST ACHRUMATIC SECTION 15AC1->ISAC2 RECT DIPULES - 02/02/19 13. ' 12.00000; 16.00 ' 5.00000 3.00000; 16.00 ' 7.00000 0.45000; 1.000000 'BEAN' 0.08485 4.24260 0.08485 4.24260 3.0 'STRT' 0.00000; 0.0100 0.31731; 3.0 'QA1' 0.18000 -109.24630 100.00000; 5.00 'QA2' 0.32500 43.26300 100.00000; 2.0 ' 30.39550; 20.0000; 20.0 2.0 2.0 ' 30.39550; 20.0 20.0000; 30.39550; 2.0 ' 30.39550; 20.0 20.0000; 30.00000; 3.0 ' 0.20000; 5.00 'QA3' 0.18000 105.81201 100.00000; 3.0 3.0 ' 0.20000; 5.00 'QAM' 0.18000 -67.53922 100.00000; 3.0 ' 0.20000; 3.0 ' 0.20000; 5.00 'QA4' 0.18000 105.81201 100.00000; <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
3. , , , , , , , , , , , , , , , , , , ,	·FIRST ACHRUMATIC	SECTIO	IN ISAC1>	ISAC2 RECT	DIPULES - 02	2/02/19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	, ,	12 00000:				
16.00 , 7.00000 0.45000; 1.000000 'BEAM' 0.08485 4.24260 0.08485 4.24260 0.00000 0.00100 0.31731; 3.0 'STRT' 0.0000; 5.00 'QA1' 0.18000 -109.24630 100.00000; 5.00 'QA2' 0.32500 43.26300 100.00000; 2.0 3.0 ' 0.90000; 2.0 ' 30.39550; 4.0000 2.0 ' 30.39550; 2.0 ' 30.39550; -180.00000; 3.0 ' 0.20000; 3.0 ' ' 0.20000; - 3.0 ' 0.00000; 3.0 ' ' 0.60000; - - 3.0 - - 3.0 -	16 00	, ,	5 00000	3 00000.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 00	, ,	7 00000	0 45000 .			
3.0 'STRT' 0.00000 0.0100 0.31731; 3.0 'STRT' 0.00000;	1 000000	'BEAM'	0 08485	4 24260	0 08485	4 24260	
3.0 'STRT' 0.00001; 3.0 'QA1 ' 0.18000 -109.24630 100.00000; 5.00 'QA2 ' 0.32500 43.26300 100.00000; 3.0 ' 0.90000; 2.0 ' 180.00000; 2.0 ' 30.39550; 4.000 'BA1 ' 1.06104 10.58405 0.00000; 2.0 ' 30.39550; 2.0 ' 30.39550; 2.0 ' 0.60000; 5.00 'QA3 ' 0.18000 105.81201 100.00000; 3.0 ' 0.20000; 5.00 'QAM ' 0.18000 -67.53922 100.00000; 3.0 ' 10.20000; 5.00 'QAM ' 0.18000 -67.53922 100.00000; 3.0 ' 10.20000; 5.00 'QAM ' 0.18000 105.81201 100.00000; 3.0 ' 0.20000; 5.00 'QAA ' 0.18000 105.81201 100.00000; 3.0 ' 0.60000; 2.0 ' 30.39550; 2.0 ' 30.39550; 2.0 ' -180.00000; 3.0 ' 0.20000; 5.00 'QA5 ' 0.32500 43.26300 100.00000; 3.0 ' 0.20000; 5.00 'QA5 ' 0.32500 43.26300 100.00000; 3.0 ' 0.20000; 5.00 'QA6 ' 0.18000 -109.24630 100.00000; 3.0 ' 0.20000; 5.00 'QA6 ' 0.18000 -109.24630 100.00000; 3.0 ' 0.20000; 5.00 'QA5 ' 0.32000 ; 5.00 'QA5 ' 0.20000; 5.00 'QA5 ' 0.200			0.00000	0.00100	0.31731:		
3.0, $0.90000;$ 5.00'QA1' $0.18000 - 109.24630$ $100.00000;$ 3.0' $0.20000;$ 5.00'QA2' 0.32500 43.26300 $100.00000;$ 20.0' $180.00000;$ 2.0' $30.39550;$ 4.000 'BA1' 1.06104 10.58405 $0.00000;$ 2.0'' $30.39550;$ 2.0 '' $30.39550;$ 2.0 '' $30.39550;$ 20.0 '' $106000;$ 5.00'QA3' $0.60000;$ 5.00'QA4' 0.18000 -67.53922 $100.00000;$ ' $0.20000;$ 3.0 ' $0.20000;$ 3.0 ' $0.20000;$ 3.0 ' $0.20000;$ 3.0 ' $0.20000;$ 5.00 'QAH' 0.18000 105.81201 $100.00000;$ 3.0 ' $0.20000;$ 5.00 'QAH' 0.18000 $100.00000;$ ' 3.0 ' $0.20000;$ 5.00 'QAH' 0.18000 2.0 ' $30.39550;$ 4.000 'BA2' 1.06104 10.58405 2.0 ' $30.39550;$ 4.000 'BA2' 1.06104 10.58405 2.0 ' $30.39550;$ 4.000 'ACRI' $0.9000;$ 5.00 'QA5' 0.32500 43.26300 $100.00000;$ ' $0.00000;$ 3.0 ' $0.20000;$	3.0	'STRT'	0.00001:		,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	, ,	0.90000;				
