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t A 
ourse in beam opti
s1. Introdu
tionIn order that personnel involved with beam produ
tion at TRIUMF be able to be fully aware of what ishappening, it is ne
essary that they have some knowledge of beam transport theory. Toward this end aseries of dis
ussions were held in early 1983 with senior operators. In these dis
ussions the basi
s of beamtransport were outlined. This report is a summary of the information given in those sessions.The author makes no pretense that the 
ontents of this note are original. In fa
t, mu
h of what is 
ontainedhere follows the treatment of the subje
t by Brown 1). Other material has been taken from the books ofBanford 2), Ste�en 3), Septier 4), Carey 5), Wollnik 6) and others listed in the referen
es.Treatment of the subje
t of beam transport in this report is done in the matrix formalism. For readerswho are not familiar with matri
es the information 
ontained in appendix A will be of use. Those familiarwith matri
es may pro
eed dire
tly to the next se
tion.2. The thin lens in matrix notationIn the study of geometri
al opti
s one be
omes familiar with diagrams that show image formation by thinlenses. The diagram below is one su
h diagram for a single fo
using lens.

Fig. 1. A 
onventional ray diagram for fo
using by a thin lens.By de�nition, a lens is `thin' if it a
ts only to 
hange the slope of an in
oming ray. It is assumed that the`height' of the ray immediately before lens a
tion and that immediately after lens a
tion are equal. Thisassumption is equivalent to ignoring displa
ement of the ray be
ause of refra
tion at the entry and exitsurfa
es. All rays initially parallel to the axis of the lens are bent su
h that they all interse
t the axis ata fo
al point. There are two fo
al points: one to the right of the lens that 
orresponds to rays 
omingfrom an in�nite distan
e to its left, and one to the left of the lens that 
orresponds to rays 
oming from anin�nite distan
e to its right. The distan
e from the lens' 
enter to the fo
al point is 
alled the fo
al lengthand is denoted by f . If an obje
t is lo
ated a distan
e p to the left of a lens of fo
al length f , then theobje
t position is lo
ated from the well-known thin lens equation1p + 1q = 1f .By 
onvention, p is 
onsidered positive if the obje
t lies to the left of the lens and q is positive if the image
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al length f is positive if the lens is fo
using.For a matrix treatment of the problem we pro
eed as follows. Let (x0; �0) be the 
oordinates of a ray atthe obje
t a distan
e p upstream of a lens of fo
al length f and (x1; �1 = �0) be those at the lens beforelens a
tion. Following lens a
tion its 
oordinates are (x2; �2). A distan
e q downstream of the lens the
oordinates of the ray are (x3; �3 = �2). We wish to �nd the relationship between (x3; �3) and (x0; �0) and,in parti
ular, that relation at a fo
us. The situation is illustrated below, noting that by 
onvention, anglesare 
onsidered positive when measured 
ounter
lo
kwise from the axis of the lens.

Fig. 2. De�nition of 
oordinates used for a matrix treatment.2.1 The small angle approximationIn what follows we shall be using the small angle or paraxial ray approximation. Trigonometri
 andhyperboli
 fun
tions may be expanded in a power series of their arguments. The trigonometri
 expansionsare sinx = x� x33! + x55! � x77! + � � � 
os x = 1� x22! + x44! � x66! + � � �tan x = x+ x33 + 2x515 + 17x7315 + � � �and, for future referen
e, the hyperboli
 expansions aresinhx = ex � e�x2 = x+ x33! + x55! + x77! + � � � 
oshx = ex + e�x2 = 1+ x22! + x44! + x66! + � � �tanhx = ex � e�xex + e�x = x� x33 + 2x515 � 17x7315 + � � �where the angle x is expressed in radians.The small angle approximation 
onsists of repla
ing the fun
tion with the �rst term of these expansions.Thus, for example, we setsinx = x 
os x = 1 tan x = xwhere, again, the angle x is expressed in radians.To show that these approximations are not frivolous, 
onsider the evaluation of the trigonometri
 fun
tionsfor x = 0:20 radian = 11:459Æ. We �ndxsinx = 1:006698 1
os x = 1:020339 xtan x = 0:986631 ,that is, the approximation for an angle as large as 11.5Æ is good to 2% or better. For x = 0:005 r = 5 mr|a
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al divergen
e in a beam line|we �nd agreement to better than 0.001%;xsinx = 1:00000417 1
osx = 1:00001250 xtanx = 0:99999167 .2.2 The transfer matrix for a thin lensConsider now the transformation from the point (x1; �1) to (x2; �2) in �gure 2. By the de�nition of a thinlens, the height of the ray does not 
hange during the a
tion of the lens. Thereforex2 = x1 (1)Also, for small �0, �1, and �2 we havetan �0 = tan �1 � �1 = x1=ptan �2 � �2 = � x2=q ,so that �2 = � x2q = �x2 � 1f � 1p� = �x1 � 1f �+ x1p (2)be
ause x2 = x1. Thus �2 = � x1f + �1 .In matrix notation, equations 1 and 2 take the form264 x2�2 375 = 2664 1 0� 1f 1 3775264 x1�1 375 (3)that we write as x2 = R�x2The matrix R = 2664 1 0� 1f 1 3775 (4)is 
alled the transfer matrix of the lens and relates the 
oordinates (x2; �2) immediately to the right of thelens|after lens a
tion|to those immediately to the left of the lens|before lens a
tion.2.3 The transfer matrix for a drift spa
eNow 
onsider a region in whi
h there exists neither lenses nor ele
tri
 or magneti
 �elds. Su
h a region isshown in �gure 3 on the next page.In su
h a region a parti
le will travel in a straight line. If a parti
le has 
oordinates (x0; �0) at the pointA and 
oordinates (x1; �2) at the point B a distan
e L downstream of A, then we may �nd the 
oordinatesat B from those at A as follows.Clearly, the angle of the ray does not 
hange between the two points. Therefore�1 = �0 ,and, from the geometry of the situation, we have
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Fig. 3. Ray traje
tory in a drift spa
e.x1 = x0 + L tan �1= x0 + L tan �0= x0 + Lj;�0where we have again used the small angle approximation. We again rewrite these equations in matrix formto obtain 264 x1�1 375 = 264 1 L0 1 375264 x0�0 375 (5)Thus the transfer matrix for a drift spa
e is R = 264 1 L0 1 375 (6)2.4 Image formation by a thin lens { Matrix-wiseLet us return to �gure 2 in whi
h an obje
t is pla
ed a distan
e p upstream of a lens of fo
al length f .We wish to �nd the distan
e q downstream of the lens where the image is lo
ated. Thus we require therelationship between (x3; �3) and (x0; �0) and, in parti
ular, that relation at a fo
us. We tra
e ba
k fromthe image point as follows.264 x3�3 375 = 264 Driftlengthq 375264 x2�2 375= 264 Driftlengthq 375264 Lensa
tion 375264 x1�1 375= 264 Driftlengthq 375264 Lensa
tion 375264 Driftlengthp 375264 x0�0 375= 264 1 q0 1 37524 1 0� 1f 1 35264 1 p0 1 375264 x0�0 375 (7)



File No. TRI-DNA-83-9 Page 5 of 10where the appropriate matri
es have been inserted into equation 7. Doing the matrix multipli
ation yields264 x3�3 375 = 264 1 q0 1 3752664 1 p� 1f 1� pf 3775264 x0�0 375= 266664 1� qf q + p�1� qf �� 1f 1� pf 377775264 x0�0 375 (8)or 264 x3�3 375 = R264 x0�0 375 (9)where R is the overall transfer matrix from the obje
t to the image.Now we ask \What does a fo
us mean?" At a fo
us all rays emanating from any one point on the obje
tare refo
used to the 
orresponding point of the image. That is, the �nal position must be independent ofthe initial divergen
e. This requires that the R12 matrix element be zero. Thusq + p�1� qf � = 0whi
h 
an be rewritten as 1p + 1q = 1f , (10)that is, the (standard) thin lens formula. Using this relationship, the matrix transformation between theobje
t and the image be
omes 264 x3�3 375 = 266664 �qp 0� 1f 1� pq 377775264 x0�0 375 .This shows that at a fo
us x3x0 = �qpwhi
h is the well-known magni�
ation from geometri
al opti
s. It follows that in a fo
us-to-fo
us situationthe magni�
ation is given by the R11 matrix element.3. Thi
k lenses and prin
ipal planesThe above has been based on the assumption that the lens was thin|that is, its thi
kness 
ould be negle
tedand refra
tion at its entry and exit surfa
es 
ould be negle
ted. If this is not the 
ase then the pres
riptionused above 
annot be used.It is not the purpose of this note to give a detailed a

ount of geometri
 opti
s, but we will give an overviewof the treatment of thi
k lenses in what follows and then show its appli
ation to beam opti
s.



Page 6 of 10 File No. TRI-DNA-83-9The upper portion of �gure 4 shows the treatment of a thi
k lens when ea
h surfa
e is treated independently.

