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1. Introduction

In order that personnel involved with beam production at TRIUMF be able to be fully aware of what is
happening, it is necessary that they have some knowledge of beam transport theory. Toward this end a
series of discussions were held in early 1983 with senior operators. In these discussions the basics of beam
transport were outlined. This report is a summary of the information given in those sessions.

The author makes no pretense that the contents of this note are original. In fact, much of what is contained
here follows the treatment of the subject by Brown'). Other material has been taken from the books of
Banford?), Steffen?®, Septier®), Carey®, Wollnik® and others listed in the references.

Treatment of the subject of beam transport in this report is done in the matrix formalism. For readers
who are not familiar with matrices the information contained in appendix A will be of use. Those familiar
with matrices may proceed directly to the next section.

2. The thin lens in matrix notation

In the study of geometrical optics one becomes familiar with diagrams that show image formation by thin
lenses. The diagram below is one such diagram for a single focusing lens.

lens

Fig. 1. A conventional ray diagram for focusing by a thin lens.

By definition, a lens is ‘thin’ if it acts only to change the slope of an incoming ray. It is assumed that the
‘height’ of the ray immediately before lens action and that immediately after lens action are equal. This
assumption is equivalent to ignoring displacement of the ray because of refraction at the entry and exit
surfaces. All rays initially parallel to the axis of the lens are bent such that they all intersect the axis at
a focal point. There are two focal points: one to the right of the lens that corresponds to rays coming
from an infinite distance to its left, and one to the left of the lens that corresponds to rays coming from an
infinite distance to its right. The distance from the lens’ center to the focal point is called the focal length
and is denoted by f. If an object is located a distance p to the left of a lens of focal length f, then the
object position is located from the well-known thin lens equation

By convention, p is considered positive if the object lies to the left of the lens and ¢ is positive if the image
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lies to its right. The focal length f is positive if the lens is focusing.

For a matrix treatment of the problem we proceed as follows. Let (xg,60p) be the coordinates of a ray at
the object a distance p upstream of a lens of focal length f and (z1,60; = 6y) be those at the lens before
lens action. Following lens action its coordinates are (z9,62). A distance ¢ downstream of the lens the
coordinates of the ray are (z3,03 = 62). We wish to find the relationship between (x3,63) and (xg, 6p) and,
in particular, that relation at a focus. The situation is illustrated below, noting that by convention, angles
are considered positive when measured counterclockwise from the axis of the lens.

lens

A

Fig. 2. Definition of coordinates used for a matrix treatment.

2.1 The small angle approximation

In what follows we shall be using the small angle or parazial ray approximation. Trigonometric and
hyperbolic functions may be expanded in a power series of their arguments. The trigonometric expansions

are .,1;3 .’115 .’117 ’I‘2 ,1,4 .,1;6

sinm:m—a-l-ﬁfﬁ-l---- cosmzl—g—l—ﬂfa-l--“
¢ +.’1:3+2.f1,‘5+17m7+
anr = ¢+ —+ —
3 15 315

and, for future reference, the hyperbolic expansions are

mhe = © 260 C T he = SO0 o T
sinhhg = —— = 2+ —+—+—+--- coshy = —— = — + — =+
2 3! 5! 7! 2 2! 4! 6!

et —e ® 3 2P 1727
tanhy = ——— = 2 — — + — —
et +e % 3 15 315

where the angle x is expressed in radians.

The small angle approximation consists of replacing the function with the first term of these expansions.
Thus, for example, we set

sinz = =z cosz = 1 tanz = =z

where, again, the angle x is expressed in radians.

To show that these approximations are not frivolous, consider the evaluation of the trigonometric functions
for z = 0.20 radian = 11.459°. We find
x

1
- = 1.006698 = 1.020339 x = 0.986631 ,
sinx CcCos T tanx

that is, the approximation for an angle as large as 11.5° is good to 2% or better. For z = 0.005 r = 5 mr—a,
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typical divergence in a beam line—we find agreement to better than 0.001%;

1
'x = 1.00000417 = 1.00001250 x = 0.99999167 .
sinx Ccos & tanz

2.2 The transfer matrix for a thin lens

Consider now the transformation from the point (z1,6) to (z2,62) in figure 2. By the definition of a thin
lens, the height of the ray does not change during the action of the lens. Therefore

Tro =T (1)

Also, for small 6y, 6, and 0, we have

tanfy = tanf; =~ 601 = z1/p

tanfp, =~ 6y = —x9/q,
so that T 1 1 1 T
02: ——2:—162[———:|:—1U1[—}+—1 (2)
q fp f p
because 9 = x1. Thus
T1
by = ——+0:.
f
In matrix notation, equations 1 and 2 take the form
1 0
x9 Z1
= 1 (3)
0 — = 1 0,
f
that we write as
r2 = R-ZDz
The matrix 1 0
R = 1 . (4)
f

is called the transfer matriz of the lens and relates the coordinates (x,62) immediately to the right of the
lens after lens action to those immediately to the left of the lens before lens action.

2.3 The transfer matrix for a drift space

Now consider a region in which there exists neither lenses nor electric or magnetic fields. Such a region is
shown in figure 3 on the next page.

In such a region a particle will travel in a straight line. If a particle has coordinates (zg, ) at the point
A and coordinates (z1,6,) at the point B a distance L downstream of A, then we may find the coordinates
at B from those at A as follows.

Clearly, the angle of the ray does not change between the two points. Therefore
01 = 90 3

and, from the geometry of the situation, we have
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A B

Fig. 3. Ray trajectory in a drift space.

1 = xo+ Ltan6f;
= gz + Ltanf
= Xy + L‘,go
where we have again used the small angle approximation. We again rewrite these equations in matrix form
to obtain
:U] 1 L :Uo
= (5)
0, 0 1 0o
Thus the transfer matrix for a drift space is
1 L
R = (6)
0 1

2.4 Image formation by a thin lens — Matrix-wise

Let us return to figure 2 in which an object is placed a distance p upstream of a lens of focal length f.
We wish to find the distance ¢ downstream of the lens where the image is located. Thus we require the
relationship between (x3,63) and (z¢,6y) and, in particular, that relation at a focus. We trace back from
the image point as follows.

T3 [ Drift | [
= length
03 a6
Drift | Lens | [ T
= length
| ¢ || action | | 6
[ Drift Lens | [ Drift 0
= length length
| ¢ || action || p 0y
(1 g [ o[t e
= B (7)
|0 1 [ f J 0 1 0y
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where the appropriate matrices have been inserted into equation 7. Doing the matrix multiplication yields

T3 [ 1 q 1 p T
- 1
03 0 ]| 5 1—? 0,
[ q q
=3 e (-9) s
= , (8)
p 0
2 1P o
7 ;o
or
r3 To
= R (9)
03 o

where R is the overall transfer matrix from the object to the image.

Now we ask “What does a focus mean?” At a focus all rays emanating from any one point on the object
are refocused to the corresponding point of the image. That is, the final position must be independent of
the initial divergence. This requires that the R;9 matrix element be zero. Thus

r(i-) -

— - = = (10)

which can be rewritten as

that is, the (standard) thin lens formula. Using this relationship, the matrix transformation between the
object and the image becomes

This shows that at a focus

which is the well-known magnification from geometrical optics. It follows that in a focus-to-focus situation
the magnification is given by the R;; matrix element.

3. Thick lenses and principal planes

The above has been based on the assumption that the lens was thin—that is, its thickness could be neglected
and refraction at its entry and exit surfaces could be neglected. If this is not the case then the prescription
used above cannot be used.

It is not the purpose of this note to give a detailed account of geometric optics, but we will give an overview
of the treatment of thick lenses in what follows and then show its application to beam optics.
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The upper portion of figure 4 shows the treatment of a thick lens when each surface is treated independently.

fw
Pw
z, —» e
P
' f
<
O
f '

—> <— 7,

P

Fig. 4. Ray tracing for a thick lens: each surface treated independently (top) and the principal plane
method (bottom).

The entry face of the lens has a radius of curvature of R; and that of the exit face is Ry. Both R; and Ry
are taken as positive if their respective faces are convex to incident light. Thus, R, is positive and Ro is
negative in figure 4.

Recall that the focal lengths of the two surfaces are determined by their radii of curvature. If n is the
index of refraction of the lens relative to that of the surrounding medium, the the focal lengths of the entry
surface f; and that of the exit surface fo are given by

R R
= — and o= 2

n—1 1—n "

In figure 4, the upper dashed line is a ray that leaves an object a distance L; from the entrance surface
and passes through the center of curvature of that surface. Because it enters the lens normal to its surface
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this ray is not refracted. If the lens extended to the right this ray would trace the trajectory shown. The
lower solid ray is one that passes through f; and, consequently, is refracted to be parallel to the lens’ axis.
Again, if the lens path. At the intersection of these two rays an image would be formed at the point labeled
Iy. This image acts as the object for the exit face of the lens.

The upper solid ray of figure 4 leaves the object and passes through the center of curvature of the exit
face of the lens (as drawn, this corresponds to the point of intersection of the entrance face and the lens’
axis). Again, this ray is normal to the exit face and is not refracted there; it continues as shown. However,
as far as the exit face is concerned, the ray that passed through the focal point f; is now parallel to the
axis. Consequently, this ray is refracted to pass through the downstream focal point fo—as indicated by
the solid line. At the point of intersection of these two rays the final image is formed at the point I, a
distance Ly downstream of the exit face. In general, we find that

1 1 1

L7y

where f is neither fi nor fs.

The lower portion of figure 4 shows how we would like to treat this problem. Our wish is to find two planes,
the principal planes, P; and Py and an equivalent focal length f such that if we measure with respect to
the principal planes we can treat the problem using the thin-lens formula. As indicated in figure 4, suppose
that P, is located a distance z; from the entrance face and P, is located a distance z9 from the exit face
of the lens. We take z; to be positive if it lies to the right of the entrance face and 29 to be positive if it
lies to the left of the exit face. We find that the second principal plane is positioned at the intersection of
the incoming and outgoing ray such that the outgoing ray intersects the lens’ axis at the downstream focal
point. Similarly, an incident ray through the upstream focal point intersects the first principal plane and
exits parallel to the axis of the lens. We want to find the quantities z;, z9 and f such that if we write

p = Li+=x and q = Lo+ 29,
we can also write
111
P q f

We must now develop a prescription by which these parameters may be determined. Let the matrix R be
the transformation from immediately outside the entrance face of the lens to immediately outside its exit
face. We wish to replace this matrix with two drift lengths and a thin lens that is, we wish to write

R11 R12 o 1 z9 1 0 1 zZ1 (11)
Ry Ryy | | O 1 —(1/f) 1 0 1
Doing the matrix multiplication and equating individual matrix elements yields

Ry -1
zZ1 = zZ9 = %ﬁ (12)

and 1
? = - R21 (13)

In the above the matrix R was arbitrary. Consequently, if we know the transfer matrix for a system,
equations (12) and (13) give a method for finding the principal planes and equivalent thin lens with which
that system may be replaced.