3.0 ', 0.2000; 5.00 'QA2 ' 0.32500 43.26300 100.0000; 3.0 ', 180.00000; 2.0 ', 30.39550; 4.000 'BA1 ' 1.06104 10.58405 0.00000; 2.0 ', -180.0000; 3.0 ', 0.60000; 5.00 'QA3 ' 0.18000 105.81201 100.00000; 3.0 ', 0.20000; 5.00 'QAM ' 0.18000 -67.53922 100.00000; 3.0 ', 0.20000; 5.00 'QAM ' 0.18000 -67.53922 100.00000; 3.0 ', 0.20000; 5.00 'QAM ' 0.18000 -67.53922 100.00000; 3.0 ', 0.20000; 5.00 'QAM ' 0.18000 105.81201 100.00000; 3.0 ', 0.20000; 5.00 'QA4 ' 0.18000 105.81201 100.00000; 3.0 ', 0.60000; 2.0 ', 30.39550; 4.000 'BA2 ' 1.06104 10.58405 0.00000; 3.0 ', 0.20000; 5.00 'QA5 ' 0.32500 43.26300 100.00000; 3.0 ', 0.2000; 5.00 'QA6 ' 0.18000 -109.24630 100.00000; 3.0 ', 0.2000; 5.00 'QA6 ' 0.18000 -109.24630 100.00000; 3.0 ', 0.2000; 5.00 'QA6 ' 0.18000 -109.24630 100.00000; 3.0 ', -10.0000 2.00000 0.00000 0.00100; -10. ', -1.00000 4.00000 0.00000 0.00100; -10. ', -2.00000 6.00000 0.00000 0.00100; -10. ', -1.00000 0.000	5.00	'QA1 '	0.18000	-109.24630	100.00000:		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	, , ,	0.20000:		,		
3.0 ', 0.90000; 20.0 ', 180.00000; 2.0 ', 30.39550; 4.000 'BA1 ' 1.06104 10.58405 0.00000; 2.0 ', 30.39550; 20.0 ', -180.00000; 5.00 'QA3 ' 0.18000 105.81201 100.00000; 3.0 ', 0.20000; 5.00 'QAM ' 0.18000 -67.53922 100.00000; 3.0 ', 0.20000; 5.00 'QAM ' 0.18000 -67.53922 100.00000; 3.0 ', 0.20000; 5.00 'QAM ' 0.18000 -67.53922 100.00000; 3.0 ', 0.20000; 5.00 'QAM ' 0.18000 105.81201 100.00000; 3.0 ', 0.20000; 5.00 'QA4 ' 0.18000 105.81201 100.00000; 3.0 ', 0.20000; 5.00 'QA4 ' 0.18000 105.81201 100.00000; 3.0 ', 0.20000; 5.00 'QA4 ' 0.18000 105.81201 100.00000; 3.0 ', 0.80000; 2.0 ', 30.39550; 4.000 'BA2 ' 1.06104 10.58405 0.00000; 2.0 ', 30.39550; 20.0 ', -180.00000; 5.00 'QA5 ' 0.32500 43.26300 100.00000; 3.0 ', 0.20000; 5.00 'QA6 ' 0.18000 -109.24630 100.00000; 3.0 ', 0.20000; 5.00 'QA6 ' 0.18000 -109.24630 100.00000; 3.0 ', -100000 2.00000 0.00000 0.00100; 10. ', -1.00000 4.00000 0.00000 0.00100; -10. ', -1.00000 6.00000 0.00000 0.00100; -10. ', -1.00000 0.00000 0.000000 0.00100; -10. ', -1.	5.00	'QA2 '	0.32500	43.26300	100.00000;		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	, ,	0.90000;		,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0	، ،	180.00000;				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0	، ،	30.39550;				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.000	'BA1 '	1.06104	10.58405	0.00000;		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0	, ,	30.39550;		,		
3.0, , , , , , , , , , , , , , , , , , ,	20.0	, ,	-180.00000;				
5.00'QA3' 0.18000 105.81201 $100.00000;$ 3.0 'QAM' 0.18000 -67.53922 $100.00000;$ 5.00 'QAM' 0.18000 -67.53922 $100.00000;$ 3.0 'MID1' $0.00001;$ 3.0 'QAM' 0.18000 -67.53922 $100.00000;$ 5.00 'QAM' 0.18000 -67.53922 $100.00000;$ 5.00 'QAM' 0.18000 -67.53922 $100.00000;$ 5.00 'QAA' 0.18000 105.81201 $100.00000;$ 5.00 'QAA' 0.18000 105.81201 $100.00000;$ 2.0 '' $180.00000;$ 2.0 ' $180.00000;$ 2.0 '' $30.39550;$ 4.0000 4.000 'BA2' 1.06104 10.58405 $0.00000;$ 3.0 ' $0.90000;$ 5.00 'QA6' 0.18000 -109.24630 $100.00000;$ 3.0 '' $0.20000;$ 5.00 'QA6' 0.18000 -109.24630 $100.00000;$ 3.0 ' $ACR1'$ $0.90000;$ $-10.$ ' -1.00000 2.00000 0.00000 $0.00100;$ $-10.$ ' -2.00000 6.00000 0.00000 $0.00100;$ $-10.$ ' -2.00000 6.00000 0.00000 $0.00100;$	3.0	, ,	0.60000;				