Fig. 4. Ray tra
ing for a thi
k lens: ea
h surfa
e treated independently (top) and the prin
ipal planemethod (bottom).The entry fa
e of the lens has a radius of 
urvature of R1 and that of the exit fa
e is R2. Both R1 and R2are taken as positive if their respe
tive fa
es are 
onvex to in
ident light. Thus, R1 is positive and R2 isnegative in �gure 4.Re
all that the fo
al lengths of the two surfa
es are determined by their radii of 
urvature. If n is theindex of refra
tion of the lens relative to that of the surrounding medium, the the fo
al lengths of the entrysurfa
e f1 and that of the exit surfa
e f2 are given byf1 = R1n� 1 and f2 = R21� n .In �gure 4, the upper dashed line is a ray that leaves an obje
t a distan
e L1 from the entran
e surfa
eand passes through the 
enter of 
urvature of that surfa
e. Be
ause it enters the lens normal to its surfa
e
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ted. If the lens extended to the right this ray would tra
e the traje
tory shown. Thelower solid ray is one that passes through f1 and, 
onsequently, is refra
ted to be parallel to the lens' axis.Again, if the lens path. At the interse
tion of these two rays an image would be formed at the point labeledI0. This image a
ts as the obje
t for the exit fa
e of the lens.The upper solid ray of �gure 4 leaves the obje
t and passes through the 
enter of 
urvature of the exitfa
e of the lens (as drawn, this 
orresponds to the point of interse
tion of the entran
e fa
e and the lens'axis). Again, this ray is normal to the exit fa
e and is not refra
ted there; it 
ontinues as shown. However,as far as the exit fa
e is 
on
erned, the ray that passed through the fo
al point f1 is now parallel to theaxis. Consequently, this ray is refra
ted to pass through the downstream fo
al point f2|as indi
ated bythe solid line. At the point of interse
tion of these two rays the �nal image is formed at the point I, adistan
e L2 downstream of the exit fa
e. In general, we �nd that1L1 + 1L2 6= 1fwhere f is neither f1 nor f2.The lower portion of �gure 4 shows how we would like to treat this problem. Our wish is to �nd two planes,the prin
ipal planes, P1 and P2 and an equivalent fo
al length f su
h that if we measure with respe
t tothe prin
ipal planes we 
an treat the problem using the thin-lens formula. As indi
ated in �gure 4, supposethat P1 is lo
ated a distan
e z1 from the entran
e fa
e and P2 is lo
ated a distan
e z2 from the exit fa
eof the lens. We take z1 to be positive if it lies to the right of the entran
e fa
e and z2 to be positive if itlies to the left of the exit fa
e. We �nd that the se
ond prin
ipal plane is positioned at the interse
tion ofthe in
oming and outgoing ray su
h that the outgoing ray interse
ts the lens' axis at the downstream fo
alpoint. Similarly, an in
ident ray through the upstream fo
al point interse
ts the �rst prin
ipal plane andexits parallel to the axis of the lens. We want to �nd the quantities z1, z2 and f su
h that if we writep = L1 + z1 and q = L2 + z2 ,we 
an also write 1p + 1q = 1f .We must now develop a pres
ription by whi
h these parameters may be determined. Let the matrix R bethe transformation from immediately outside the entran
e fa
e of the lens to immediately outside its exitfa
e. We wish to repla
e this matrix with two drift lengths and a thin lens|that is, we wish to write" R11 R12R21 R22 # = " 1 z20 1 # " 1 0�(1=f) 1 # " 1 z10 1 # (11)Doing the matrix multipli
ation and equating individual matrix elements yieldsz1 = R22 � 1R21 z2 = R11 � 1R21 (12)and 1f = �R21 (13)In the above the matrix R was arbitrary. Consequently, if we know the transfer matrix for a system,equations (12) and (13) give a method for �nding the prin
ipal planes and equivalent thin lens with whi
hthat system may be repla
ed.Rather than expli
itly indi
ate the prin
ipal plane formalism for a thi
k lens, an example of its use for a
ombination of two thin lenses will be given.
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t is pla
ed 30 units to the left of a lens of fo
al length +15 units. A se
ond lens of fo
al length 20units is pla
ed 10 units beyond the �rst. Determine the position and magni�
ation of the �nal image.This problem will be solved with the three methods given so far|that is,a) the thin lens equations,b) the matrix method,
) the prin
ipal plane te
hnique.In what follows the subs
ripts `1' and `2' refer to properties asso
iated with the �rst and se
ond lensesrespe
tively.a) Thin lens approa
hWe �rst �nd the position of the image produ
ed by the �rst lens. With p1 = 30 and f1 = 15 the thin-lensequation gives 1q1 = 1f1 � 1p1 = 115 � 130 = 130or q1 = 30 units. This image be
omes the obje
t for the se
ond lens andp2 = lens separation � q1 = 10� 30 = � 20 units .so that 1q2 = 1f2 � 1p2 = 120 � 1�20 = 110Thus the �nal image is lo
ated 10 units downstream of the se
ond lens. The overall magni�
ation of thesystem is found fromM = (magni�
ation of �rst lens)(magni�
ation of se
ond lens)= �q1p1 � �q2p2= �3030 � �10�20= � 12b) Matrix methodHere we note that the problem 
onsists of a drift length p1, a lens of fo
al length f1, a drift length d1
orresponding to the separation of the lenses, another lens of fo
al length f2, and a �nal drift of length q2to the image. In matrix notation, writing F1 = 1=f1 and F2 = 1=f2, this 
on�guration is written as" x2�2 # = " 1 q20 1 # " 1 0�F2 1 # " 1 d10 1 # " 1 0�F1 1 # " 1 p10 1 # " x0�0 #= " 1 q20 1 # " 1� d1F1 d1�f1 � F2(1� d1F1) 1� d1F2 # " 1 p10 1 # " x0�0 #= " (1� d1F1)(1 � q2F2)� q2F1 p1 + d1 + q2 � p1f1(d1 + q2)� q2F2(p1 + d1) + d1p1q2F1F2�F1 � F2(1� d1f1 (1� d1F2)(1� p1F1)� p1F2 # " x0�0 #= " (1=3) � (q2=12) 30� 3q2�(1=12) �2 # " x0�0 #where we have inserted the appropriate numeri
al values.
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us it is ne
essary that x2 be independent of �0. Thus R12 = 30� 3q2 = 0 orq2 = 10 units .With this value of q2 then R11 = (1=3) � (10=12) = � (1=2)so that x2 = = � 12 x0 .Thus the �nal image lies 10 units downstream of the se
ond lens and is magni�ed by a fa
tor of �0.5|asdetermined using the thin-lens equations.
) Prin
ipal plane approa
hHere we 
onsider the two lenses and separating drift spa
es as a thi
k lens. The transfer matrix for thissystem was found in b) above to be" 1 0�F2 1 # " 1 d10 1 # " 1 0�F1 1 # = " 1� d1F1 d1�f1 � F2(1� d1F1) 1� d1F2 # .Using the de�nitions given in equations (12) and (13) we �nd� 1f = � 112 , z1 = [1� (10=20)℄ � 1(�1=12) = 6 , z2 = [1� (10=15)℄ � 1(�1=12) = 8 .Then p = L1 + z1 = 30 + 6 = 36and 1q = 1f � 1p = 112 � 136 = 118 .Thus the image is q = 18 units to the right of the se
ond prin
ipal plane. To 
al
ulate its lo
ation relativeto the se
ond lens we have L2 = q � z2 = 18� 8 = 10 units,the same lo
ation as before. The magni�
ation is obtained fromM = � qp = � 1836 = � 2 ,that, again, is in agreement with that obtained using the other approa
hes. It is left as an exer
ise to drawray diagrams for ea
h of the thin-lens and prin
ipal plane approa
hes.Exer
ise: Repeat the above for the following problem.Two lenses, ea
h of fo
al length 2 units, are pla
ed 10 units apart. An obje
t is pla
ed 5 units in front ofthe �rst lens. Find the position and magni�
ation of the image. Draw a ray diagram for the thin lens andthe prin
ipal plane approa
hes.4. Quadrupoles and quadrupole arraysIt is not the purpose of this report to derive formulae for the 
al
ulation of parti
le traje
tories throughmagneti
 elements. However, in Appendix Q the (�rst-order) transfer matrix through a quadrupole isderived from the traje
tory equations. This has been done to indi
ate the pro
ess involved. This se
tionwill take the quadrupole transfer matrix and examine it in order to show the similarities between it andthe geometri
 opti
s that have been dis
ussed above.



Page 10 of 10 File No. TRI-DNA-83-9Appendix Q gives the transfer matrix of a horizontally-fo
using quadrupole asRQ = 26666664 
os � sin �k 0 0� k sin � 
os � 0 00 0 
osh � sinh �k0 0 k sinh � 
osh �
37777775 (14)