Rather than explicitly indicate the principal plane formalism for a thick lens, an example of its use for a
combination of two thin lenses will be given.
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Ezample:
An object is placed 30 units to the left of a lens of focal length +15 units. A second lens of focal length 20
units is placed 10 units beyond the first. Determine the position and magnification of the final image.

This problem will be solved with the three methods given so far that is,

a) the thin lens equations,
b) the matrix method,
c) the principal plane technique.

In what follows the subscripts ‘1’ and ‘2’ refer to properties associated with the first and second lenses
respectively.

a) Thin lens approach

We first find the position of the image produced by the first lens. With p; = 30 and f; = 15 the thin-lens
equation gives 1 1 1 1 1 1

@ fi_m 15 30 30

or g1 = 30 units. This image becomes the object for the second lens and

p2 = lens separation — ¢ = 10 — 30 = — 20 units .

so that 1 1 1 1 1 1

& f2 ps 20 —20 10

Thus the final image is located 10 units downstream of the second lens. The overall magnification of the
system is found from

M = (magnification of first lens)(magnification of second lens)
_ 9%
b1 P2
_ =30 -10
300 —20
_ 1
2

b) Matrix method

Here we note that the problem consists of a drift length p;, a lens of focal length fi, a drift length d;
corresponding to the separation of the lenses, another lens of focal length fo, and a final drift of length g9
to the image. In matrix notation, writing F; = 1/f; and F» = 1/ fo, this configuration is written as

IR B IO I It

_ I @ 1 —diFy di I m Zg
0 1 —fi—F(l —diFy) 1—-diF 0 1 6o

_ l (1 =diF1)(1 — g2F2) — g2 p1+di + g2 — p1fi(dy + q2) — gaFa(p1 + di) + dip1ga A Fy ] l T ]

—F — F(1 —dif (1 —diFo)(1 —p1Fy) — p1 Py to
_ l (1/3) = (22/12) 30 — 3¢5 1 l ]
N —(1/12) -2 0o

where we have inserted the appropriate numerical values.
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In order that we have a focus it is necessary that x, be independent of 8y. Thus R19 = 30 — 3g2 = 0 or

g2 = 10 units .
With this value of g then
Ri = (1/3) = (10/12) = —(1/2)
so that
1
o = = — §ZE0 .

Thus the final image lies 10 units downstream of the second lens and is magnified by a factor of —0.5 as
determined using the thin-lens equations.

c¢) Principal plane approach

Here we consider the two lenses and separating drift spaces as a thick lens. The transfer matrix for this
system was found in b) above to be

1 o][1 &4 1 0] 1—diFy dy
B 1llo 1| =R 1] T | cA-RA-dF) 1-dF
Using the definitions given in equations (12) and (13) we find
1 1 1-(10/20)] -1 1-(10/15)] -1
B N | 011 ot S R 121 o R
[; 12 (—1/12) (—1/12)
Then
p = Li+2 = 30+6 = 36
and 1 11 1

1 1
q f p 12 36 18"
Thus the image is ¢ = 18 units to the right of the second principal plane. To calculate its location relative
to the second lens we have .
Ly = g—29 = 18 —8 = 10 units,

the same location as before. The magnification is obtained from

1
v _92_ _18 ,
P 36

that, again, is in agreement with that obtained using the other approaches. It is left as an exercise to draw
ray diagrams for each of the thin-lens and principal plane approaches.

Ezercise: Repeat the above for the following problem.

Two lenses, each of focal length 2 units, are placed 10 units apart. An object is placed 5 units in front of
the first lens. Find the position and magnification of the image. Draw a ray diagram for the thin lens and
the principal plane approaches.

4. Quadrupoles and quadrupole arrays

It is not the purpose of this report to derive formulae for the calculation of particle trajectories through
magnetic elements. However, in Appendix Q the (first-order) transfer matrix through a quadrupole is
derived from the trajectory equations. This has been done to indicate the process involved. This section
will take the quadrupole transfer matrix and examine it in order to show the similarities between it and
the geometric optics that have been discussed above.




Page 10 of 10 File No. TRI-DNA-83-9

Appendix Q gives the transfer matrix of a horizontally-focusing quadrupole as

in6
cos 6 SIZ 0 0
— ksinf cos f 0 0
Rq = sinh 6 (14)
0 0 cosh @
0 0 ksinh 6 cosh 6
L = effective length in m of the quadrupole,
0 = kL,
B = (Be/a)/(Bp),
in which (Bp)y = the magnetic rigidity of the particle,
By = the pole-tip field of the quadrupole,
a = the radius in m of the quadrupole aperture.

The transfer matrix of a vertically-focusing quadrupole has the two non-zero sub-matrices of equation (14)
interchanged.

This 4x4 matrix transforms an initial coordinate xg = (=g, 60,0, ¢0) into the coordinate x; =
(z1,61,y1,¢1). Notice that the (z,0) and the (y,¢) coordinates are completely decoupled in the ma-
trix equation ¢ = Rg xg. It is also important to notice that unlike an optical thin lens, a quadrupole
focuses in one plane and defocuses in the orthogonal plane. Thus if a quadrupole focuses horizontally, it
also defocuses vertically.

In the following quadrupoles will be considered individually, in pairs as doublets, and in threes as triplets.
The characteristics of each grouping will be discussed.

4.1 Quadrupole singlets

As is indicated in Appendix Q, the 2x2 matrix that represents the action of a quadrupole in its focusing
plane is

[ cosf sin 0 -|

—ksinf 0029
[ J

Using the principal plane theory that we have developed, we may replace this matrix with a thin lens and
two drift spaces. Using the superscript ‘4’ to indicate that we are dealing with the focusing plane of the
quadrupole, these matrices are related such that

cos siz@ _ 1 zy 1 0 1 2
—ksin6 cos 6 - 0 1 —(1/f*) 1 0 1

From the above and equation (13) it follows that

pr_ L
~ ksin®  ksinkL ~

(15)

Similarly we find the location of the principal planes Pf“ and P2+ relative to the ends of the quadrupole
from the values of z;” and 2. We find
coskL —1

Fogb = - 1
T T TGN kL (16)

From Appendix Q, the 2x2 matrix that represents the action of a quadrupole in its defocusing plane is
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inh 6
[ cosh 6 S -‘
[ ksinh 6 cosh 6 J
from which, using the same technique and using the superscript ‘—’ to indicate we are dealing with the
defocusing plane of the quadrupole, we find
1
= 17
! ksinh kL (17)
and coshkL —1
L =2y = ————— . 1
T T Thsinh kL (18)

The above expressions for f*, zli, and 22i are completely general. However, it is of interest to consider

the case when 8 = kL < 1. In this case we may expand the trigonometric and hyperbolic functions in a
power series of their arguments. For the trigonometric functions we have

. B AR 1 _ 22 gt 46
Sln.’I:—Tfy-l-ﬁ*?-l' cosT = 754_1,5_'_”_
1 1 =z 72 312°
cosecr = — = 4+ 4

sinx z 6 360 * 15120 *
and for the hyperbolic functions we have

mhe = $ 26—y T T O he = CEET T T
sinhr = ——— = 2+ —+—+—+--- coshz = = T4 4T o4
2 3 5 17! 2 20 4! 6!
N 2 1 =z 723 3120 N
cosechpy = — = = 4~ T
er —e® rz 6 360 15120
Using these expansions we then have in the focusing plane of the quadrupole
+ _ cosect
o= 2
1 1+9+793+ 316° N
k|6 6 360 15120
1 {1 N 0}
T k66
1 L
= 127 % 19
2L TG (19)

where we have kept only the first two terms of the expansion. Expressions are found for the positions of
the principal planes in a similar manner. We obtain

+ o+ cosf — 1

LT 2T Tne
1 92+94 96+ 1+9+79*+
N k 21 41 6! 0 6 360

Q

1| 62 1 I
_EFEﬁWI_@EPﬂ
L k2L2
Lh .
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Similarly, in the defocusing plane we find

o=

cosech

k
11 6 716*  316°
- z[aa*%m

N 1{19}

Tkl 6
1 L

_ L 21
LT G (21)

and
coshf —1
— ksinh @

1[92 A H1 0 703 ]

6 6 360
o [n el

_ L [1— kzLQ] . (22)

&

2 12

4.1.1 First-order approximation

If only the first term is kept in each of the above expansions we have what is known as the first-order
approximation for the quadrupole. In this case we have

e _go_ L (Bpo _ (Bp
[t==r = KL (Bo/a)L gL (23)
nd
! zfzzjzzfzz{zzozg (24)

where g = Bj/a is the gradient of the quadrupole field. Thus, to first order, a quadrupole may be treated
as a thin lens at its geometric center with drift lengths on either side of length equal to one-half of the
effective length of the quadrupole. Notice that in this approximation the focal lengths in the focusing and
the defocusing planes have the same absolute value f°; in the focusing plane f¥ is taken as positive whereas
it is taken as negative in the defocusing plane. Figure 5 is a sketch for a quadrupole of length L.

ffffffffffffffff

Fig. 5. First-order approximation of a quadrupole in focusing plane (left) and in defocusing plane (right).
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At TRIUMF, for example, the parameters characterizing the standard 4-inch quadrupole 4Q14/8 are

L = 0.4090 m, a = 0.0508 m, By(max) = 8 kG .
Thus B 8
0
= =2 = _ k
g a 0.0508 KG/m

d at 500 MeV
anaa ¢ (Bp)o = 36.36 kG-m,

so that 36.36 1
1O~ = 0.57Tm
(8/0.0508) 0.4090

and L
=5 = 0.2045 m .

For most cases of beamline work at TRIUMF this first-order treatment of quadrupole is adequate. The
next section considers the second-order approximation to quadrupoles and may be omitted without loss of
continuity.

4.1.2 Second-order approximation

The second-order approximation to a quadrupole is obtained when the first two terms of the expansions
of the focal length and principal plane locations are kept. This yields

1 L L

+ 0

= +—+= = £ — . 25
Equation (25) shows that in its focusing plane the focal length of a quadrupole is longer than that of a
thin lens of focal length f°. Consequently, the focusing power of a quadrupole is less than a thin lens of
a thin lens of focal length f°. Conversely, a quadrupole has a stronger defocusing action in its defocusing
plane than does a defocusing lens of focal length fU.