3.0, , , , , , , , , , , , , , , , , , ,	5.00	'QA3 '	0.18000	105.81201	100.00000;		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	, ,	0.20000;				
3.0, , , , , , , , , , , , , , , , , , ,	5.00	'QAM '	0.18000	-67.53922	100.00000;		
3.0'MID1' $0.00001;$ 3.0 ' $0.20000;$ 5.00 'QAM' 0.18000 -67.53922 $100.00000;$ 3.0 ' $0.20000;$ 5.00 'QA4' 0.18000 105.81201 $100.00000;$ 3.0 ' $0.60000;$ 20.0 ' $180.00000;$ 2.0 ' $30.39550;$ 4.000 'BA2' 1.06104 10.58405 $0.00000;$ 2.0 '' $30.39550;$ 2.0 '' $30.39550;$ 2.0 '' $30.39550;$ 20.0 '' $-180.0000;$ 3.0 ' $0.20000;$ 5.00 'QA5' 0.32500 43.26300 $100.00000;$ 3.0 ' $0.20000;$ 5.00 'QA6' 0.18000 -109.24630 $100.00000;$ 3.0 '' -1.00000 2.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$	3.0	, ,	0.20000;				
3.0, , , , , , , , , , , , , , , , , , ,	3.0	'MID1'	0.00001;				
5.00'QAM' 0.18000 -67.53922 $100.00000;$ 3.0 ' $0.20000;$ 5.00 'QA4' 0.18000 105.81201 $100.00000;$ 3.0 ' $0.60000;$ 20.0 ' $180.00000;$ 2.0 ' $30.39550;$ 4.000 'BA2' 1.06104 10.58405 $0.00000;$ 2.0 ' $30.39550;$ 4.000 'BA2' 1.06104 10.58405 $0.00000;$ 2.0 ' $30.39550;$ $0.90000;$ 2.0 ' 0.32500 43.26300 $100.00000;$ 3.0 ' $0.20000;$ 5.00 $0.461'$ 5.00 'QA6' 0.18000 -109.24630 $100.00000;$ 3.0 ' -1.00000 2.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -2.00000 6.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -2.00000 6.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -2.00000 1.00000 $0.00100;$	3.0	, ,	0.20000;				
3.0, , , , , , , , , , , , , , , , , , ,	5.00	'QAM '	0.18000	-67.53922	100.00000;		
5.00'QA4' 0.18000 105.81201 $100.00000;$ 3.0 ' $0.60000;$ 20.0 ' $180.00000;$ 2.0 ' $30.39550;$ 4.000 'BA2' 1.06104 10.58405 $0.00000;$ 2.0 ' $30.39550;$ 20.0 ' $30.39550;$ 20.0 ' $-180.00000;$ 3.0 ' $0.90000;$ 5.00 'QA5' 0.32500 43.26300 $100.00000;$ 5.00 'QA6' 0.18000 -109.24630 $100.00000;$ 3.0 ' $0.90000;$ ' $-109.0000;$ 5.00 'QA6' 0.18000 -109.24630 $100.00000;$ $10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -1.00000 0.00000 $0.00100;$ $-10.$ '' -3.00000 2.00000 0.00000 $0.00100;$	3.0	, ,	0.20000;				
3.0, , , , , , , , , , , , , , , , , , ,	5.00	'QA4 '	0.18000	105.81201	100.00000;		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	, ,	0.60000;				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0	, ,	180.00000;				
4.000'BA2' 1.06104 10.58405 0.00000 ; 2.0 '' 30.39550 ; 20.0 '-180.00000; 3.0 ' 0.90000 ; 5.00 'QA5' 0.32500 43.26300 100.00000 ;' 0.20000 ; 5.00 'QA6' 0.18000 -109.24630 100.00000 ;' 0.90000 ; 5.00 'QA6' 0.18000 -109.24630 100.00000 ;' 0.90000 ; $-10.$ '' -1.00000 2.00000 0.00000 0.00100 ;' $-10.$ '' $10.$ '' 2.00000 0.00000 0.00100 ; $-10.$ '' 2.00000 0.00000 0.00100 ; $-10.$ '' 2.00000 0.00000 0.00100 ; $-10.$ '' 2.00000 1.00000 0.00100 ; $-10.$ '' 2.00000 1.00000 0.00100 ; $-10.$ '' 2.00000 1.00000 0.00100 ; $-10.$ '' 2.00000 1.00000 0.00100 ;	2.0	, ,	30.39550;				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.000	'BA2 '	1.06104	10.58405	0.00000;		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0	, ,	30.39550;				