in whi
h L = e�e
tive length in m of the quadrupole,� = kL,k2 = (B0=a)/(B�)0,(B�)0 = the magneti
 rigidity of the parti
le,B0 = the pole-tip �eld of the quadrupole,a = the radius in m of the quadrupole aperture.The transfer matrix of a verti
ally-fo
using quadrupole has the two non-zero sub-matri
es of equation (14)inter
hanged.This 4�4 matrix transforms an initial 
oordinate x0 = (x0; �0; y0; �0) into the 
oordinate x1 =(x1; �1; y1; �1). Noti
e that the (x; �) and the (y; �) 
oordinates are 
ompletely de
oupled in the ma-trix equation x1 = RQ x0. It is also important to noti
e that unlike an opti
al thin lens, a quadrupolefo
uses in one plane and defo
uses in the orthogonal plane. Thus if a quadrupole fo
uses horizontally, italso defo
uses verti
ally.In the following quadrupoles will be 
onsidered individually, in pairs as doublets, and in threes as triplets.The 
hara
teristi
s of ea
h grouping will be dis
ussed.4.1 Quadrupole singletsAs is indi
ated in Appendix Q, the 2�2 matrix that represents the a
tion of a quadrupole in its fo
usingplane is 24 
os � sin �k� k sin � 
os � 35Using the prin
ipal plane theory that we have developed, we may repla
e this matrix with a thin lens andtwo drift spa
es. Using the supers
ript `+' to indi
ate that we are dealing with the fo
using plane of thequadrupole, these matri
es are related su
h that24 
os � sin �k� k sin � 
os � 35 = " 1 z+20 1 # " 1 0�(1=f+) 1 # " 1 z+10 1 # .From the above and equation (13) it follows thatf+ = 1k sin � = 1k sinkL . (15)Similarly we �nd the lo
ation of the prin
ipal planes P+1 and P+2 relative to the ends of the quadrupolefrom the values of z+1 and z+2 . We �nd z+1 = z+2 = 
os kL� 1� k sinkL (16)From Appendix Q, the 2�2 matrix that represents the a
tion of a quadrupole in its defo
using plane is
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osh � sinh �kk sinh � 
osh � 35from whi
h, using the same te
hnique and using the supers
ript `�' to indi
ate we are dealing with thedefo
using plane of the quadrupole, we �nd f� = � 1k sinhkL (17)and z�1 = z�2 = 
osh kL� 1k sinhkL . (18)The above expressions for f�, z�1 , and z�2 are 
ompletely general. However, it is of interest to 
onsiderthe 
ase when � = kL � 1. In this 
ase we may expand the trigonometri
 and hyperboli
 fun
tions in apower series of their arguments. For the trigonometri
 fun
tions we havesinx = x� x33! + x55! � x77! + � � � 
os x = 1� x22! + x44! � x66! + � � �
ose
 x = 1sinx = 1x + x6 + 7x3360 + 31x515120 + � � �and for the hyperboli
 fun
tions we havesinhx = ex � e�x2 = x+ x33! + x55! + x77! + � � � 
oshx = ex + e�x2 = 1+ x22! + x44! + x66! + � � �
ose
h x = 2ex � e�x = 1x � x6 + 7x3360 � 31x515120 + � � �Using these expansions we then have in the fo
using plane of the quadrupolef+ = 
ose
 �k= 1k "1� + �6 + 7�3360 + 31�515120 + � � � #� 1k �1� + �6�= 1k2L + L6 (19)where we have kept only the �rst two terms of the expansion. Expressions are found for the positions ofthe prin
ipal planes in a similar manner. We obtainz+1 = z+2 = 
os � � 1� k sin �= � 1k "� �22! + �44! � �66! + � � �# "1� + �6 + 7�3360 + � � �#� � 1k "� �22! + � 14! � 16(2!)� �3#= L2 "1 + k2L212 # . (20)
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using plane we �ndf+ = 
ose
h �k= � 1k "1� � �6 + 7�3360 � 31�515120 + � � � #� � 1k �1� � �6�= � 1k2L + L6 (21)and z�1 = z�2 = 
osh � � 1� k sinh �= 1k "�22! + �44! + �66! + � � �# "1� � �6 + 7�3360 + � � �#� 1k � �2! + � 14! � 16(2!)� �3�= L2 "1� k2L212 # . (22)4.1.1 First-order approximationIf only the �rst term is kept in ea
h of the above expansions we have what is known as the �rst-orderapproximation for the quadrupole. In this 
ase we havef+ = �f� = f0 = 1k2L = (B�)0(B0=a)L = (B�)0gL (23)and z+1 = z+2 = z�1 = z�2 = z0 = L2 (24)where g = B0=a is the gradient of the quadrupole �eld. Thus, to �rst order, a quadrupole may be treatedas a thin lens at its geometri
 
enter with drift lengths on either side of length equal to one-half of thee�e
tive length of the quadrupole. Noti
e that in this approximation the fo
al lengths in the fo
using andthe defo
using planes have the same absolute value f0; in the fo
using plane f0 is taken as positive whereasit is taken as negative in the defo
using plane. Figure 5 is a sket
h for a quadrupole of length L.

Fig. 5. First-order approximation of a quadrupole in fo
using plane (left) and in defo
using plane (right).
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hara
terizing the standard 4-in
h quadrupole 4Q14/8 areL = 0:4090 m; a = 0:0508 m; B0(max) = 8 kG .Thus g = B0a = 80:0508 kG/mand at 500 MeV (B�)0 = 36:36 kG-m;so that f0 � 36:36(8=0:0508) 10:4090 = 0:57 mand z0 = L2 = 0:2045 m .For most 
ases of beamline work at TRIUMF this �rst-order treatment of quadrupole is adequate. Thenext se
tion 
onsiders the se
ond-order approximation to quadrupoles and may be omitted without loss of
ontinuity.4.1.2 Se
ond-order approximationThe se
ond-order approximation to a quadrupole is obtained when the �rst two terms of the expansionsof the fo
al length and prin
ipal plane lo
ations are kept. This yieldsf� = � 1k2L + L6 = � f0 + L6 . (25)Equation (25) shows that in its fo
using plane the fo
al length of a quadrupole is longer than that of athin lens of fo
al length f0. Consequently, the fo
using power of a quadrupole is less than a thin lens ofa thin lens of fo
al length f0. Conversely, a quadrupole has a stronger defo
using a
tion in its defo
usingplane than does a defo
using lens of fo
al length f0.Similarly, we �nd the positions of the prin
ipal planes fromz�1 = z�2 = L2 "1�k2L212 # = L2 �1� L12f0 � (26)To se
ond order a quadrupole may be represented as shown in �gure 6.

Fig. 6. Se
ond-order approximation of a quadrupole: fo
using plane (left) and defo
using plane (right).
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onsider the 
ombination of two quadrupoles, one that fo
uses in the horizontal plane and onethat fo
uses in the verti
al plane. Assume that the e�e
tive length of ea
h quadrupole is 2L and that theseparation between their e�e
tive edges is d. We shall assume that the �rst quadrupole fo
uses horizontallyand the se
ond fo
uses verti
ally.We shall examine this 
on�guration using the thin-lens approximation for the quadrupoles. In x4.1.1 wehave seen that the fo
al lengths of a given quadrupole in its fo
using and defo
using planes are of equalmagnitude but of opposite sign. Thus for the �rst quadrupolef+1 = � f�1 = f1 ,and for the se
ond quadrupole f�2 = � f+2 = f2 .The 
onvention adapted here is that the numeri
 subs
ript designates the quadrupole and the supers
riptrefers to the fo
using (+) or defo
using (�) plane of that parti
ular quadrupole. Then, if distan
es upstreamof the doublet are measured to the 
enter of the �rst quadrupole and those downstream are measures fromthe 
enter of the se
ond quadrupole, the doublet may be represented as shown in �gure 7.

Fig. 7. First-order approximation of a horizontal-verti
al quadrupole doublet.where s is the 
enter-to-
enter separation of the quadrupoles, 2L is the (e�e
tive) length of ea
h quadrupole,and f1 and f2 are the fo
al lengths in the fo
using planes of the �rst quadrupole Q1 and the se
ondquadrupole Q2 respe
tively.In the horizontal plane the transfer matrix from the entran
e of lens f1 to the exit of lens f2 is, writingFi = 1=fi, " 1 0F2 1 # " 1 s0 1 # " 1 0�F1 1 # = " 1� sF1 sF2 � F1 � sF1F2 1 + sF2 # (27)
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al plane is" 1 0�F2 1 # " 1 s0 1 # " 1 0F1 1 # = " 1 + sF1 sF1 � F2 � sF1F2 1� sF2 # . (28)Thus in the horizontal plane we have � 1f+� = � 1f1 + 1f2 � sf1f2 (29)and in the verti
al plane we �nd � 1f�+ = � 1f2 + 1f1 � sf1f2 (30)where the supers
ript `+�' indi
ates that the �rst quadrupole fo
uses (+) and the se
ond defo
uses (�)in the plane being 
onsidered, with a similar meaning for `�+'. Thus f+� denotes the fo
al length inhorizontal plane of an HV doublet and f�+ is that in its verti
al plane.Equations (29) and (30) may be rewritten ashorizontal plane 1f2 = 1f+� � f1f2 � f1 + s 1f1 = 1f+� � f2f2 � f1 + s (31)and verti
al plane 1f2 = 1f+� � f1f1 � f2 + s 1f1 = 1f+� � f2f1 � f2 + s (32)from whi
h it follows that for simultaneous fo
using in both the horizontal and verti
al planes it is ne
essarythat jf2 � f1j < s . (33)Equation (12) is used to 
al
ulate the lo
ations of the prin
ipal planes. In the horizontal plane we �ndz+�1 = � F2F+� s and z+�2 = F1F+� s (34)and in the verti
al plane we havez�+1 = F2F+� s and z�+2 = � F1F+� s . (35)As shown in the next se
tion, these relationships indi
ate that the prin
ipal planes in the fo
using plane ofthe �rst quadrupole lie upstream of the doublet, and those in the fo
using plane of the se
ond quadrupolelie downstream of the doublet.4.2.1 Antisymmetri
 quadrupole doubletIn most 
ases the quadrupole �elds of a doublet are not too di�erent. The spe
ial 
ase in whi
h the pole-tip �elds of the quadrupoles have the same absolute value but opposite signs are 
alled an antisymmetri
doublet. In this 
ase we have f1 = � f2 = fand the transfer matri
es|in the thin lens approximation|redu
e to264 1 � sf s� sf2 1 � sf 375 (36)where the upper sign is used for the horizontal plane and the lower sign for the verti
al plane. From this
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tive fo
al length f 0 of this antisymmetri
 doublet is found to bef+� = f�+ = f 0 = f2s . (37)We note that be
ause f 0 is positive, an antisymmetri
 doublet is always fo
using. Similarly, the positionsof the prin
ipal planes are given by z+�1 = z�+2 = � f (38)and z�+1 = z+�2 = f . (39)At TRIUMF, for example, with two standard 4-in
h quadrupoles at half power, we havef 0 � (1:2)2=0:8 = 1:9 m for s = (0.2 m + 0.4 m + 0.2 m) = 0.8 m ,so that z+�1 = z�+2 = � f = � 1:2 mand z�+1 = z+�2 = f = 1:2 m .The diagram below shows an antisymmetri
 doublet operating in a fo
us-to-fo
us mode.