Similarly, we find the positions of the principal planes from

N N L K’ L2 L L
A = 2 = 2|1+ = 1+ ——
! 2 12 120

2

> (26)

To second order a quadrupole may be represented as shown in figure 6.

2, L/2
T T [ B i I
I I
I I
| | | | |
I ! I :
I
| | | | |
I ! I I
| | | | |
| : ! | :
I I
| i ! | i
N _
: Pz P: : : Pz , P? :
| | ! | |
I I
I ! \ ) I
I ! | I
| | | | |
| : ! | :
I I
: | S N
: | : ‘ |
I ! I ‘ !
I O S I VAL
< < > < >
z" @ 5 - \ 2
fr L/2 f-

Fig. 6. Second-order approximation of a quadrupole: focusing plane (left) and defocusing plane (right).
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4.2 Quadrupole doublets

We now consider the combination of two quadrupoles, one that focuses in the horizontal plane and one
that focuses in the vertical plane. Assume that the effective length of each quadrupole is 2L and that the
separation between their effective edges is d. We shall assume that the first quadrupole focuses horizontally
and the second focuses vertically.

We shall examine this configuration using the thin-lens approximation for the quadrupoles. In §4.1.1 we
have seen that the focal lengths of a given quadrupole in its focusing and defocusing planes are of equal
magnitude but of opposite sign. Thus for the first quadrupole

f1+ = 7]017 = fla

and for the second quadrupole _
fo = — f2+ = fa2.

The convention adapted here is that the numeric subscript designates the quadrupole and the superscript
refers to the focusing (4) or defocusing (—) plane of that particular quadrupole. Then, if distances upstream
of the doublet are measured to the center of the first quadrupole and those downstream are measures from
the center of the second quadrupole, the doublet may be represented as shown in figure 7.

S

\
L ‘ L d L ‘ L
Pl Pl
| |
| |
1 1
| |
/\ﬂ Horizontal plane i —f,
\ \
|
|
\

—

—f Vertical plane ‘

y

Fig. 7. First-order approximation of a horizontal-vertical quadrupole doublet.

2

=T

where s is the center-to-center separation of the quadrupoles, 2L is the (effective) length of each quadrupole,
and fi; and fy are the focal lengths in the focusing planes of the first quadrupole (J; and the second
quadrupole @9 respectively.

In the horizontal plane the transfer matrix from the entrance of lens f; to the exit of lens f; is, writing

1 0 1 s 1 0 1—sF; s (27)
F2 1 01 *Fl 1 - F2 — F1 — SF1F2 1+ SF2
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and that in the vertical plane is

1 0 1 s I 0| 1+ sk s (28)
*FQ 1 0 1 F1 1 - Fl*FQ*SFlFQ 1*SF2 '

Thus in the horizontal plane we have
1 1 1 s
—— =4+ — - 29
TR TR hE (29)

and in the vertical plane we find ) ]
s

1
i
f* fo i fife
where the superscript ‘+—’ indicates that the first quadrupole focuses (+) and the second defocuses (—)

in the plane being considered, with a similar meaning for ‘—+’. Thus f*~ denotes the focal length in
horizontal plane of an HV doublet and f~7 is that in its vertical plane.

)

Equations (29) and (30) may be rewritten as
1 1 f1 1 1 fo

horizontal plane — = : — = : 31
B R At TR ey TR
. tical pl L_ 1 f L1 2 (32)
vertical plane - = . = .
fo [T fi—fats fi [T fi—fats
from which it follows that for simultaneous focusing in both the horizontal and vertical planes it is necessary
that
‘fz—fl‘ <s. (33)
Equation (12) is used to calculate the locations of the principal planes. In the horizontal plane we find
_ Fy _ I
T = =t and PARNES =S (34)
and in the vertical plane we have
— F2 _ F1
Z1+:F+*S and Z2+:_F+*S' (35)

As shown in the next section, these relationships indicate that the principal planes in the focusing plane of
the first quadrupole lie upstream of the doublet, and those in the focusing plane of the second quadrupole
lie downstream of the doublet.

4.2.1 Antisymmetric quadrupole doublet

In most cases the quadrupole fields of a doublet are not too different. The special case in which the pole-
tip fields of the quadrupoles have the same absolute value but opposite signs are called an antisymmetric

i = —fo=Ff

and the transfer matrices in the thin lens approximation reduce to

doublet. In this case we have

S
1F - S
! (36)
S S
7T

where the upper sign is used for the horizontal plane and the lower sign for the vertical plane. From this
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matrix the effective focal length f’ of this antisymmetric doublet is found to be

f2

e S (37)

We note that because f’ is positive, an antisymmetric doublet is always focusing. Similarly, the positions

of the principal planes are given by
noo=nt = —f (38)

and
nt =2 = f. (39)

At TRIUMF, for example, with two standard 4-inch quadrupoles at half power, we have
f'~(12)%/08 = 1.9m for s = (02m+04m+02m) = 08m,

so that

and

s 1
[ S
+— ' '
74 I ]
‘
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Fig. 8. An HV antisymmetric doublet operating in a focus-to-focus mode.

From the above diagram the inherent asymmetry of a quadrupole doublet should be apparent. If the
doublet is operated in a focus-to-focus mode from a point L units upstream of the (center of) quadrupole
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(1 to a point L units downstream of the (center of) quadrupole @2, the object and image distances in the
horizontal plane are given by

ptT =L+ < L and qgt- = L+zf" > L

because zf’f is negative and zg'f is positive. Consequently, the magnitude of the magnification in the

horizontal plane is
(M| =

+7
q—‘ > 1.
pt

On the other hand, the object and image distances in the vertical plane are given by

p7+:L+zf+ > L and gt :L—I—z;+ < L
because z; © is positive and z, T is negative. Consequently, the magnitude of the magnification in the
vertical plane is .
v
(My| = |—| < 1.
Y p +

Thus, in general, the magnification of a doublet operating in a focus-to-focus mode is always larger in the
focusing plane of the first quadrupole than that in the focusing plane of the downstream quadrupole.
Ezercise:

An HV antisymmetric quadrupole doublet consists of two quadrupoles, each of effective length 0.4 m and
bore 10.16 cm. The distance between their effective edges is s = 0.4 m. It is desired to focus 500 MeV
protons from an object located a distance L = 5.0 m upstream of the first quadrupole at a point L = 5.0 m
downstream of the second quadrupole.

a) Using the thin lens approximation, show that the overall transfer matrix for this system is given by

1—sF(1+LF) 2L+ s(1 — L?F?) 0 0
R — —sF? 1+sF(1 - LF) 0 0
N 0 0 1+sF(1—-LF) 2L+ s(1—L?F?) | °
0 0 —sF? 1—sF(1+LF)

where F' = 1/f is the inverse focal lengths of the quadrupoles.
b) From the above show that the required focal lengths of the quadrupoles is

1 S
= — = L
f F s+ 2L

and calculate the pole-tip fields required to produce this focal length, and the magnifications in each of the
horizontal and vertical planes.

¢) Using the principal plane technique verify the results obtained above.

Answer: f = 1.366 m, By = +3.381 kG, M*~ = —1.752, and M+ = —0.571. These values are to be
compared with By = +3.698 kG, M™~ = —1.826, and M~ = —0.548 that are obtained using the full
quadrupole matrix.]

4.3 Quadrupole triplets

Another combination of quadrupoles is the triplet. Consider three quadrupoles, each of effective length
2L, that are separated by a distance d. The pole-tip fields of the quadrupoles are, respectively, By, B,
and Bs, which may be converted into the focal lengths fi, fo, and fs.
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In the thin lens approximation the three quadrupoles are each replaced with a lens of the appropriate
strength at the center of each quadrupole. The lenses are then separated by a distance s = d + 2L.

Consider the horizontal plane of an HVH triplet. The transfer matrix from the center of ()1 to the center

of @3, again with the notation FF = 1/f, is
1 0 1 s 1 0
Fy 1 0 1 —F 1

it

B —sFy + (1 — sFy)(1 + sFy) s(2+ sFy)
o —(1—SF3)[F1 —Fz(l—SFl)] —Fg(l—SFl) —SF3+(1—SF3)(1+SF2)

(40)

It is evident that even in the thin-lens approximation this expression could become unwieldly. In the
following section a special case will be examined.

4.3.1 General case of equally powered outer quadrupoles

A simplification of the above expression results if the outer quadrupoles of the triplet are equally powered.
We assume that all quadrupoles have equal effective lengths, that the pole-tip fields of the outer quadrupoles
are By and that of the inner quadrupole is By, and that the corresponding focal lengths are f; and fy. For
the purpose of illustration we assume an HVH quadrupole configuration.

In the thin lens approximation the focal lengths in the focusing and defocusing planes of a given quadrupole
are equal. Consequently, the transfer matrix of the triplet in the horizontal plane is

1 0 1 s 1 0 1 s 1 0

—F 1 01 +F 1 0 1 - 1

1 — 221 + xo(l — 21) $(2 4+ x9)
= 1—=x 41
1-[I2(1—{E1)—2$1] 1—2.’E1+I2(1—{E1) ( )
where we have written z; = |sF;| = |s/f;|. Similarly, in the vertical plane we find
1 0 1 s 1 0 1 s 1 0
+F 1 01 —-F 1 0 1 +F 1
[ 1—|—2.’E1—I2(1+.’E1) 3(2_$2) -|
= 14+ 42
L - 1.[2:151—:102(14-:101)] 14 2% —xo(1 + z1) J (42)
From these equations we then find the locations of the principal planes to be
Horizontal plane 2t = 2t = . j’l‘1 = 1 ;ZFI (43)
and s s
Vertical plane 2t =t = = (44)

14 2 1+ sk

Equations (43) and (44) show that the field of the center quadrupole of a triplet may be varied without
affecting the positions of the principal planes. This property has no counterpart in a quadrupole doublet
configuration.

Pictorially, we have the situation indicated below. In the diagram it has been assumed that the outer
quadrupoles of the triplet focus vertically and the center quadrupole focuses horizontally.