3.0, $0.90000;$ 5.00 , QA5, 0.32500 43.26300 $100.00000;$ 3.0 ,, $0.20000;$, 5.00 , QA6, 0.18000 -109.24630 $100.00000;$ 3.0 , ACR1, $0.90000;$, $-10.$,, -1.00000 2.00000 0.00000 0.00000 ,, 0.00000 $0.00100;$ $-10.$,, -1.00000 6.00000 0.00000 $0.00100;$,, -1.00000 6.00000 $0.00100;$ $-10.$,, -2.00000 6.00000 0.00000 $0.00100;$ $-10.$,, -1.00000 1.00000 $0.00100;$ $-10.$,, -3.00000 1.00000 $0.00100;$ $-10.$,, -3.00000 2.00000 1.00000 $-10.$,, -3.00000 1.00000 $0.00100;$	20.0	, ,	-180.00000;				
5.00 'QA5' 0.32500 43.26300 100.00000 ; 3.0 ' 0.20000 ; 0.20000 ; 5.00 'QA6' 0.18000 -109.24630 100.00000 ; 3.0 'ACR1' 0.90000 ; 0.00000 0.00000 $-10.$ ' ' -1.00000 2.00000 0.00000 0.00100 ; $-10.$ ' ' -3.00000 4.00000 0.00000 0.00100 ; $-10.$ ' ' -1.00000 6.00000 0.00000 0.00100 ; $-10.$ ' ' -2.00000 6.00000 0.00000 0.00100 ; $-10.$ ' ' -1.00000 1.00000 0.00100 ; $-10.$ ' -2.00000 6.00000 0.00100 ; $-10.$ ' -1.00000 1.00000 0.00100 ;	3.0	, ,	0.90000;				
3.0 , 0.20000; 5.00 ,QA6 0.18000 -109.24630 100.00000; 3.0 ,ACR1 0.90000; -1.00000 0.00000 0.00100; -10. , , -1.00000 2.00000 0.00000 0.00100; -10. , , -1.00000 6.00000 0.00100; -10. , , -1.00000 6.00000 0.00100; -10. , , -1.00000 6.00000 0.00100; -10. , , -1.00000 6.00000 0.00100; -10. , , -1.00000 1.00000 0.00100; -10. , , -1.00000 1.00000 0.00100; -10. , , -1.00000 1.00000 0.00100;	5.00	'QA5 '	0.32500	43.26300	100.00000;		
5.00 'QA6' 0.18000 -109.24630 100.00000; 3.0 'ACR1' 0.90000; -100000 0.00000 0.00100; -10. ' -1.00000 2.00000 0.00000 0.00100; -10. ' -3.00000 4.00000 0.00000 0.00100; -10. ' -1.00000 6.00000 0.00000 0.00100; -10. ' -1.00000 6.00000 0.00000 0.00100; -10. ' -2.00000 6.00000 0.00000 0.00100; -10. ' -2.00000 1.00000 0.00100; -10. ' -3.00000 2.00000 0.00100;	3.0	, ,	0.20000;				
3.0 'ACR1' 0.90000; -10. ' -1.00000 2.00000 0.00000 0.00100; -10. ' -3.00000 4.00000 0.00000 0.00100; -10. ' -1.00000 6.00000 0.00000 0.00100; -10. ' -1.00000 6.00000 0.00000 0.00100; -10. ' -2.00000 6.00000 0.00000 0.00100; -10. ' -1.00000 1.00000 0.00100; -10. ' -3.00000 2.00000 0.00100;	5.00	'QA6 '	0.18000	-109.24630	100.00000;		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	'ACR1'	0.90000;				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10.	, ,	-1.00000	2.00000	0.00000	0.00100;	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10.	, ,	-3.00000	4.00000	0.00000	0.00100;	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10.	, ,	-1.00000	6.00000	0.00000	0.00100;	
	-10.	, , , ,	-2.00000	6.00000	1 00000	0.00100;	
	-10. -10	, ,	-1.00000	1.00000	1 00000	0.00100;	
-5.00000 5.00000 1.00000 0.00100; CENTINEI	-10. CENTINEI		-3.00000	5.00000	1.00000	0.00100;	
SENTINEL SENTINEI	SENTINEL						