Fig. 8. An HV antisymmetri
 doublet operating in a fo
us-to-fo
us mode.From the above diagram the inherent asymmetry of a quadrupole doublet should be apparent. If thedoublet is operated in a fo
us-to-fo
us mode from a point L units upstream of the (
enter of) quadrupole
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enter of) quadrupole Q2, the obje
t and image distan
es in thehorizontal plane are given byp+� = L+ z+�1 < L and q+� = L+ z+�2 > Lbe
ause z+�1 is negative and z+�2 is positive. Consequently, the magnitude of the magni�
ation in thehorizontal plane is jMxj = �����q+�p+� ����� > 1 .On the other hand, the obje
t and image distan
es in the verti
al plane are given byp�+ = L+ z�+1 > L and q�+ = L+ z�+2 < Lbe
ause z�+1 is positive and z�+2 is negative. Consequently, the magnitude of the magni�
ation in theverti
al plane is jMyj = �����q�+p�+ ����� < 1 .Thus, in general, the magni�
ation of a doublet operating in a fo
us-to-fo
us mode is always larger in thefo
using plane of the �rst quadrupole than that in the fo
using plane of the downstream quadrupole.Exer
ise:An HV antisymmetri
 quadrupole doublet 
onsists of two quadrupoles, ea
h of e�e
tive length 0.4 m andbore 10.16 
m. The distan
e between their e�e
tive edges is s = 0:4 m. It is desired to fo
us 500 MeVprotons from an obje
t lo
ated a distan
e L = 5:0 m upstream of the �rst quadrupole at a point L = 5:0 mdownstream of the se
ond quadrupole.a) Using the thin lens approximation, show that the overall transfer matrix for this system is given byR = 26664 1� sF (1 + LF ) 2L+ s(1� L2F 2) 0 0�sF 2 1 + sF (1� LF ) 0 00 0 1 + sF (1� LF ) 2L+ s(1� L2F 2)0 0 �sF 2 1� sF (1 + LF ) 37775 ,where F = 1=f is the inverse fo
al lengths of the quadrupoles.b) From the above show that the required fo
al lengths of the quadrupoles isf = 1F = Lr ss+ 2Land 
al
ulate the pole-tip �elds required to produ
e this fo
al length, and the magni�
ations in ea
h of thehorizontal and verti
al planes.
) Using the prin
ipal plane te
hnique verify the results obtained above.Answer: f = 1:366 m, B0 = �3:381 kG, M+� = �1:752, and M�+ = �0:571. These values are to be
ompared with B0 = �3:698 kG, M+� = �1:826, and M�+ = �0:548 that are obtained using the fullquadrupole matrix.℄4.3 Quadrupole tripletsAnother 
ombination of quadrupoles is the triplet. Consider three quadrupoles, ea
h of e�e
tive length2L, that are separated by a distan
e d. The pole-tip �elds of the quadrupoles are, respe
tively, B1, B2,and B3, whi
h may be 
onverted into the fo
al lengths f1, f2, and f3.
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h repla
ed with a lens of the appropriatestrength at the 
enter of ea
h quadrupole. The lenses are then separated by a distan
e s = d+ 2L.Consider the horizontal plane of an HVH triplet. The transfer matrix from the 
enter of Q1 to the 
enterof Q3, again with the notation F = 1=f , is" 1 0�F3 1 # " 1 s0 1 # " 1 0F2 1 # " 1 s0 1 # " 1 0�F1 1 #= " �sF1 + (1� sF1)(1 + sF2) s(2 + sF2)�(1� sF3)[F1 � F2(1� sF1)℄� F3(1� sF1) �sF3 + (1� sF3)(1 + sF2) # (40)It is evident that even in the thin-lens approximation this expression 
ould be
ome unwieldly. In thefollowing se
tion a spe
ial 
ase will be examined.4.3.1 General 
ase of equally powered outer quadrupolesA simpli�
ation of the above expression results if the outer quadrupoles of the triplet are equally powered.We assume that all quadrupoles have equal e�e
tive lengths, that the pole-tip �elds of the outer quadrupolesare B1 and that of the inner quadrupole is B2, and that the 
orresponding fo
al lengths are f1 and f2. Forthe purpose of illustration we assume an HVH quadrupole 
on�guration.In the thin lens approximation the fo
al lengths in the fo
using and defo
using planes of a given quadrupoleare equal. Consequently, the transfer matrix of the triplet in the horizontal plane is" 1 0�F1 1 # " 1 s0 1 # " 1 0+F2 1 # " 1 s0 1 # " 1 0�F1 1 #= 24 1� 2x1 + x2(1� x1) s(2 + x2)1� x1s �[x2(1� x1)� 2x1℄ 1� 2x1 + x2(1� x1) 35 (41)where we have written xi = jsFij = js=fij. Similarly, in the verti
al plane we �nd" 1 0+F1 1 # " 1 s0 1 # " 1 0�F2 1 # " 1 s0 1 # " 1 0+F1 1 #= 24 1 + 2x1 � x2(1 + x1) s(2� x2)1 + x1s �[2x1 � x2(1 + x1)℄ 1 + 2x1 � x2(1 + x1) 35 . (42)From these equations we then �nd the lo
ations of the prin
ipal planes to beHorizontal plane z+�+1 = z+�+2 = s1� x1 = s1� sF1 (43)and Verti
al plane z�+�1 = z�+�2 = s1 + x1 = s1 + sF1 . (44)Equations (43) and (44) show that the �eld of the 
enter quadrupole of a triplet may be varied withouta�e
ting the positions of the prin
ipal planes. This property has no 
ounterpart in a quadrupole doublet
on�guration.Pi
torially, we have the situation indi
ated below. In the diagram it has been assumed that the outerquadrupoles of the triplet fo
us verti
ally and the 
enter quadrupole fo
uses horizontally.
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Fig. 9. S
hemati
 of a VHV triplet 
on�guration.From equation (41) the e�e
tive fo
al length f+�+ in the horizontal plane of an HVH triplet are found tobe f+�+ = f1f2�1� sf1� (�f1 + 2f2 + s) , (45)and we have seen that and the positions of the prin
ipal planes in the horizontal plane are given byz+�+1 = z+�+2 = sf1f1 � s . (46)Similarly, the e�e
tive fo
al length f+�+ in the verti
al plane of an HVH triplet are found to bef�+� = f1f2�1 + sf1� (f1 � 2f2 + s) , (47)and we have seen that and the positions of the prin
ipal planes in the verti
al plane are given byz�+�1 = z�+�2 = sf1f1 + s . (48)In the 
ase that s�f1 note that the positions of the prin
ipal planes in ea
h of the horizontal and verti
alplanes 
an be written z(+�) = sf1f1�s ! s ,
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ipal planes 
oin
ide at the geometri
 
enter of the triplet. Consequently, thistriplet will a
t more like a thin lens in both planes than will a doublet.In general, provided that the fo
al lengths of the outer quadrupoles of a triplet are larger than twi
e theirseparation, the prin
ipal planes in both the horizontal and verti
al dire
tions lie within the triplet. As wehave seen, this was not the 
ase with the antisymmetri
 doublet.Typi
al values of TRIUMF quadrupoles|the 
enter quadrupole at 5 kG and the outer pair at 3 kG|aref1 � 1:5 m f2 � 0:9 m s � 0:8 mso that f+�+ = (1:5)(0:9)(�1:5 + 2(0:9) + 0:8)(1 � (0:8=1:5)) = 2:63 mf�+� = (1:5)(0:9)(�2(0:9) + 1:5 + 0:8)((1 + (0:8=1:5)) = 0:59 mz+�+1 = z+�+2 = (1:5)(0:8)1:5� 0:8 = 1:71 mz�+�1 = z�+�2 = (1:5)(0:8)1:5 + 0:8 = 0:52 mFigure 10 shows the prin
ipal plane arrangements for a VHV triplet operating in a fo
us-to-fo
us modewith equal obje
t and image distan
es.