File No. TRI-DNA-83-9 Page 19 of 10

<« <« > <«
A 2L 2L
—f fz =f,
Horizontal 1 1 !
]‘CW %fQ ﬂ
Vertical

Bk rg

Fig. 9. Schematic of a VHV triplet configuration.
From equation (41) the effective focal length f*~ in the horizontal plane of an HVH triplet are found to

be
frov= , (45)
(1-2) =h+2+9)
S
and we have seen that and the positions of the principal planes in the horizontal plane are given by
+—t _ 4t sh
z = Z = . 46
1 2 f] —s ( )
Similarly, the effective focal length f*—% in the vertical plane of an HVH triplet are found to be
L J1f2
f = — , (47)
(1+2) (-2 +9)
fi
and we have seen that and the positions of the principal planes in the vertical plane are given by
T —— Sfl
z =z = —. 48
1 2 f] +s ( )
In the case that s< f; note that the positions of the principal planes in each of the horizontal and vertical
planes can be written s
z(+—) — 5,

- f]ﬂ:S
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that is, for s<f1, all principal planes coincide at the geometric center of the triplet. Consequently, this
triplet will act more like a thin lens in both planes than will a doublet.

In general, provided that the focal lengths of the outer quadrupoles of a triplet are larger than twice their
separation, the principal planes in both the horizontal and vertical directions lie within the triplet. As we
have seen, this was not the case with the antisymmetric doublet.

Typical values of TRIUMF quadrupoles the center quadrupole at 5 kG and the outer pair at 3 kG are

fi=15m f2 = 0.9 m s~ 0.8 m
so that Joov = (15+2m$zﬂgﬁamsﬁ5» = 263m
Joee = (2ux®-+1é:?§gi%1+(os/La) = 059 m
Tt = 2T = %%?n%gg = 1.71m
7t =T = %%?é%é% = 0.52m

Figure 10 shows the principal plane arrangements for a VHV triplet operating in a focus-to-focus mode

with equal object and image distances.
. . s,

PR

L

Horizontal plane

Vertical plane

Fig. 10. Principal planes of a VHV triplet operating in a focus-to-focus mode.
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We note that with the above configuration—a symmetric triplet operating in a focus-to-focus mode with
equal object and image distances—the magnifications in the horizontal and vertical planes are each equal
to —1. As we have seen, with an equivalent doublet configuration this is not possible.

FEzercise:

An HVH symmetric triplet consists of three quadrupoles, each of effective length 0.4 m and bore 10.16 cm,
that are separated by 0.4 m. It is desired to focus 500 MeV protons from an object situated 5 m upstream
of the triplet to an image point 5 m downstream of it. The outer quadrupoles are powered equally.

a) Replace each quadrupole by a thin lens and obtain the transfer matrix from object to image. Calculate
the required pole-tip fields of the quadrupoles and the magnifications in each of the horizontal and vertical
planes.

b) Using the principal plane approach, verify the results obtained in part a).

Answer:

We find f+~+ — 3201 m, f~+ — 2881 m, Bt — 2432 kG, B~ — —4.215kG, M+ = —1.0, and
M*~% = —1.0. These values are to be compared with BT = 2.817kG, B~ = —4.215 kG, Mt~ 1 = —1.0,
and M+t~ = —1.0 that are obtained using the exact matrix.

c¢) What happens if the polarities of the quadrupoles are reversed?
4.4 Chromatic aberrations

In the foregoing it has been assumed that all particles traversing the quadrupoles have had the same
momentum. This, of course, is not true in practice. Consequently, if there is a momentum spread in the
beam each different momentum will be affected in a slightly different manner by the quadrupoles. In fact,
different momenta will be focused at different places along a line through the axes of the quadrupoles. This
is called chromatic aberration.

It can be shown that this effect can be neglected for most beamlines that we will meet. Other than a
mention of this effect, no further consideration of quadrupole chromatic aberrations will be given here.
However, for those interested ref® gives a detailed investigation of this effect.

In general, however, the effect of magnets on particles of different momentum is not something that can
be neglected. In fact, for some magnets it is a necessary consideration as we shall see in the following
section.

5. Dipole magnets

We are all familiar with the optical prism in which different wavelengths are bent through different angles
with the result of a ‘rainbow’ effect. This is caused by the variation of the index of refraction with
wavelength and is, in fact a chromatic effect. The bending power of a lens depends on the wavelength of
the light and thus the energy of the photons (the quanta of light). [Remember that the energy of a photon
is given by £ = hv = he/\ where c is the speed of light, v is its frequency, A its wavelength, and h is a
universal constant called Planck’s constant that is equal to 6.6256x 10734 joule-sec. The momentum of a
photon is p = E//c.] The beam transport analogy of this is, of course, the dipole magnet in which particles
of different momentum are deflected through different angles.

In the discussion of quadrupoles it has been assumed that the particles could be treated as if they traveled
parallel to a (fixed) Cartesian coordinate system. Because deviations from travel along the z-axis were
assumed to be small, we were able to derive the equations of motion through a quadrupole field—at least
to a first-order approximation. This procedure cannot be used with a dipole magnet because we know that
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such a magnet changes the direction of the incident beam.

Certainly, we could express the coordinates of particles on exit from a dipole, &1 = (21, ¥1, 21), in terms of
those referred to an initial coordinate system, &g = (9, yo, 20) that is set up at the entrance of the dipole.
However, we are interested in a coordinate system in which the z-axis lies along the direction of the beam.
In this case we must attach a coordinate system to the beam as it passes through the dipole.

The coordinate system is chosen such that the z-axis always points in the (instantaneous) direction in
which the beam travels. This coordinate system obviously rotates with the beam and when the beam exits
the dipole the z-axis will point in the beam direction. Thus at the dipole entrance we convert from a
Cartesian system xg to a rotating system. On exiting the dipole we convert from the rotating system to a
new Cartesian system x; in which the z-axis again points in the beam direction.

The procedure for developing the equations of motion through a dipole involves concepts from differential
geometry. Here, however, only the results will be quoted.

5.1 General concepts

For the purposes of this report a dipole magnet will be considered to be a magnet in which the magnetic
field B is given (in a Cartesian frame of reference) by

B = (0, By,0) , (49)

that is, the magnetic field lies parallel to the positive (vertical) y-axis. Furthermore, it will be assumed
that B is constant.

Qualitatively, we may describe particle motion in a dipole as follows. With the convention that the (local)
z-axis lies in the direction of motion that is, the velocity vector of the particle lies along the instantaneous
z-axis—the particle feels a deflecting force given by

F = quxB

where v is the velocity of the particle and ¢ is its charge. The unit of ¢ is the Coulomb, those of v are m/s,
while that of B is T.

The direction of the magnetic force is neither in the direction of v nor in the direction of B but in the
direction of the vector vxB. This vector is called the vector cross product of v and B and is defined to
have the magnitude vBsinf, 6 being the angle between v and B, and to have a direction perpendicular to
the plane containing v and B as determined by the right-hand rule. [Place the fingers of the right hand
along the vector v and curl them into the vector B. The thumb then points in the direction of the force
on a positively charged particle.]

Because we have assumed B is parallel to the y-axis and v is parallel to the z-axis, they are perpendicular
and the magnitude of gux B is ¢Bsin90deg = quv,B, = quB. From the right-hand rule, the direction of the
force is along the negative z-axis. Thus we have

F, = —quB F, =0 F, =0 (50)
where we have dropped the subscripts of the magnetic field and the velocity. Consequently, looking along
the beam, a positive particle entering the field will be deflected to the right.

Now when v and B are mutually perpendicular and the magnetic force has a constant magnitude of
quB and is always perpendicular to v, it is shown in physics courses that this results in circular motion.
Equating the magnetic force to the product of mass times centripetal acceleration we obtain
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02
quB =m — (51)
p
where p is the radius of the circle. This we rewrite as
q q

The important quantity Bp with units of T-m is called the magnetic rigidity of the particle. It depends
only on the ratio of the momentum of the particle to its charge. Often in beam-line literature the magnetic
rigidity will be written as (Bp)o to indicate that it is the magnetic rigidity for which the beam line is
designed. In the units that we are using we have for protons

B[T]p[m] = 3.3356p[GeV /c] (53)
In particular, if a magnet is designed to deflect a beam of momentum pg through an angle 6y then we write
(Bp)o = 3.3356pg . (54)

At this point the concept of dispersion must be introduced. In practice, a beam of particles will have a
finite momentum spread. If a magnet is designed to deflect a beam of momentum py—-called the central
momentum through an angle 8y, then particles of higher momentum p + Ap will be bent through a
somewhat smaller angle. Conversely, particles of lower momentum p — Ap will be bent through a somewhat
larger angle. [Again, this effect is optically equivalent to the variation of the index of refraction with
wavelength.] The result is that the beam is spread out in space—that is, the position of the beam on
exiting from the dipole depends on the momentum of the particle. The beam is spatially dispersed.
Because the direction of the beam is also changed, the beam is, in general, also dispersed in angle that
is, the angle with respect to the z-axis also depends on the momentum of the particle. The beam also has
angular dispersion.

5.2 Transfer matrix for a wedge dipole magnet

Consider a magnet designed such that a beam in which particles with the design (central) momentum both
enter and exit the magnetic field region at right angles. We then have the following situation for a bend
angle of 6.

Fig. 11. Particle motion in a wedge magnet.

In the above diagram the effects of dispersion are indicated schematically. Let us define the quantity ¢ as
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5= P —DPo
Po
where pq is the central momentum of the beam for which the magnet will deflect a particle of that momen-
tum through an angle 6y and p is the momentum of an arbitrary particle in the beam. The term ¢ is then
a measure of the ‘off-momentumness’ of the particle in question. Dispersion is introduced into the matrix
formalism by adding another row and column to the transfer matrix. Thus the horizontal portion of the
matrix is written as

(55)

x Ri1 Rz Ry To
61 | = | Roi Ry Ros by | - (56)
01 0 0 1 do

In this equation x4 is the coordinate vector at the exit of the dipole and xq is that at its entrance. The
third row indicates that the momentum of a particle is not changed. This is because static magnetic fields
do no work and, consequently, do not change the momenta of particles in the beam. The matrix elements
R13 and Roj indicate that there is dispersion in both space and angle.

It can be shown that the transfer matrix in the bend plane of a uniform-field wedge magnet that bends a
particle of momentum pg through and angle § may be written as

cosf posind  po(1 — cosh)
1
R(wedge, bend plane) = | ——sinf cosf sinf (57)
Po
0 0 1

where pq is the radius of curvature in the magnet for particles of (design) momentum py.