File No. TRI-DNA-02-01

Table 2

SECOND ACHRON	MATIC SECTIO	N ISAC1>	ISAC2 REG	CT DIPOLES - C	2/02/19'
0	, ,	12 00000			
16 00	، ب	5 00000	3 00000.		
16 00	, ,	7 00000	0 45000;		
1 000000	'BEAM'	0 08485	4 24260	0 08485	4 2426
1.000000	Dunn	0 00000	0 00100	0.31731:	1.2120
3.0	, ,	0.90000:	0.00100	0.01101,	
5.00	'QA21'	0.18000	-95.83297	100.00000:	
3.0	, , ,	0.20000:		,	
5.00	'QA22'	0.18000	99.95628	100.00000:	
3.0	, , ,	1.38000:		,	
2.0	، ،	30.39550;			
4.000	'BA21'	1.06104	10.58405	0.00000;	
2.0))	30.39550;		,	
3.0	، ،	0.60000;			
5.00	'QA23'	0.18000	-24.99812	100.00000;	
3.0	, ,	0.20000;		,	
5.00	'QA23'	0.18000	53.05234	100.00000;	
3.0	, ,	0.20000;			
3.0	'MID2'	0.00001;			
3.0	، ،	0.20000;			
5.00	'QA23'	0.18000	53.05234	100.00000;	
3.0	، ،	0.20000;			
5.00	'QA24'	0.18000	-24.99812	100.00000;	
3.0))	0.60000;			
2.0	ن ز	30.39550;			
4.000	'BA22'	1.06104	10.58405	0.00000;	
2.0	ن ز	30.39550;			
3.0	, ,	1.38000;			
5.00	'QA25'	0.18000	99.95628	100.00000;	
3.0	, ,	0.20000;			
5.00	'QA26'	0.18000	-95.83297	100.00000;	
3.0	'ACR2'	0.90000;			
-10.	j)	-1.00000	2.00000	0.00000	0.0010
-10.))	-3.00000	4.00000	0.00000	0.0010
-10.	j)	-1.00000	6.00000	0.00000	0.0010
-10.	j)	-2.00000	6.00000	0.00000	0.0010
-10.	j)	-1.00000	1.00000	1.00000	0.0010
-10.	у у	-3.00000	3.00000	1.00000	0.0010
-10.	'ZFIT'	8.00000	3.00000	2.83270	0.0010
-10.	'XFIT'	8.00000	1.00000	18.98210	0.0010