Fig. 10. Prin
ipal planes of a VHV triplet operating in a fo
us-to-fo
us mode.
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on�guration|a symmetri
 triplet operating in a fo
us-to-fo
us mode withequal obje
t and image distan
es|the magni�
ations in the horizontal and verti
al planes are ea
h equalto �1. As we have seen, with an equivalent doublet 
on�guration this is not possible.Exer
ise:An HVH symmetri
 triplet 
onsists of three quadrupoles, ea
h of e�e
tive length 0.4 m and bore 10.16 
m,that are separated by 0.4 m. It is desired to fo
us 500 MeV protons from an obje
t situated 5 m upstreamof the triplet to an image point 5 m downstream of it. The outer quadrupoles are powered equally.a) Repla
e ea
h quadrupole by a thin lens and obtain the transfer matrix from obje
t to image. Cal
ulatethe required pole-tip �elds of the quadrupoles and the magni�
ations in ea
h of the horizontal and verti
alplanes.b) Using the prin
ipal plane approa
h, verify the results obtained in part a).Answer:We �nd f+�+ = 3:291 m, f�+� = 2:881 m, B+ = 2:432 kG, B� = �4:215 kG, M+�+ = �1:0, andM+�+ = �1:0. These values are to be 
ompared with B+ = 2:817kG, B� = �4:215 kG, M+�+ = �1:0,and M+�+ = �1:0 that are obtained using the exa
t matrix.
) What happens if the polarities of the quadrupoles are reversed?4.4 Chromati
 aberrationsIn the foregoing it has been assumed that all parti
les traversing the quadrupoles have had the samemomentum. This, of 
ourse, is not true in pra
ti
e. Consequently, if there is a momentum spread in thebeam ea
h di�erent momentum will be a�e
ted in a slightly di�erent manner by the quadrupoles. In fa
t,di�erent momenta will be fo
used at di�erent pla
es along a line through the axes of the quadrupoles. Thisis 
alled 
hromati
 aberration.It 
an be shown that this e�e
t 
an be negle
ted for most beamlines that we will meet. Other than amention of this e�e
t, no further 
onsideration of quadrupole 
hromati
 aberrations will be given here.However, for those interested ref 5) gives a detailed investigation of this e�e
t.In general, however, the e�e
t of magnets on parti
les of di�erent momentum is not something that 
anbe negle
ted. In fa
t, for some magnets it is a ne
essary 
onsideration|as we shall see in the followingse
tion.5. Dipole magnetsWe are all familiar with the opti
al prism in whi
h di�erent wavelengths are bent through di�erent angleswith the result of a `rainbow' e�e
t. This is 
aused by the variation of the index of refra
tion withwavelength and is, in fa
t a 
hromati
 e�e
t. The bending power of a lens depends on the wavelength ofthe light and thus the energy of the photons (the quanta of light). [Remember that the energy of a photonis given by E = h� = h
=� where 
 is the speed of light, � is its frequen
y, � its wavelength, and h is auniversal 
onstant 
alled Plan
k's 
onstant that is equal to 6.6256�10�34 joule-se
. The momentum of aphoton is p = E=
.℄ The beam transport analogy of this is, of 
ourse, the dipole magnet in whi
h parti
lesof di�erent momentum are de
e
ted through di�erent angles.In the dis
ussion of quadrupoles it has been assumed that the parti
les 
ould be treated as if they traveledparallel to a (�xed) Cartesian 
oordinate system. Be
ause deviations from travel along the z-axis wereassumed to be small, we were able to derive the equations of motion through a quadrupole �eld|at leastto a �rst-order approximation. This pro
edure 
annot be used with a dipole magnet be
ause we know that
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h a magnet 
hanges the dire
tion of the in
ident beam.Certainly, we 
ould express the 
oordinates of parti
les on exit from a dipole, x1 = (x1; y1; z1), in terms ofthose referred to an initial 
oordinate system, x0 = (x0; y0; z0) that is set up at the entran
e of the dipole.However, we are interested in a 
oordinate system in whi
h the z-axis lies along the dire
tion of the beam.In this 
ase we must atta
h a 
oordinate system to the beam as it passes through the dipole.The 
oordinate system is 
hosen su
h that the z-axis always points in the (instantaneous) dire
tion inwhi
h the beam travels. This 
oordinate system obviously rotates with the beam and when the beam exitsthe dipole the z-axis will point in the beam dire
tion. Thus at the dipole entran
e we 
onvert from aCartesian system x0 to a rotating system. On exiting the dipole we 
onvert from the rotating system to anew Cartesian system x1 in whi
h the z-axis again points in the beam dire
tion.The pro
edure for developing the equations of motion through a dipole involves 
on
epts from di�erentialgeometry. Here, however, only the results will be quoted.5.1 General 
on
eptsFor the purposes of this report a dipole magnet will be 
onsidered to be a magnet in whi
h the magneti
�eld B is given (in a Cartesian frame of referen
e) byB = (0; By; 0) , (49)that is, the magneti
 �eld lies parallel to the positive (verti
al) y-axis. Furthermore, it will be assumedthat B is 
onstant.Qualitatively, we may des
ribe parti
le motion in a dipole as follows. With the 
onvention that the (lo
al)z-axis lies in the dire
tion of motion|that is, the velo
ity ve
tor of the parti
le lies along the instantaneousz-axis|the parti
le feels a de
e
ting for
e given byF = qv�Bwhere v is the velo
ity of the parti
le and q is its 
harge. The unit of q is the Coulomb, those of v are m/s,while that of B is T.The dire
tion of the magneti
 for
e is neither in the dire
tion of v nor in the dire
tion of B but in thedire
tion of the ve
tor v�B. This ve
tor is 
alled the ve
tor 
ross produ
t of v and B and is de�ned tohave the magnitude vBsin�, � being the angle between v and B, and to have a dire
tion perpendi
ular tothe plane 
ontaining v and B as determined by the right-hand rule. [Pla
e the �ngers of the right handalong the ve
tor v and 
url them into the ve
tor B. The thumb then points in the dire
tion of the for
eon a positively 
harged parti
le.℄Be
ause we have assumed B is parallel to the y-axis and v is parallel to the z-axis, they are perpendi
ularand the magnitude of qv�B is qBsin90deg = qvzBy = qvB. From the right-hand rule, the dire
tion of thefor
e is along the negative x-axis. Thus we haveFx = � qvB Fy = 0 Fz = 0 (50)where we have dropped the subs
ripts of the magneti
 �eld and the velo
ity. Consequently, looking alongthe beam, a positive parti
le entering the �eld will be de
e
ted to the right.Now when v and B are mutually perpendi
ular and the magneti
 for
e has a 
onstant magnitude ofqvB and is always perpendi
ular to v, it is shown in physi
s 
ourses that this results in 
ir
ular motion.Equating the magneti
 for
e to the produ
t of mass times 
entripetal a

eleration we obtain
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ir
le. This we rewrite asB� = mvq = pq . (52)The important quantity B� with units of T-m is 
alled the magneti
 rigidity of the parti
le. It dependsonly on the ratio of the momentum of the parti
le to its 
harge. Often in beam-line literature the magneti
rigidity will be written as (B�)0 to indi
ate that it is the magneti
 rigidity for whi
h the beam line isdesigned. In the units that we are using we have for protonsB[T℄�[m℄ = 3:3356p[GeV/
℄ (53)In parti
ular, if a magnet is designed to de
e
t a beam of momentum p0 through an angle �0 then we write(B�)0 = 3:3356p0 . (54)At this point the 
on
ept of dispersion must be introdu
ed. In pra
ti
e, a beam of parti
les will have a�nite momentum spread. If a magnet is designed to de
e
t a beam of momentum p0|
alled the 
entralmomentum|through an angle �0, then parti
les of higher momentum p + �p will be bent through asomewhat smaller angle. Conversely, parti
les of lower momentum p��p will be bent through a somewhatlarger angle. [Again, this e�e
t is opti
ally equivalent to the variation of the index of refra
tion withwavelength.℄ The result is that the beam is spread out in spa
e|that is, the position of the beam onexiting from the dipole depends on the momentum of the parti
le. The beam is spatially dispersed.Be
ause the dire
tion of the beam is also 
hanged, the beam is, in general, also dispersed in angle|thatis, the angle with respe
t to the z-axis also depends on the momentum of the parti
le. The beam also hasangular dispersion.5.2 Transfer matrix for a wedge dipole magnetConsider a magnet designed su
h that a beam in whi
h parti
les with the design (
entral) momentum bothenter and exit the magneti
 �eld region at right angles. We then have the following situation for a bendangle of �0.

Fig. 11. Parti
le motion in a wedge magnet.In the above diagram the e�e
ts of dispersion are indi
ated s
hemati
ally. Let us de�ne the quantity Æ as
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entral momentum of the beam for whi
h the magnet will de
e
t a parti
le of that momen-tum through an angle �0 and p is the momentum of an arbitrary parti
le in the beam. The term Æ is thena measure of the `o�-momentumness' of the parti
le in question. Dispersion is introdu
ed into the matrixformalism by adding another row and 
olumn to the transfer matrix. Thus the horizontal portion of thematrix is written as 264 x1�1Æ1 375 = 264 R11 R12 R13R21 R22 R230 0 1 375264 x0�0Æ0 375 . (56)In this equation x1 is the 
oordinate ve
tor at the exit of the dipole and x0 is that at its entran
e. Thethird row indi
ates that the momentum of a parti
le is not 
hanged. This is be
ause stati
 magneti
 �eldsdo no work and, 
onsequently, do not 
hange the momenta of parti
les in the beam. The matrix elementsR13 and R23 indi
ate that there is dispersion in both spa
e and angle.It 
an be shown that the transfer matrix in the bend plane of a uniform-�eld wedge magnet that bends aparti
le of momentum p0 through and angle � may be written asR(wedge, bend plane) = 2664 
os� �0sin� �0(1� 
os�)� 1�0 sin� 
os� sin�0 0 1 3775 (57)where �0 is the radius of 
urvature in the magnet for parti
les of (design) momentum p0.Motion in the non-bend (verti
al) plane is not a�e
ted by the magneti
 �eld. Consequently, the momentumdependen
e is left out and the magnet appears as a drift spa
e. The transfer matrix in the non-bend planeis then R(wedge, non-bend plane) = " 1 �0�0 1 # (58)where �0� is the length of the traje
tory within the magnet. As was done in the 
ase of quadrupoles, thesetwo matri
es are 
ombined into one. By 
onvention, the momentum row and 
olumn are written last. Thuswe have for the 
omplete transfer matrix through a wedge dipole2666664 x1�1y1�1Æ1
3777775 = 266666664 
os� �0sin� 0 0 �0(1� 
os�)� 1�0 sin� 
os� 0 0 sin�0 0 1 �0� 00 0 0 1 00 0 0 0 1

3777777752666664 x0�0y0�0Æ0
3777775 . (59)5.3 Prin
ipal planes of a wedge dipole magnetUnless indi
ated otherwise we shall always assume that the bend plane of a dipole is horizontal. Be
ausethe opti
s of the non-bend plane of a wedge magnet are those of a �eld-free drift region, we need only
onsider the its bend plane. In that plane we have264 x1�1Æ1 375 = 2664 
os� �0sin� �0(1� 
os�)� 1�0 sin� 
os� sin�0 0 1 3775264 x0�0Æ0 375
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h we �nd � 1f = R21 = � 1�0 sin� (60)and z1 = z2 = R11 � 1R21 = ��0tan�2 . (61)Thus the prin
ipal planes are lo
ated at the 
ross-over point|the point of interse
tion of the in
oming andoutgoing rays|of the magnet. In the bend plane the wedge magnet 
a be represented as a lens of fo
allength f = �0=sin� with drift spa
es of length z1 = z2 = �0tan(�=2) on either side. This is illustratedin the �gure below.