Motion in the non-bend (vertical) plane is not affected by the magnetic field. Consequently, the momentum
dependence is left out and the magnet appears as a drift space. The transfer matrix in the non-bend plane
is then

1 0
R(wedge, non-bend plane) = [ 0 pi ] (58)
where pgf is the length of the trajectory within the magnet. As was done in the case of quadrupoles, these
two matrices are combined into one. By convention, the momentum row and column are written last. Thus
we have for the complete transfer matrix through a wedge dipole

[ - -| [ cosf posind 0 0 po(1 — cosh) W - -|
01 —— sinf cosf 0 0 sinf 0y
v = 0 0 1 pof 0 Yo | -
?1 0 0 0 1 0 ?U
! 0 0 0 0 1 ] Lo

5.3 Principal planes of a wedge dipole magnet

Unless indicated otherwise we shall always assume that the bend plane of a dipole is horizontal. Because
the optics of the non-bend plane of a wedge magnet are those of a field-free drift region, we need only
consider the its bend plane. In that plane we have

- cosf posing  po(l — cosf) -

01 = —— sinf cosf sinf 0y
P0

(51 50

0 0 1
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from which we find

1 1
—_— = Rgl = ——sin# (60)
f Po
and Ry —1 0
= = —— = —pgtan— . 61
Z1 = 2z Rot P0 an2 ( )

Thus the principal planes are located at the cross-over point the point of intersection of the incoming and
outgoing rays—of the magnet. In the bend plane the wedge magnet ca be represented as a lens of focal
length f = po/sinf with drift spaces of length z; = 29 = potan(6/2) on either side. This is illustrated
in the figure below.

f = p/sing

4

‘

Fig. 12. Principal planes (upper) and simplified description (lower) of a wedge magnet.
Thus we may use the following simplified matrix in the bend plane of a wedge magnet provided distances
are measured to/from its principal planes.

1 0 0
1
R(wedge magnet, bend plane) = p—sinG 1 sinf | . (62)
0
B o 1 |

5.4 Magnets with arbitrary entry and exit angles

If particles do not enter and exit a magnet at right angles to the magnet’s edge we cannot use the above
prescriptions. We can, however, make such a magnet from a wedge magnet by superimposing the field of
a magnetic wedge on that of the wedge magnet. As illustrated in the following diagram, a magnetic wedge
produces a field that is positive on one side of the axis and negative on the other. This field adds to or
subtracts from the field of the wedge magnet and, with judicious placement, can be used to generate the
appropriate angles of entry and exit.

It can be shown (see ref®, for example) that the transfer matrix for a magnetic wedge of angle « is
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iB ' ’/
f— \\/’m/
| B |
+B \ /
Magnetic 4+ Wedge n Magnetic _ Non—normal entry
wedge magnet wedge and exit magnet

Fig. 13. Construction of a magnet with arbitrary entrance and exit angles using magnetic wedges.

( 1 0 0 0 07
tano
1 0 0 0
P0
R(pole face rotation) = 0 0 1 0o 0] . (63)
Tl
0 0 mne g
P0
L 0 0 0 0 1 |

[Note: Because we are considering the ‘hard-edge’ model—that is, the magnetic field drops to zero at the
effective edge of the magnet of a magnet, a correction term to the R43 term has been omitted.]

The angle « is defined as positive if the normal to the pole-face lies outside the entering trajectory with
respect to the center of curvature. A similar matrix and sign convention applies to the exit edge.

The important result obtained from equation (63) is that edge focusing of dipoles is directly proportional to
the radius of curvature of the central trajectory and inversely proportional to the tangent of the edge angle.
The former is usually large (> 2 m) and the latter is usually less than 0.5, resulting in a (minimum) focal
length of 4 m or more. Consequently, the focusing effect of edge angles is weak relative to that obtained
with quadrupoles.

A further, important result is that a positive edge angle provides vertical focusing and horizontal defocusing.
The converse, of course, applies for a negative edge angle.

The transfer matrix for a magnet into which a particle enters at an angle o and exits at an angle g is
obtained by premultiplying the wedge-magnet transfer matrix by the pole-face rotation matrix for an angle
«a and postmultiplying it by the pole-face rotation matrix for an angle 5. Thus

R(overall) = R(pole face rotation §)R(wedge magnet)R(pole face rotation «) . (64)

5.5 The rectangular magnet

The most common magnet at TRIUMF is one that is oriented such that the entry and exit angles are each
one-half of the total bend angle. The magnet is the rectangular in shape. We leave it as an exercise to
obtain the transfer matrix for such a magnet.

FEzercise:

A magnet bends particles through an angle # with a radius of curvature py. The magnet is rectangular so
that the entry and exit angles are &« = § = 0/2. Develop the transfer matrix for such a magnet and show
that it is given by
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( 1 ppsinf 0 0 po[l — cosf] |
0 1 0 0 2tan(6/2)
# [ mrffcltl.et ] - ’ tan(el/;) B " ) (6%)
& 0 0 S gtan(0/2) — 2] 1 — ftan(0/2) 0
P0
0 0 0 0 1 ]

6. Achromatic systems

As has been mentioned previously, we always have some spread in momentum among the particles of the
beam extracted from an accelerator. From the matrix representation above we have seen that after a beam
passes through a dipole, both the position and angle in the bend plane of the dipole will be momentum
dependent. If this beam falls on a target this implies that the momenta of the particles hitting one side of
the target will differ from that of those striking the opposite side of the target. In most cases this is not
desirable from an experimenters point of view. Consequently, we design a system in which the position of
the beam on a target is independent of momentum. Such a system is termed an achromatic system. If both
position and angle at the target are momentum independent, the system is termed doubly achromatic.

Rather than go into great details of the analysis of achromatic systems in general, their principle of operation
will be illustrated by an example.

It turns out to be possible to design a transport system that includes a dipole such that a beam that is
achromatic before entering a dipole is also achromatic after exiting it. One scheme is to split the dipole
into two halves and place a (horizontally) focusing lens centered between the dipoles as is shown below.

L L
o<l —

f=1L/2
Fig. 14. Production of an achromatic beam with two wedge magnets and one quadrupole.

In this figure a (horizontal)ly focusing quadrupole is placed between two wedge magnets. Each dipole
bends a beam of momentum py with a radius of curvature p through an angle 8. The quadrupole has a
focal length f and is located midway between the dipoles at a distance L from the point of intersection of
the principal planes of each magnet. We study this configuration using the thin lens approximation.

Let &g the coordinate vector of a particle at the first principal plane of the first dipole and x; be that at its
second principal plane. The vectors &4 and x5 have similar meanings for the second dipole. The vectors
x2 and xg are, respectively, the coordinate vectors immediately before and after quadrupole action. Then
the transfer matrix for the system is found from the matrix equation

T5 Magnet Drift Lens Drift Magnet x
05 = matrix length action length matrix fo

05 #2 L f L #1 do




Page 28 of 10 File No. TRI-DNA-83-9

Putting in the appropriate matrices and writing s = sinfl, ¢ = cosf), and F = 1/f we have

Ts5 1 0 0 1 L 0 1 00 1 L 0 1 0 0 x
05 = —s/p 1 s 0 1 0 —-F 10 0 1 0 —s/p 1 s 6o
05 0 01 0 0 1 0 01 0 0 1 0 01 do
[1 - LF]— (sL/p)[2 — LF) L2 — LF] sL[2 — LF)
— | {1@s/p) + FI1 = SLIOHGL/0) = 1] [1= LF] = (sL/p)2— LF]  s[1 = (sL/p)][2 = LF]

0 0 1

o

X 00

do

For the system to be doubly achromatic we require that Ri3 = 0 and Ro3 = 0. Thus we have
sL2—LF]=0 and sl —(sL/p)][2—LF] =0,

that is,

Thus, in order to produce the doubly-achromatic condition, it is necessary to adjust the quadrupole so as
to focus from the center of one dipole to the center of the other.

Insertion of the expression for f into the above matrices shows that the transfer matrix for the dipole-
quadrupole-dipole doubly-achromatic system is

-1 0 0
R(doubly achromatic) = —(2/L)[1 — (L/p)sinf] —1 0
0 0 1

Another technique, also involving splitting the dipole in half, is illustrated below. The diagram is taken
from ref?).

Fig. 15. An alternate technique of production of an achromatic beam.

In this case two identical focusing lenses are placed symmetrically in the space between the dipoles. The
lenses are adjusted to make the beam parallel to the central trajectory in the space between them. From
symmetry it should be obvious that the resulting beam will be achromatic.
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The problem with each of these systems is that there is no focusing in the vertical plane—in fact there
is complete defocusing. The solution is to add a vertically focusing lens at the midpoint of the system
to provide the required focusing in the vertical plane. This is indicated by the dotted line in the above
diagram. Of course, the optics of the system will be changed somewhat but the principle remains valid.

Often the single lens will be replaced with two equal lenses, again symmetrically located about the midpoint,
to allow for a slit or diagnostic device to be inserted there. This has the advantage of allowing the insertion
of a slit at the symmetry point to stop particles of unwanted momentum.

This latter technique (of adding two, equal, vertically focusing lenses) can also be used in the previous
system to provide the required vertical focusing. Again, the optics will be modified somewhat but the
principle remains the same.

Achromatic systems, including those using dipoles only, are treated in more detail in ref?).
7. Phase space and beam size determination

So far we have learned how to relate particle coordinates at the exit of a system to those at its entrance.
Given a particle with coordinates xg at the entrance of a system whose transfer matrix is R, the coordinates
of the particle upon exiting from the system, a1, are obtained from

r1 = R-CDQ. (66)

This equation relates the coordinates of individual particles after the action of the system to those prior
to its action. If, however, we are dealing with a beam of particles, it would be impractical to apply this
technique to each particle in the beam. Furthermore, we are usually interested in parameters of the beam
as a whole rather than in those of any individual particle. For these reasons, the concept of phase space has
been developed and the previous matrix algebra has been extended to allow us to determine its properties.

7.1 The phase space ellipse and its usefulness

Consider the collection of particles that make up the ‘beam’. Each individual particle can be assigned
coordinates of position, angle and momentum relative to some central trajectory. In the context of what
has been discussed, we would like to write the coordinates of each particle as

1 = (maeayad)a(s) . (67)

For simplicity in what follows, consider a beam of particles which has no vertical size or divergence and
has no momentum spread. Relative to that of some central particle, the position of any individual particle
is completely specified by its horizontal position and divergence. We could then get the size of the beam
at any point by simply plotting the z-6 distribution there. Again, however, it is clear that this would be a
very tedious operation to perform.