Table 3

Transfer matrices for the two achromatic sections

(a) Transfer matrix for the first achromatic section

1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10.9500	1.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	1.0000	0.0000	0.0000	0.0000
0.0000	0.0000	-14.4147	1.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	1.0000	-0.3763
0.0000	0.0000	0.0000	0.0000	0.0000	1.0000

(b) Transfer matrix for the second achromatic section

1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-3.5965	1.0000	0.0000	0.0000	0.0000	-0.0001
0.0000	0.0000	1.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.5102	1.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	1.0000	-0.3763
0.0000	0.0000	0.0000	0.0000	0.0000	1.0000

Table 4

TRANSPORT input for the unit-magnification section alone

'UNIT	MAGNIFICATION	SECTION		ISAC1	->ISAC2	REC	T DIPOLES -	2	2002/02/14,
0									
13.	,	,	12	.00000;					
16.00	,	,	5	. 00000	3.00	,000			
16.00	,	,	7	. 00000	0.45	5000;			
16.00	,	,	18	. 00000	12.83	3000;			
1.00	о 'В	EAM'	0	.08500	4.24	300	0.08500		4.24300
			0	. 00000	0.00	100	0.31731;		
3.0	' S'	TRT'	0	.00001;					
3.0	,	,	0	.58000;					
5.00	' QI	M11'	0	. 18000	-126.19	186	100.00000;		
3.0	,	,	0	.30000;					
5.00	' QI	M12'	0	. 18000	101.99	857	100.00000;		
3.0	,	,	1	.12500;					
3.0	' M.	IDU'	0	.00001;					
3.0	,	,	1	.12500;					
5.00	' QI	M1 '	0	. 18000	-101.99	857	100.00000;		
3.0	,	,	0	.30000;					
5.00	' QI	M14'	0	. 18000	126.19	186	100.00000;		
3.0	' F(C, JC	0	.58000;					
-10.	,	,	-1	. 00000	2.00	000	0.00000		0.00001;
-10.	,	,	-3	. 00000	4.00	000	0.00000		0.00001;
-10.	,	,	-1	. 00000	1.00	000	-1.00000		0.00001;
-10.	,	,	-3	. 00000	3.00	000	-1.00000		0.00001;
SENTIN	EL								

SENTINEL

Transfer matrix for the unit-magnification section

-1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
13.8775	-1.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	-1.0000	0.0000	0.0000	0.0000
0.0000	0.0000	13.8775	-1.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	1.0000	0.000
0.0000	0.0000	0.0000	0.0000	0.0000	1.0000

Table	5
-------	---

Parameters of the matching section for differing modes of operation

Element	Length	Aperture	Field in	kG for
			match at	match at
	(m)	(cm)	section end	final image
Drift	0.5000			
Quadrupole	0.1800	100.0	-126.19186	-145.91833
Drift	0.3000			
Quadrupole	0.1800	100.0	101.99857	149.95639
Drift	0.3650			
Drift	0.3650			
Quadrupole	0.1800	100.0	-101.99857	-139.88550
Drift	0.3000			
Quadrupole	0.1800	100.0	126.19186	207.85578
Drift	0.5000			

Parameter	Match at	Match at
	section end	final image
$\pm x \text{ (cm)}$	0.172	0.172
$\pm \theta$ (mr)	2.179	2.090
$\pm x (\mathrm{cm})$	0.166	0.166
$\pm \phi$ (mr)	2.167	2.171
$R_{11} ({\rm cm/cm})$	0.2690	0.2490
$R_{12} ({\rm cm/mr})$	0.0403	0.0403
$R_{16} \ (\mathrm{cm}/\%\delta\mathrm{p/p})$	0.0000	0.0000
$R_{21} \; ({\rm mr/cm})$	-25.3611	-24.4568
R_{22} (mr/mr)	-0.0806	0.0596
$R_{26} (\mathrm{mr}/\%\delta\mathrm{p/p})$	-0.0001	-0.0001
$R_{33} ({\rm cm/cm})$	1.9065	1.9536
R_{34} (cm/mr)	0.5103	0.5115
$R_{56}~({\rm cm}/\% \delta {\rm p/p})$	-0.7527	-0.7527
$\beta_x \; (\mathrm{mm/mr})$	0.8259	0.8237
α_x	0.2992	0.0022
$\beta_y \; (\mathrm{mm/mr})$	0.7688	0.7635
α_y	-0.0505	-0.0112

File No. TRI-DNA-02-01