Fig. 12. Prin
ipal planes (upper) and simpli�ed des
ription (lower) of a wedge magnet.Thus we may use the following simpli�ed matrix in the bend plane of a wedge magnet provided distan
esare measured to/from its prin
ipal planes.R(wedge magnet, bend plane) = 2664 1 0 01�0 sin� 1 sin�0 0 1 3775 . (62)5.4 Magnets with arbitrary entry and exit anglesIf parti
les do not enter and exit a magnet at right angles to the magnet's edge we 
annot use the abovepres
riptions. We 
an, however, make su
h a magnet from a wedge magnet by superimposing the �eld ofa magneti
 wedge on that of the wedge magnet. As illustrated in the following diagram, a magneti
 wedgeprodu
es a �eld that is positive on one side of the axis and negative on the other. This �eld adds to orsubtra
ts from the �eld of the wedge magnet and, with judi
ious pla
ement, 
an be used to generate theappropriate angles of entry and exit.It 
an be shown (see ref 5), for example) that the transfer matrix for a magneti
 wedge of angle � is



Page 26 of 10 File No. TRI-DNA-83-9

Fig. 13. Constru
tion of a magnet with arbitrary entran
e and exit angles using magneti
 wedges.
R(pole fa
e rotation) = 2666666664 1 0 0 0 0tan��0 1 0 0 00 0 1 0 00 0 �tan��0 1 00 0 0 0 1

3777777775 . (63)[Note: Be
ause we are 
onsidering the `hard-edge' model|that is, the magneti
 �eld drops to zero at thee�e
tive edge of the magnet|of a magnet, a 
orre
tion term to the R43 term has been omitted.℄The angle � is de�ned as positive if the normal to the pole-fa
e lies outside the entering traje
tory withrespe
t to the 
enter of 
urvature. A similar matrix and sign 
onvention applies to the exit edge.The important result obtained from equation (63) is that edge fo
using of dipoles is dire
tly proportional tothe radius of 
urvature of the 
entral traje
tory and inversely proportional to the tangent of the edge angle.The former is usually large (> 2 m) and the latter is usually less than 0.5, resulting in a (minimum) fo
allength of 4 m or more. Consequently, the fo
using e�e
t of edge angles is weak relative to that obtainedwith quadrupoles.A further, important result is that a positive edge angle provides verti
al fo
using and horizontal defo
using.The 
onverse, of 
ourse, applies for a negative edge angle.The transfer matrix for a magnet into whi
h a parti
le enters at an angle � and exits at an angle � isobtained by premultiplying the wedge-magnet transfer matrix by the pole-fa
e rotation matrix for an angle� and postmultiplying it by the pole-fa
e rotation matrix for an angle �. ThusR(overall) = R(pole fa
e rotation �)R(wedge magnet)R(pole fa
e rotation �) . (64)5.5 The re
tangular magnetThe most 
ommon magnet at TRIUMF is one that is oriented su
h that the entry and exit angles are ea
hone-half of the total bend angle. The magnet is the re
tangular in shape. We leave it as an exer
ise toobtain the transfer matrix for su
h a magnet.Exer
ise:A magnet bends parti
les through an angle � with a radius of 
urvature �0. The magnet is re
tangular sothat the entry and exit angles are � = � = �=2. Develop the transfer matrix for su
h a magnet and showthat it is given by
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R " re
t.magnet # = 266666664 1 �0sin� 0 0 �0[1� 
os�℄0 1 0 0 2tan(�=2)0 0 1� �tan(�=2) �0� 00 0 tan(�=2)�0 [�tan(�=2)� 2℄ 1� �tan(�=2) 00 0 0 0 1

377777775 . (65)6. A
hromati
 systemsAs has been mentioned previously, we always have some spread in momentum among the parti
les of thebeam extra
ted from an a

elerator. From the matrix representation above we have seen that after a beampasses through a dipole, both the position and angle in the bend plane of the dipole will be momentumdependent. If this beam falls on a target this implies that the momenta of the parti
les hitting one side ofthe target will di�er from that of those striking the opposite side of the target. In most 
ases this is notdesirable from an experimenters point of view. Consequently, we design a system in whi
h the position ofthe beam on a target is independent of momentum. Su
h a system is termed an a
hromati
 system. If bothposition and angle at the target are momentum independent, the system is termed doubly a
hromati
.Rather than go into great details of the analysis of a
hromati
 systems in general, their prin
iple of operationwill be illustrated by an example.It turns out to be possible to design a transport system that in
ludes a dipole su
h that a beam that isa
hromati
 before entering a dipole is also a
hromati
 after exiting it. One s
heme is to split the dipoleinto two halves and pla
e a (horizontally) fo
using lens 
entered between the dipoles as is shown below.

Fig. 14. Produ
tion of an a
hromati
 beam with two wedge magnets and one quadrupole.In this �gure a (horizontal)ly fo
using quadrupole is pla
ed between two wedge magnets. Ea
h dipolebends a beam of momentum p0 with a radius of 
urvature � through an angle �. The quadrupole has afo
al length f and is lo
ated midway between the dipoles at a distan
e L from the point of interse
tion ofthe prin
ipal planes of ea
h magnet. We study this 
on�guration using the thin lens approximation.Let x0 the 
oordinate ve
tor of a parti
le at the �rst prin
ipal plane of the �rst dipole and x1 be that at itsse
ond prin
ipal plane. The ve
tors x4 and x5 have similar meanings for the se
ond dipole. The ve
torsx2 and x3 are, respe
tively, the 
oordinate ve
tors immediately before and after quadrupole a
tion. Thenthe transfer matrix for the system is found from the matrix equation264 x5�5Æ5 375 = 264 Magnetmatrix#2 375264 DriftlengthL 375264 Lensa
tionf 375264 DriftlengthL 375264 Magnetmatrix#1 375264 x0�0Æ0 375 .
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es and writing s = sin�, 
 = 
os�, and F = 1=f we have264 x5�5Æ5 375 = 264 1 0 0�s=� 1 s0 0 1 375264 1 L 00 1 00 0 1 375264 1 0 0�F 1 00 0 1 375264 1 L 00 1 00 0 1 375264 1 0 0�s=� 1 s0 0 1 375264 x0�0Æ0 375= 264 [1� LF ℄� (sL=�)[2 � LF ℄ L[2� LF ℄ sL[2� LF ℄f[(2s=�) + F [1� (sL=�)℄g[(sL=�) � 1℄ [1� LF ℄� (sL=�)[2� LF ℄ s[1� (sL=�)℄[2 � LF ℄0 0 1 375�264 x0�0Æ0 375 .For the system to be doubly a
hromati
 we require that R13 = 0 and R23 = 0. Thus we havesL[2� LF ℄ = 0 and s[1� (sL=�)℄[2 � LF ℄ = 0 ,that is, f = L2 .Thus, in order to produ
e the doubly-a
hromati
 
ondition, it is ne
essary to adjust the quadrupole so asto fo
us from the 
enter of one dipole to the 
enter of the other.Insertion of the expression for f into the above matri
es shows that the transfer matrix for the dipole-quadrupole-dipole doubly-a
hromati
 system isR(doubly a
hromati
) = 264 �1 0 0�(2=L)[1 � (L=�)sin�℄ �1 00 0 1 375Another te
hnique, also involving splitting the dipole in half, is illustrated below. The diagram is takenfrom ref 9).