The left diagram of figure 16, below, is meant to be such a plot, the dots representing the coordinates of
individual particles. On the right, an ellipse has been drawn to enclose most of these particle coordinates.
An ellipse has been chosen because of its mathematical transformation properties. Such diagrams are called
a phase-space diagrams. In particular, the ellipse is called a phase-space ellipse. It displays the relationship
between the horizontal size and horizontal divergence for each and every particle of the beam. It is clear
that, depending upon how large an ellipse is drawn, the number of particles included within the ellipse will
vary. However, once we are satisfied that the ellipse that has been drawn is a reasonable approximation to
the actual beam parameters, the horizontal size of the beam can be determined by projecting the ellipse
on the z-axis. Similarly, projection of the ellipse on the f-axis will give a measure of the maximum of the
divergence of the beam.
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Fig. 16. A two-dimensional phase-space diagram.

It is also clear that the orientation of this ellipse will change as the beam proceeds through the transport
system. Thus, for example, the case where a beam ellipse is initially upright. If a picture were taken at
a second point a distance L further along the drift space, the ‘snapshot’ of the two beam ellipses would
appear as in the following diagram.

! !
0

1.0 | - 10 0 -

0.5 - - 05 -
0.0 i 0.0 i

—0.5 - —05 -

1.0 - =10 =

\ \ \ \ \ \ \ \
-15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15

Fig. 17. The effect of a drift space on phase-space ellipse.

The reason for this change is clear. The coordinates of any particle at the second point, &1, are related to
those at an earlier point, &g, by the matrix for a drift space,

-

The z-coordinate of a particle is altered by an amount proportional to the product of the distance between
the points and the divergence of the particle at the first point. The divergence of the particle is, however,
unchanged. Thus in a drift space of length L the points (0, 26,4, ) transform to the points (£L0az, Omaz)
whereas the points (£x,0) are unaltered. The ellipse shears with only points lying on the z-axis unaltered
and the initial upright ellipse becomes tilted to the right at the second location.

1 L
0 1

‘gg ] . (68)

Thus the beam spreads out in space but not in angle. Estimates of maximum horizontal extent and
divergence may be made by projecting the ellipse on the appropriate axis.

If, on the other hand, the beam were to encounter a (thin) lens of focal length f, coordinates after lens
action would be related to those before lens action by the matrix for a thin lens

1 11 0 To
Ll e g
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The phase-space ellipse would be transformed as shown in the following diagram.

\ \ \ \ \ \ \ \
9 )
1.0 - - 10
0.5 - - 05
X >
0.0 X 0.0
~0.5 | e
-10 - - —104
T T T T T T T T
-5 -10 -05 00 05 10 15 -5 -10 -05 00 05 10 15

Fig. 18. The effect of a thin lens on phase-space ellipse.

In this case, the z-coordinate is unchanged but the divergence of each particle is affected. In particular,
note that the points (£,44,0) transform to the points (X400, FTmaz/f) and that the points (0, £6,,44)
are unaltered. Consequently, the ellipse that enclosed the beam before lens action becomes elongated along
the f-axis after lens action. The horizontal size of the beam has not changed but its divergence has.

In general, particles traverse both drift spaces and focusing and deflecting devices. Their cumulative effect
on the phase-space ellipse is not obvious. However, there is one particle whose coordinates are unchanged
regardless of the transport system. That particle is the central particle; its coordinates are (and were)
(2,6) = (0,0).

It has been shown that any transport system can, with the principal plane approach, be reduced to a
system composed of two drift lengths and one lens.
complex system. Further, if a method can be devised to carry the ellipse through the transport system, we
could immediately obtain the important beam parameters (horizontal beam size and divergence) at any
point in the system by simply projecting the ellipse on the coordinate axes.

Consequently, there is no need to study a more

The above discussion has been limited to a two-dimensional beam that is, a beam which only had a

horizontal size and divergence. Clearly, if we wanted to include momentum spread, for example, each
particle would be described by the three coordinates & = (z,6, ). Rather than drawing an ellipse around
the resulting three-dimensional plot, it would be necessary to draw a solid figure—an ellipsoid. We could
still determine maximum beam size and divergence by projecting the ellipsoid onto the z-6 plane. Similarly,
inclusion of vertical size and divergence as particle coordinates requires that we now go to a five-dimensional
ellipsoid. By projecting this ellipsoid onto the appropriate planes, all important beam properties may be
attained. Thus it should be clear that the methods indicated above are not restricted to the two-dimensional

case.
7.2 Transformation properties of the ellipse

In the section above, an ellipse was (somewhat arbitrarily) introduced as a representation of the actual
beam profile. In this section the reason for its introduction will be given.

Let the coordinate vector and its transpose be xg and :cg respectively, and let 00_1 be the inverse of oy,
a real, positive-definite symmetric matrix. In Appendix A, section 6, it is shown that an equation of the
form

(70)

T _
Ty ogxo =1

leads to the equation of an ellipse. Now let the particle with the coordinate vector xg be transported
through a system that has a transfer matrix R. Equation (70) can be rewritten as follows (recalling that
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RR'=1)
zj [RT(RT) oy '[RT' Rlwg = 1,

or,

[Rxo]T [Rog RT|7'[Rxo] = 1.
But the coordinate vector at the end of the system is 1 = R x¢ so that we have
e Toy oy =1 (71)

here
WHEEE g1 — RO’O RT . (72)

Thus, if equation (70) represents the beam at the start of the system, equation (72) will represent the beam
at the end of a system that has a transfer matrix R. As was shown above, all of the important parameters
can be obtained from knowledge of the phase space ellipse.

7.3 Ellipse transformation in two dimensions

To simplify things we consider only the two-dimensional (z, ) phase space. We then have

zT = [20] and x = [;]

Suppose we draw an ellipse about this phase space such that the ellipse has its semi-major axis along the
z-axis. The lengths of the semi-major and semi-minor axes are xy and 6y respectively. Now define the

matrix og b -
0by o (0)  02(0) ] _ [ 70 ] (73)
on(0)  o2(0) | | 0 6|

Notice that og has been defined as a symmetric matrix—that is, 012(0) = 091(0). Then the inverse of oy,

-1 .
oy, is _
-1 i 022(0) —0'21(0) - 1 0(2) 0
U2 o) on) | 2|0 (74)

gg —

€2

where €2 = det o9 = 011(0)022(0) — 012(0)021(0) = 2262 is the determinant of the matrix og. Then the

equation of the ellipse
(I}g oo g = 1

becomes
0) —091(0) x
2 = [z 0 o22( 2
¢ [T ] *021(0) 011(0) 9
= 022(0).’E2+0'11(0)92
= 022* + 220?
= z365 . (75)

This equation shows the relationship between the elements of the matrix o and the physical parameters
zo and 6y. The maximum values of these parameters are the square roots of the diagonal elements of the
matrix provided that the ellipse has its semi-major axis along one of the coordinate axes.

The diagrams of §6.1 indicate that the phase-space ellipse will rotate as a beam traverses a transport
system. In this general case that is, if the initial ellipse is not erect we have
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(76)

to the following.

Oy = [022(17”22)]1/2

Slope| of 0A = (1/r)[c,,/o,]"?

Slope|of OB = rwz[oﬂ/UH]W

Fig. 19. Parameters of a general two-dimensional ellipse.
The area of the ellipse, A, is given by
A=7mVdeto = 1Tmazlint = TTintOmaz (77)

where the different terms are defined in the figure. The correlation between = and § the orientation of
the ellipse—depends on the off-diagonal term 9. This correlation, defined as

91 = L s (78)
VO114/022

measures the tilt of the ellipse and the intersection of the ellipse with the coordinate axes. Note that

~1<r< +1. (79)

Consider the special case of 197 = 0. If 791 = 0, then 091 = 012 = 0 and the ellipse is erect. In beam
transport this situation is called a waist. Physically, if a beam is at a waist, we have the smallest beam
size attainable for a given divergence.

Suppose that a beam described initially by equation (73) is transported through a system that has a
transfer matrix R. Equation (72) allows us to determine the matrix o at the exit of the system. Thus

| oon(1) on(l) | | Ru Rys o11(0) 021(0) Ry Ry 30
1= o21(1) o2(1) | | Ra Ry 021(0) 092(0) Rys Ry |~ (80)

This leads to the following values for the matrix elements of 7.

011(1) = R%UH(O) + 2R11R21021(0) + R%QO’QQ(O) ,
o12(1) = 021(1) = R11R21011(0) + [R11 Ra2 + R12R21]021(0) + R12R22022(0) , (81)
022(1) = R%lﬂll(O) + 2R91 Ros091 (0) + R%QUQQ(O) .

In the special case of an initially upright ellipse o1 reduces to
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- R%1011(0) + R%QUQQ(O) R11R21011(0) + Ri9Ro9099 (0)
g1 = (82)

R11R21011(0) + R19R99092(0) R%,011(0) + R3,022(0)
Consider now some specific cases.

Suppose we start with an initially upright ellipse that is, we start from a waist. Now let the beam drift
a distance L. Insertion of the matrix elements for a drift region into equation (82) produces

. 011(1) 0'21(1) . 011(0) + L20'22(0) LO’QQ(O)
71 = [ 021(1) 0'22(1) ] - [ LO’QQ(O) 0'22(0) ] ’ (83)

Equation (83) then gives the following meanings for the matrix elements of o.

0'11(1) = 011(0) + L20'22(0)
" (#D)maz = (%5 )maz + L*(65 Jmaz » (84)
and
0'22(1) - 0'22(0)
" (9% Jmaz = (93 Jmaz - (85)

Remember that the initial phase space was assumed to be erect for this transformation. But z2 is the
square of the initial beam extent and L267 is that of a particle that started from z = 0 with maximum
divergence. Thus equation (84) indicates that \/o11(1) can be regarded as the root mean square of the
maximum displacement of the particle. Equation (85) indicates that the divergence of the particle is
unchanged.

If the matrix elements for a thin lens is inserted into equation (82) we obtain

o11(0) _on®)
oo — o11(2) 021(2) _ " f (86)
2 021(2) 022(2) _011(0) 01}20) + o (0) .
from which it follows that
0'11(2) - 0'11(0)
(23 )maz = (20 )maz » (87)
and
022(2) = Ul}go) + 022(0)
or 1
(9% )max = F(T% )max + (9(2) )maz . (88)

Equation (87) shows that the maximum displacement of a particle does not change in a thin lens. From
equation (88) we see that /092(2) may be interpreted as the root mean square maximum divergence
obtained from the maximum initial divergence and the maximum change in divergence caused by the lens.
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7.4 A discussion of the waist—the upright ellipse

As was noted earlier, The special case of 019 = 097 = 0 is termed a waist. We should correctly understand
its meaning. For an existing beam a waist is the location of a minimum of beam size in a given region of
the system. Although the waist is the minimum beam size in any given beam line, the minimum beam size
attainable at a fized target position (by varying the focal length of the upstream lens system) is not the
same as the waist defined above. The figure below, taken from 1), illustrates this point.