Fig. 15. An alternate te
hnique of produ
tion of an a
hromati
 beam.In this 
ase two identi
al fo
using lenses are pla
ed symmetri
ally in the spa
e between the dipoles. Thelenses are adjusted to make the beam parallel to the 
entral traje
tory in the spa
e between them. Fromsymmetry it should be obvious that the resulting beam will be a
hromati
.
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h of these systems is that there is no fo
using in the verti
al plane|in fa
t thereis 
omplete defo
using. The solution is to add a verti
ally fo
using lens at the midpoint of the systemto provide the required fo
using in the verti
al plane. This is indi
ated by the dotted line in the abovediagram. Of 
ourse, the opti
s of the system will be 
hanged somewhat but the prin
iple remains valid.Often the single lens will be repla
ed with two equal lenses, again symmetri
ally lo
ated about the midpoint,to allow for a slit or diagnosti
 devi
e to be inserted there. This has the advantage of allowing the insertionof a slit at the symmetry point to stop parti
les of unwanted momentum.This latter te
hnique (of adding two, equal, verti
ally fo
using lenses) 
an also be used in the previoussystem to provide the required verti
al fo
using. Again, the opti
s will be modi�ed somewhat but theprin
iple remains the same.A
hromati
 systems, in
luding those using dipoles only, are treated in more detail in ref 5).7. Phase spa
e and beam size determinationSo far we have learned how to relate parti
le 
oordinates at the exit of a system to those at its entran
e.Given a parti
le with 
oordinates x0 at the entran
e of a system whose transfer matrix isR, the 
oordinatesof the parti
le upon exiting from the system, x1, are obtained fromx1 = R�x0 . (66)This equation relates the 
oordinates of individual parti
les after the a
tion of the system to those priorto its a
tion. If, however, we are dealing with a beam of parti
les, it would be impra
ti
al to apply thiste
hnique to ea
h parti
le in the beam. Furthermore, we are usually interested in parameters of the beamas a whole rather than in those of any individual parti
le. For these reasons, the 
on
ept of phase spa
e hasbeen developed and the previous matrix algebra has been extended to allow us to determine its properties.7.1 The phase spa
e ellipse and its usefulnessConsider the 
olle
tion of parti
les that make up the `beam'. Ea
h individual parti
le 
an be assigned
oordinates of position, angle and momentum relative to some 
entral traje
tory. In the 
ontext of whathas been dis
ussed, we would like to write the 
oordinates of ea
h parti
le asx1 = (x; �; y; �; Æ) . (67)For simpli
ity in what follows, 
onsider a beam of parti
les whi
h has no verti
al size or divergen
e andhas no momentum spread. Relative to that of some 
entral parti
le, the position of any individual parti
leis 
ompletely spe
i�ed by its horizontal position and divergen
e. We 
ould then get the size of the beamat any point by simply plotting the x-� distribution there. Again, however, it is 
lear that this would be avery tedious operation to perform.The left diagram of �gure 16, below, is meant to be su
h a plot, the dots representing the 
oordinates ofindividual parti
les. On the right, an ellipse has been drawn to en
lose most of these parti
le 
oordinates.An ellipse has been 
hosen be
ause of its mathemati
al transformation properties. Su
h diagrams are 
alleda phase-spa
e diagrams. In parti
ular, the ellipse is 
alled a phase-spa
e ellipse. It displays the relationshipbetween the horizontal size and horizontal divergen
e for ea
h and every parti
le of the beam. It is 
learthat, depending upon how large an ellipse is drawn, the number of parti
les in
luded within the ellipse willvary. However, on
e we are satis�ed that the ellipse that has been drawn is a reasonable approximation tothe a
tual beam parameters, the horizontal size of the beam 
an be determined by proje
ting the ellipseon the x-axis. Similarly, proje
tion of the ellipse on the �-axis will give a measure of the maximum of thedivergen
e of the beam.
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Fig. 16. A two-dimensional phase-spa
e diagram.It is also 
lear that the orientation of this ellipse will 
hange as the beam pro
eeds through the transportsystem. Thus, for example, the 
ase where a beam ellipse is initially upright. If a pi
ture were taken ata se
ond point a distan
e L further along the drift spa
e, the `snapshot' of the two beam ellipses wouldappear as in the following diagram.

Fig. 17. The e�e
t of a drift spa
e on phase-spa
e ellipse.The reason for this 
hange is 
lear. The 
oordinates of any parti
le at the se
ond point, x1, are related tothose at an earlier point, x0, by the matrix for a drift spa
e," x1�1 # = " 1 L0 1 # " x0�0 # . (68)The x-
oordinate of a parti
le is altered by an amount proportional to the produ
t of the distan
e betweenthe points and the divergen
e of the parti
le at the �rst point. The divergen
e of the parti
le is, however,un
hanged. Thus in a drift spa
e of length L the points (0;��max) transform to the points (�L�max; �max)whereas the points (�x; 0) are unaltered. The ellipse shears with only points lying on the x-axis unalteredand the initial upright ellipse be
omes tilted to the right at the se
ond lo
ation.Thus the beam spreads out in spa
e but not in angle. Estimates of maximum horizontal extent anddivergen
e may be made by proje
ting the ellipse on the appropriate axis.If, on the other hand, the beam were to en
ounter a (thin) lens of fo
al length f , 
oordinates after lensa
tion would be related to those before lens a
tion by the matrix for a thin lens" x1�1 # = 24 1 0� 1f 1 35 " x0�0 # . (69)
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e ellipse would be transformed as shown in the following diagram.

Fig. 18. The e�e
t of a thin lens on phase-spa
e ellipse.In this 
ase, the x-
oordinate is un
hanged but the divergen
e of ea
h parti
le is a�e
ted. In parti
ular,note that the points (�xmax; 0) transform to the points (�xmax;�xmax=f) and that the points (0;��max)are unaltered. Consequently, the ellipse that en
losed the beam before lens a
tion be
omes elongated alongthe �-axis after lens a
tion. The horizontal size of the beam has not 
hanged but its divergen
e has.In general, parti
les traverse both drift spa
es and fo
using and de
e
ting devi
es. Their 
umulative e�e
ton the phase-spa
e ellipse is not obvious. However, there is one parti
le whose 
oordinates are un
hangedregardless of the transport system. That parti
le is the 
entral parti
le; its 
oordinates are (and were)(x; �) = (0; 0).It has been shown that any transport system 
an, with the prin
ipal plane approa
h, be redu
ed to asystem 
omposed of two drift lengths and one lens. Consequently, there is no need to study a more
omplex system. Further, if a method 
an be devised to 
arry the ellipse through the transport system, we
ould immediately obtain the important beam parameters (horizontal beam size and divergen
e) at anypoint in the system by simply proje
ting the ellipse on the 
oordinate axes.The above dis
ussion has been limited to a two-dimensional beam|that is, a beam whi
h only had ahorizontal size and divergen
e. Clearly, if we wanted to in
lude momentum spread, for example, ea
hparti
le would be des
ribed by the three 
oordinates x = (x; �; Æ). Rather than drawing an ellipse aroundthe resulting three-dimensional plot, it would be ne
essary to draw a solid �gure|an ellipsoid. We 
ouldstill determine maximum beam size and divergen
e by proje
ting the ellipsoid onto the x-� plane. Similarly,in
lusion of verti
al size and divergen
e as parti
le 
oordinates requires that we now go to a �ve-dimensionalellipsoid. By proje
ting this ellipsoid onto the appropriate planes, all important beam properties may beattained. Thus it should be 
lear that the methods indi
ated above are not restri
ted to the two-dimensional
ase.7.2 Transformation properties of the ellipseIn the se
tion above, an ellipse was (somewhat arbitrarily) introdu
ed as a representation of the a
tualbeam pro�le. In this se
tion the reason for its introdu
tion will be given.Let the 
oordinate ve
tor and its transpose be x0 and xT0 respe
tively, and let ��10 be the inverse of �0,a real, positive-de�nite symmetri
 matrix. In Appendix A, se
tion 6, it is shown that an equation of theform xT0 �0 x0 = 1 (70)leads to the equation of an ellipse. Now let the parti
le with the 
oordinate ve
tor x0 be transportedthrough a system that has a transfer matrix R. Equation (70) 
an be rewritten as follows (re
alling that
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oordinate ve
tor at the end of the system is x1 = Rx0 so that we havex1T ��11 x1 = 1 (71)where �1 = R�0RT . (72)Thus, if equation (70) represents the beam at the start of the system, equation (72) will represent the beamat the end of a system that has a transfer matrix R. As was shown above, all of the important parameters
an be obtained from knowledge of the phase spa
e ellipse.7.3 Ellipse transformation in two dimensionsTo simplify things we 
onsider only the two-dimensional (x; �) phase spa
e. We then havexT = [x�℄ and x = " x� #Suppose we draw an ellipse about this phase spa
e su
h that the ellipse has its semi-major axis along thex-axis. The lengths of the semi-major and semi-minor axes are x0 and �0 respe
tively. Now de�ne thematrix �0 by �0 = " �11(0) �21(0)�21(0) �22(0) # = " x20 00 �20 # . (73)Noti
e that �0 has been de�ned as a symmetri
 matrix|that is, �12(0) = �21(0). Then the inverse of �0,��10 , is ��11 = 1�2 " �22(0) ��21(0)��21(0) �11(0) # = 1�2 " �20 00 x20 # (74)where �2 = det�0 = �11(0)�22(0) � �12(0)�21(0) = x20�20 is the determinant of the matrix �0. Then theequation of the ellipse xT0 �0 x0 = 1be
omes �2 = [x � ℄ " �22(0) ��21(0)��21(0) �11(0) # " x� #= �22(0)x2 + �11(0)�2= �20x2 + x20�2= x20�20 . (75)This equation shows the relationship between the elements of the matrix � and the physi
al parametersx0 and �0. The maximum values of these parameters are the square roots of the diagonal elements of thematrix provided that the ellipse has its semi-major axis along one of the 
oordinate axes.The diagrams of x6.1 indi
ate that the phase-spa
e ellipse will rotate as a beam traverses a transportsystem. In this general 
ase|that is, if the initial ellipse is not ere
t|we have
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ture that will look similarto the following.