- Beam with quadrupole adjusted to form waist at target

—— Beam with quadrupole strength increased to form waist
at W and smallest possible spot at the target

[0 (waist)]™" = [a (min)]" + [o(lens)]™

[aﬂ(\ens)]w/z

[0, (min. size)]V?

Quadrupole

Fig. 20. The relationship between a waist and the smallest spot size at a target.

In a field-free region (a drift) the distance to a waist may be calculated if the sigma matrix is known at
the location. Thus, if og is the sigma matrix at the lens’ exit and o7 is that at the position of the waist,
equation (81) gives (in the (z,6) plane)

091 (1) = 09 (0) =+ LO’QQ(O) (89)

and 091 (1) must be zero for there to be a waist at this position. Solving the above equation for L yields

__021(0) _ \/0'1](0)
b= 0200 ' Vom(0) (50)
Similarly, we obtain in the (y, ¢) plane
_ og(0) 033(0)
L= = " a0 (o)

It should also be noted that, in general, a waist and a point-to-point image are not one in the same. In
the (z,0) plane the transfer matrix for point-to-point imaging has been shown to be

M O-I
= 1 1
A

= (92)

R(point-to-point) = [ Ry 0 ]

Ry R

1
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where | R| = Ri1Ro1 = 1 and M is the magnification. Again assuming an initially upright ellipse, the
sigma matrix at the focal point is, from equation (81),

R},011(0) R11R21011(0)

o1 = R]]RQ]O’]] (0) R%lan (0) + R%QUQQ (0)

(93)

Clearly, except for a very small source size, an image and a waist will occur only if Ryy = Ro; = 0. In
order to have two matrix elements zero it is necessary to have (at least) two elements to vary. Given that
we are at a focus, equation (90) gives the distance to a waist as

Coa(0) Ri1R21011(0) _ (94)

I — _
722(0) R3,011(0) + R3,022(0)

If R11Re; = 0, a waist and a point-to-point image coincide. If R11Ro; < 0, a waist follows the image.
8. Some ‘building blocks’ of transport systems

In the preceding sections various combinations of beam-transport elements have been discussed. It is
true that they can be considered as ‘building blocks’ of a beam-transport line. We have, for example,
considered quadrupole doublets and triplets operating in a focus-to-focus mode and a simple arrangement
for the production of an achromatic beam. In this section a more general treatment of some of the standard
building blocks used in developing a transport beamline will be considered. Specifically, some properties
of symmetric systems will be investigated. Usually the discussions will deal with quadrupole systems only;
however, in some cases quadrupole-dipole systems will be treated.

8.1 Translationally symmetric systems

For purposes of illustration, consider a quadrupole doublet positioned a distance L; downstream of a point
A and a distance Lo upstream of a point B. The transfer matrix for this particular configuration may be
found using techniques that have been discussed earlier; let that transfer matrix be written as R where

Ry Ris
R =
l Ryt Ro ]

We now ask the question “What happens if another, identical doublet configuration is installed between
the points B and C?” as is indicated in the figure below.

Qw Qz Qw Qz
Fig. 21. A translationally-symmetric quadrupole system.

The transfer matrix for the complete system from A to C is found from
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Ry Ris Ry Ris
R(A—C) = R? =
( ) l Roy Ro ] l Ry Roo ]
_ Ri1(R11 + Ryg) — 1 Ri9(R11 + Rao) (95)
Ry1(R11 + Raa) Ro(Ri1 + Rag) — 1

Two special situations become immediately apparent when we look at this overall transfer matrix.

If the original (doublet system)98) between A and B is designed such that Rj; = — Rg9, then the overall
transfer matrix becomes

R — [ —01 f’l ] [Ri1 = —Ras] . (96)

In this case the transfer matrix between A and C' is —I— the negative unity matrix. Beam conditions
at C are exact inversions of those at A. Such a system is called a unit section. Notice that although a
quadrupole doublet structure was used any system designed such that Ry; = — Rgs could have been used.

The second special case occurs if the original system is designed such that Ri9 = Ro; = 0 at the location
B. In this case the overall transfer matrix becomes

, R?, 0
R’ = 0 1 [Ri2 = Ry = 0] . (97)
R}

Thus if | Ry;| > 1 at the midpoint of the section we obtain a magnified image at the point C' but with
the divergence there reduced, relative to that at A, by a factor equal to the magnification. This type of
system is called telescopic (the first case discussed is also telescopic). Conversely, if Ry; at B is less than
unity, we obtain an image reduced in size but having a greater divergence.

A point in terminology: In the previous sections we often have talked about objects and images with the
meaning that Rj9 = 0. In the jargon of the trade, this is called point-to-point imaging. The terminology
is obvious: under that condition one point on the object is reproduced at one point on the image. In both
cases discussed here we had Rs; = 0. This type of focusing is called parallel-to-parallel imaging. In this
case the divergences of particles at the image depend only on those at the object, regardless of the point
on the object where they the particles originated. We also have parallel-to-point optics. In this case we
have Ry; = 0. Rays originating from the object with a given divergence are focused at one point on the
object. That position is independent of the initial position at the object. The final imaging condition is
called point-to-parallel. Here we have Ros = 0. Consequently, the divergence at the image depends only on
the position at the object and is independent of the initial divergence of the particle.

FEzercise:

A quadrupole pair, the first focusing horizontally and the second vertically, have a center-to-center sep-
aration s. The doublet is located midway between points A and B. Another identical doublet is placed
between B and C. Thus the distances AB and BC are equal.

a) Using the thin-lens approximation determine the focal lengths of the quadrupoles that are required to
produce a unit section between A and C.

b) Two targets are separated by 17.7 m. Use the results of part a) to determine what pole-tip fields are
required to transport a 500 MeV proton beam from one target to the other. Assume each quadrupole has
an effective length of 0.5 m and the doublets are separated by 0.4 m.
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c¢) The distance between targets 1AT1 and 1AT2 on beamline 1A at TRIUMF is 17.7 m. Five quadrupoles,
1AQ9-13, are located in this region. If quadrupole 1AQ9 is turned off, quadrupoles 1AQ10-11 and 1AQ12-
13 can be treated as doublets. Do the results of b) bear any resemblance to the actual settings used for
1AQ10-137

d) repeat the procedure of part a) for the requirement that Rjs = Ro; = 0 at the point B.
8.2 Mirror-symmetric systems

Rather than put two identical systems together in the same order, we could make the second system the
mirror image of the first. In this case we would have a combined system shown in the next figure.

Qw Qz Q2 Qw
Fig. 22. A mirror-symmetric quadrupole configuration.

The transfer matrix from A to B for this system is
1 Ly 1 0 1 s 10 1 I
0 1 +F 1 0 1 -1 0 1

_ 1—.’E1+L2F+7 S+L](1—$1)+L2(1+$2+L1F+7)
Ft— 1+mzo+ L1 F

R(A—B)

.’I,'Q(l — .’I,'l) — T

1
where F; = 7 z; = 8|F|,and F*~ =
s

In the above it has been assumed that the first quadrupole focuses horizontally and that the second focuses
vertically. Now consider the transfer matrix that would result if the system were traversed from B to A.

We have
B 1 Iy 1 0 1 s 1 0 1 Ly
R(B=4) = [0 1| ] -A 1“01 R 1 [0 |
l+ay+ L1 F T s+ Lo(1 —ma) + L1 (1 — 21 + Lo F~ )
- - ) (99)
F + 1-— I + LQF +
But F~+ = F*~ [Ezercise: Prove this.] and
S + Lg(l — .’I,‘Q) + L1(1 —x1 + L2F7+) = s+ L1(1 — .’131) + Lg(l + 29 + L1F+7) ,
so that if we rewrite equation (98) as
Ry1 Ry
R(A-B) —= , 100
o =] e (100)
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then equation (99) becomes

(101)

R(B—A) =+ l Fpp Bz ]

Ry Rn
Equations (100) and (101) recall to memory the relationship between a 2x2 matrix and its inverse:

1
R11 R12 _ R22 *R12
Ry Ro — Ry R ’

where the fact that | R| = 1 has been used. Although we might expect R(B—A) to be the inverse of
R(A—B), it is clear that this is not the case. The matrix obtained from traversing a system in reverse
differs from the inverse of the matrix obtained from traversing the system in the forward direction in that
the signs of the off-diagonal elements are reversed.

With a little thought, the reason for this becomes clear. Consider, for example, a system operating in a
focus-to-focus mode. The beam diverges from the object and converges to the image. However, traveling
in the reverse direction the beam diverges from the image and converges to the object. In other words,
when traveling in the reverse direction angles are reversed with respect to those found when traveling in
the forward direction. It can be shown that the transfer matrices for travel ind the forward and reverse
directions are related by

R(B—A) — l (1) Y ] [R(A—B)] l (1) Y ] . (102)

Remember, however, that this result [equation (102)] is valid only for a mirror-symmetric system!

We now realize that the trajectory for B to C' will be identical to that from B to A. Consequently,
R(B—C) = R(B—A) (103)
The overall transfer matrix for this system then becomes

R(A—-C) = R(B—C)R(A—DB)

= R(B—A)R(A—DB)
1 0 |1 0
= [ 0 1 ] [R(A—B)] [ 0 1 ] R(A—B) , (104)
for the case of a 2x2 matrix and
[ 1 0 0 ] [ 1 0 0 W
R(A-»C) = |0 -1 0|[RMA-=B)] 'l 0 -1 0| RA—>B) (105)
0 0 1 0 0 1

for the case of a 3x3 matrix.

Explicitly, for the case of a 2x2 matrix the overall transfer matrix M is given by

M

[ 2R11 Ry — 1 2R12Ro ] (106)

2R11 Ry 2R11 Ry — 1

and for the case of a 3x3 matrix by
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2R11Rop — 1 2R12Ro 2R192Ro3
M = 2R11Ro 2R11Ryy — 1 2R11Ro3 . (107)
0 0 1

There are two important things to notice about these two expressions. First, notice that My, = Mos.
This is a property of all mirror-symmetric systems. Second, notice that if Reg = 0 then M1 = Myy = 0.
The latter shows that in order to make a mirror-symmetric system doubly achromatic it is necessary that
the angular dispersion at the mid-plane (symmetry plane) be zero. If Rps cannot be made zero at the
mid-plane it may be concluded that double achromaticity is impossible.

Two other conditions of interest may be obtained from equations (106) and (107). Suppose we design the
system such that Ri; = Rgs = 0 at the mid-plane. In this case equation (106) becomes

-1 0
M = l 0 1 ] [Ri1 = Ryy = 0] . (108)

If the design is such that Rijs = Re; = 0 at the mid-plane, then the overall transfer matrix is

1 0
M = l 0 1 ] [Rig = Ro1 = 0] . (109)

Thus in both cases the total system is telescopic. Whether inversion occurs depends on which matrix
elements are made zero at the mid-plane.

FEzercise:

In §6 the conditions necessary for double-achromaticity in a simple system were obtained. Use the technique
developed above to verify the results obtained previously.

FEzercise:

Between target locations 4BT1 and 4BT2 on beamline 4B at TRIUMF the configuration sketched below will
be found.

4BT1 4BT2

Q Q, Q Q, o, Q
- <> > o

6

L L L L

2 3 3 2

Fig. 23. Configuration between 4BT1 and 4BT2 on beamline 4B.

The purpose of this array will be discussed later. Quadrupoles Q1 and Q2 focus horizontally and are equally
powered. A similar condition holds for quadrupoles @3 and @4 (but their fields are not equal to those of
@1 and ()2). Quadrupoles )2 and @5 focus in the vertical plane and, again, their fields are identical.

Clearly, this system is a mirror-symmetric beam-transport section. Its design is such that the transfer
matrix in the horizontal plane is the unit matrix I while that in the vertical plane is the negative unit
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matrix —I. Given that the effective length of all quadrupoles is 0.4090 m, L; = 2.4096 m, Ly = 0.3048 m,
L3 = 0.6348 m, and L4 = 0.5750 m, use the technique discussed in this section together with the thin-lens
approximation to determine the quadrupole fields necessary to produce this condition. Assume a beam
energy of 500 MeV.

Design values for the quadrupole fields are B(Q1) = B(Qg) = 5.127 kG, B(Q2) = B(Q5) = —7.005 kG,
and B(Q1) = B(Qs) = 8.000 kG.

9. Waist-to-waist transport

In §7.3 the transformation properties of the phase-space ellipse were discussed. In particular, it was shown
in equation (82) that if an initial phase-space ellipse was erect and described by the matrix g, then oq is
transformed by a system with the transfer matrix R into the ellipse o1 given by

o — R2,011(0) + R2,095(0) R11R21011(0) + R12R22022(0) (110)
R11R21011(0) + R12R22022(0) R%lau(O) + R%QUQQ(O) '

In order that there be a waist at position 1 it is necessary that o91(1) = 0. This implies that
RllRQlUll(O) + R12R22022(0) = 0. (111)

From this equation three important special cases can arise.

First, if the transport system is a unit section or any system for which the matrix R has the form

M 0 ]
R = [ 1 , (112)
L0 )
we will have a waist at position 1 because o7 will have the form
e )
g1 = 1 ago - (113)
L0 7]
The beam size at position 1 is then
011(1) = M 011(0) . (114)

The second case arises if neither Ri9 nor Rop is zero but the system is designed such that

Ri11R21011(0) = —Ri2R92092(0)
that is,
on©) _ _ Ru Ba (115)
011(0) Rys Ris

In this case the beam size at location 1 is

\Vou(l) = \/g:;-\/ou(()). (116)

The third special case is that in which R1; = Rgy. Then equation (111) reduces to

022(0) == —?12'0'11(0). (117)
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But

01](0)0’22(0) = detO'() = |0'0|
so that
oo Ry
= — —.011(0) ,
011(0) Ris u(0)
or
R
ou(0) = 4/~ 5 lool. (118)
21

From equation (118) it follows immediately that
0'1](1) = U]](O) y (119)

that is, the waist at location 1 is identical to that at position 0.
9.1 Waist-to-waist transport in one plane

Consider the simple transport system shown below.

f f f f f

AA A
VY

2L 2L 2L 2L

Fig. 24. A one-dimensional line of focusing lenses.

This system consists of a series of (focusing) lenses of focal length f that are spaces a distance 2L units
apart. We wish to calculate the required value of f such that a waist is produced at the principal plane of
each lens and all waists are of the same minimum size.

Because of the repetitive nature of this system it is convenient to think of it as composed of a series of
subsystems. Each subsystem comprises two lenses, each of focal length 2f, that are separated by a distance
of 2L. One such subsystem is pictured below.

2f 21

2L

Fig. 25. A subsystem of the one-dimensional line of focusing lenses.
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The transfer matrix of this subsystem is

1-— 2L
1 071, o 10 7
R = 1 . [0 | ] 1 ) = . (120)
2f 2f L
From equations (118) and (119) it follows that

0'11(1) = 0'11 ”2—22 0‘ = ” 4Lf 0| (121)

Squaring this equation and substituting | oo | = 011(0)022(0) yields

0'11(0) . 4Lf2

0'22(0) 2f—L )

To obtain the minimum value for o11(0) we differentiate this expression with respect to f and set it equal
to zero. Thus we have Av 8L f

a oot

which requires f = L. Substitution of this result into the expression for ¥ leads to
1 0'11(0)

F=L= 9\ om0

(122)

Equation (122) expresses the values of f and L in terms of the parameters at the first waist.

This result is quoted in ref!) as an example of waist-to-waist transport in one plane. In the following
section we will examine a more useful configuration.

9.2 Waist-to-waist transport in two planes — the FODO array

The example of §9.1 is interesting from an academic point of view, but it is not practical for beamline
transport problems. We know that a quadrupole focuses in one direction and defocuses in the authorial
plane. A logical extension of the one-dimensional array is sketched below.

—f

Pl
I =
I <[> -
A =L
I <[> -
=

L L L L L
Fig. 26. A two-dimensional FODO array.

In this arrangement the focal lengths of all quadrupoles are equal in magnitude but they are arranged so
that their focusing planes alternate in sign. The center-to-center separation of the quadrupoles is L. This
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structure is termed a FOD( array because, for example, if the first quadrupole is focusing (F) it is followed
by a drift space (0)—that is, no focusing. The next quadrupole is defocusing (D) and it too is followed by
a drift space (0). The configuration repeats again.

a FODO array is used to transport a beam over long distances while keeping the beam within the available
apertures. We design the system such that there is a of the same size at the principal planes of the coursing
quadrupoles. This size is adjusted so as to be within the allowable apertures of the quadrupoles and the
beam tube.

As with the one-dimensional array it is convenient to consider the FODQ array to be formed from subsystems.
One such subsystem is illustrated below.

2f

N
VAR Y

21

B B
Fig. 27. A subsystem of a two-dimensional FODO array.

The transfer matrix of this subsystem is give by

- 0 . I 1 1 0 1 L 1 0
Ryyu(cell) = % 1} [0 1]{% }{% 1} lO 1]{% 1}
- L2 ’
B L(“ ” [ @;LJF?? . (123)
sl )L ]

where the center lens (2) has been replaced by two half-lenses. For reference, the transfer matrix at the
midpoint of the center lens is

2f — L
1 0 1 0 L
SRl EO | U B A B
4f2 2f

We have seen above that given an initial waist at the center of the first lens, a waist will exist at the center
of the third lens provided that

_ Ruy(cell)
i Ry (cell)

(125)

-1 5]

HVH

To minimize the waist size we again differentiate ¥y y with respect to f, set the result equal to zero, and
solve for f in terms of the element separations L. Thus we find




File No. TRI-DNA-83-9 Page 45 of 10

d\IIHVH o 2 L+2f 8f(L+3f) _ 8f 2 _ —
df = -8 (L_Qf)Q_ L—2f - (L_2f)2[L +2f(L Qf)] =0,
from which we obtain I
2(17\/5)
fuove = 0 . (126)
§(1+\/5)

Because we have taken both f and L to be positive, and discarding the trivial solution of fyvy = 0, we
finally have

Lo _4 (127)
fHVH B 1+\/g

It is readily shown that there is a waist at the center of the second lens for we have

012(2) = R]](Hlid)RQ](Hlid)O’]](l)+R]2(Hlid)R22(Hlid)O'2'2(1)
_ {R“ (mid) Ry (mid) — Rlz(mid)Rgz(mid)%} o11(1)
_ _iZf—l_ 2f+1L(L—2f) f -
- | 72 e T ap L(L+2f)} n()
= [0oun (1) . (128)

Thus 012(2) = 0, meaning that there is also a waist at the center of the (defocusing) lens 2.

It is instructive to compare the sizez of the waists at the centers of the focusing and defocusing lenses. We
have

012(2) = R? (mid)oy; (1) + R2,(mid

SN—
R
N
N
~ T
=
=

— [R%] (mid) — R%Q(mid)m} o (1)
(L—2f)? _LQL(L—2f)

452 4f3  L(L+2f)
L—2f

- o, (129)

or
011(1) _ _L + 2f
011(2) L - 2f '

(130)

Substituting the result from equation (127) above we have
on(l) 3+ V5
o11(2) 15

and the ratio of the beam sizes at the two locations is

’I‘(l) N ()’11(1)

LU(2) - 0']1(2)

= 4.236 , (131)

2.058 . (132)
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Ezercise: Consider now the vertical plane of a FODO array. Show that the transfer matrix for a cell is

2f%2 — L? L
S gD
RVHV(CeH) = L b '2f2 _ L2 s (133)
_4—f3(2f + L) BETE

where the center lens (2) has been replaced by two half-lenses, and that the the transfer matrix at the
midpoint of the center lens is

o2f + L I
Ry (mid) = 2 21 | - (134)
42 2f
Hence show that oon(l) B Rya(cell) T [L — Qf}
VIV o9a(1) T Rggp(cell) L+2f]"

from which we see that the conditions on the initial phase-space ellipse for waist-to-waist transport in the
vertical plane differ from those in the horizontal plane. Proceed as before to show that

d‘I’VHV 2 L*Qf 8f(L73f) 8f 2
= 8 R = ——— 1" - 2f(L+2f)].
af A S TR Y Tt ol — 22
Equate this to zero and show that the relationship between fyyy and L are
L
Z(\/g —1)
fvav = 0 . (135)
L
-5+ V5)

Comparison of equations (125) and (134) shows that if the system is designed to mimimize the beam size
in the horizontal plane, that in the vertical plane is not simultaneously minimized. However, the ratio of
the extrema of the vertical and horizontal ellipses is given by

VHV/Z;EB - [4.1"2(L2f)H ARV R

L+2f —4f%(L + 2f) L+2f
Using the value given in equation (126) for fuyu we find

Yypv _ 1—\/5
3+5

\IIVHV _ (711(1)
‘I/HVH (722(1)

r . (136)

2
] = 0.05573 . (137)

\IJHVH