Fig. 19. Parameters of a general two-dimensional ellipse.The area of the ellipse, A, is given byA = �pdet� = �xmax�int = �xint�max (77)where the di�erent terms are de�ned in the �gure. The 
orrelation between x and �|the orientation ofthe ellipse|depends on the o�-diagonal term �21. This 
orrelation, de�ned asr21 = �21p�11p�22 , (78)measures the tilt of the ellipse and the interse
tion of the ellipse with the 
oordinate axes. Note that�1 � r � + 1 . (79)Consider the spe
ial 
ase of r21 = 0. If r21 = 0, then �21 = �12 = 0 and the ellipse is ere
t. In beamtransport this situation is 
alled a waist. Physi
ally, if a beam is at a waist, we have the smallest beamsize attainable for a given divergen
e.Suppose that a beam des
ribed initially by equation (73) is transported through a system that has atransfer matrix R. Equation (72) allows us to determine the matrix �1 at the exit of the system. Thus�1 = " �11(1) �21(1)�21(1) �22(1) # = " R11 R12R21 R22 # " �11(0) �21(0)�21(0) �22(0) # " R11 R21R12 R22 # . (80)This leads to the following values for the matrix elements of �1.�11(1) = R211�11(0) + 2R11R21�21(0) +R212�22(0) ,�12(1) = �21(1) = R11R21�11(0) + [R11R22 +R12R21℄�21(0) +R12R22�22(0) , (81)�22(1) = R221�11(0) + 2R21R22�21(0) +R222�22(0) .In the spe
ial 
ase of an initially upright ellipse �1 redu
es to
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i�
 
ases.Suppose we start with an initially upright ellipse|that is, we start from a waist. Now let the beam drifta distan
e L. Insertion of the matrix elements for a drift region into equation (82) produ
es�1 = " �11(1) �21(1)�21(1) �22(1) # = " �11(0) + L2�22(0) L�22(0)L�22(0) �22(0) # . (83)Equation (83) then gives the following meanings for the matrix elements of �1.�11(1) = �11(0) + L2�22(0)or (x21 )max = (x20 )max + L2( �20 )max , (84)and �22(1) = �22(0)or ( �21 )max = ( �20 )max . (85)Remember that the initial phase spa
e was assumed to be ere
t for this transformation. But x20 is thesquare of the initial beam extent and L2�20 is that of a parti
le that started from x = 0 with maximumdivergen
e.Thus equation (84) indi
ates that p�11(1) 
an be regarded as the root mean square of themaximum displa
ement of the parti
le. Equation (85) indi
ates that the divergen
e of the parti
le isun
hanged.If the matrix elements for a thin lens is inserted into equation (82) we obtain�2 = " �11(2) �21(2)�21(2) �22(2) # = 2664 �11(0) ��11(0)f��11(0)f �11(0)f2 + �22(0) 3775 . (86)from whi
h it follows that �11(2) = �11(0)or (x22 )max = (x20 )max , (87)and �22(2) = �11(0)f2 + �22(0)or ( �22 )max = 1f2 (x20 )max + ( �20 )max . (88)Equation (87) shows that the maximum displa
ement of a parti
le does not 
hange in a thin lens. Fromequation (88) we see that p�22(2) may be interpreted as the root mean square maximum divergen
eobtained from the maximum initial divergen
e and the maximum 
hange in divergen
e 
aused by the lens.
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ussion of the waist|the upright ellipseAs was noted earlier, The spe
ial 
ase of �12 = �21 = 0 is termed a waist. We should 
orre
tly understandits meaning. For an existing beam a waist is the lo
ation of a minimum of beam size in a given region ofthe system. Although the waist is the minimum beam size in any given beam line, the minimum beam sizeattainable at a �xed target position (by varying the fo
al length of the upstream lens system) is not thesame as the waist de�ned above. The �gure below, taken from 1), illustrates this point.

Fig. 20. The relationship between a waist and the smallest spot size at a target.In a �eld-free region (a drift) the distan
e to a waist may be 
al
ulated if the sigma matrix is known atthe lo
ation. Thus, if �0 is the sigma matrix at the lens' exit and �1 is that at the position of the waist,equation (81) gives (in the (x; �) plane) �21(1) = �21(0) + L�22(0) (89)and �21(1) must be zero for there to be a waist at this position. Solving the above equation for L yieldsL = ��21(0)�22(0) = �r21 p�11(0)p�22(0) . (90)Similarly, we obtain in the (y; �) planeL = ��43(0)�44(0) = �r43 p�33(0)p�44(0) . (91)It should also be noted that, in general, a waist and a point-to-point image are not one in the same. Inthe (x; �) plane the transfer matrix for point-to-point imaging has been shown to beR(point-to-point) = " R11 0R21 R22 # = 24 M 01f 1M 35 (92)
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ation. Again assuming an initially upright ellipse, thesigma matrix at the fo
al point is, from equation (81),�1 = " R211�11(0) R11R21�11(0)R11R21�11(0) R221�11(0) +R222�22(0) # . (93)Clearly, ex
ept for a very small sour
e size, an image and a waist will o

ur only if R21 = R21 = 0. Inorder to have two matrix elements zero it is ne
essary to have (at least) two elements to vary. Given thatwe are at a fo
us, equation (90) gives the distan
e to a waist asL = ��21(0)�22(0) = � R11R21�11(0)R221�11(0) +R222�22(0) . (94)If R11R21 = 0, a waist and a point-to-point image 
oin
ide. If R11R21 < 0, a waist follows the image.8. Some `building blo
ks' of transport systemsIn the pre
eding se
tions various 
ombinations of beam-transport elements have been dis
ussed. It istrue that they 
an be 
onsidered as `building blo
ks' of a beam-transport line. We have, for example,
onsidered quadrupole doublets and triplets operating in a fo
us-to-fo
us mode and a simple arrangementfor the produ
tion of an a
hromati
 beam. In this se
tion a more general treatment of some of the standardbuilding blo
ks used in developing a transport beamline will be 
onsidered. Spe
i�
ally, some propertiesof symmetri
 systems will be investigated. Usually the dis
ussions will deal with quadrupole systems only;however, in some 
ases quadrupole-dipole systems will be treated.8.1 Translationally symmetri
 systemsFor purposes of illustration, 
onsider a quadrupole doublet positioned a distan
e L1 downstream of a pointA and a distan
e L2 upstream of a point B. The transfer matrix for this parti
ular 
on�guration may befound using te
hniques that have been dis
ussed earlier; let that transfer matrix be written as R whereR = " R11 R12R21 R22 # .We now ask the question \What happens if another, identi
al doublet 
on�guration is installed betweenthe points B and C?" as is indi
ated in the �gure below.

Fig. 21. A translationally-symmetri
 quadrupole system.The transfer matrix for the 
omplete system from A to C is found from
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ial situations be
ome immediately apparent when we look at this overall transfer matrix.If the original (doublet system)98) between A and B is designed su
h that R11 = �R22, then the overalltransfer matrix be
omes R2 = " �1 00 �1 # [R11 = �R22℄ . (96)In this 
ase the transfer matrix between A and C is �I| the negative unity matrix. Beam 
onditionsat C are exa
t inversions of those at A. Su
h a system is 
alled a unit se
tion. Noti
e that although aquadrupole doublet stru
ture was used any system designed su
h that R11 = �R22 
ould have been used.The se
ond spe
ial 
ase o

urs if the original system is designed su
h that R12 = R21 = 0 at the lo
ationB. In this 
ase the overall transfer matrix be
omesR2 = 24 R211 00 1R211 35 [R12 = R21 = 0℄ . (97)Thus if jR11 j > 1 at the midpoint of the se
tion we obtain a magni�ed image at the point C but withthe divergen
e there redu
ed, relative to that at A, by a fa
tor equal to the magni�
ation. This type ofsystem is 
alled teles
opi
 (the �rst 
ase dis
ussed is also teles
opi
). Conversely, if R11 at B is less thanunity, we obtain an image redu
ed in size but having a greater divergen
e.A point in terminology: In the previous se
tions we often have talked about obje
ts and images with themeaning that R12 = 0. In the jargon of the trade, this is 
alled point-to-point imaging. The terminologyis obvious: under that 
ondition one point on the obje
t is reprodu
ed at one point on the image. In both
ases dis
ussed here we had R21 = 0. This type of fo
using is 
alled parallel-to-parallel imaging. In this
ase the divergen
es of parti
les at the image depend only on those at the obje
t, regardless of the pointon the obje
t where they the parti
les originated. We also have parallel-to-point opti
s. In this 
ase wehave R11 = 0. Rays originating from the obje
t with a given divergen
e are fo
used at one point on theobje
t. That position is independent of the initial position at the obje
t. The �nal imaging 
ondition is
alled point-to-parallel. Here we have R22 = 0. Consequently, the divergen
e at the image depends only onthe position at the obje
t and is independent of the initial divergen
e of the parti
le.Exer
ise:A quadrupole pair, the �rst fo
using horizontally and the se
ond verti
ally, have a 
enter-to-
enter sep-aration s. The doublet is lo
ated midway between points A and B. Another identi
al doublet is pla
edbetween B and C. Thus the distan
es AB and BC are equal.a) Using the thin-lens approximation determine the fo
al lengths of the quadrupoles that are required toprodu
e a unit se
tion between A and C.b) Two targets are separated by 17.7 m. Use the results of part a) to determine what pole-tip �elds arerequired to transport a 500 MeV proton beam from one target to the other. Assume ea
h quadrupole hasan e�e
tive length of 0.5 m and the doublets are separated by 0.4 m.



Page 38 of 10 File No. TRI-DNA-83-9
) The distan
e between targets 1AT1 and 1AT2 on beamline 1A at TRIUMF is 17.7 m. Five quadrupoles,1AQ9{13, are lo
ated in this region. If quadrupole 1AQ9 is turned o�, quadrupoles 1AQ10{11 and 1AQ12{13 
an be treated as doublets. Do the results of b) bear any resemblan
e to the a
tual settings used for1AQ10{13?d) repeat the pro
edure of part a) for the requirement that R12 = R21 = 0 at the point B.8.2 Mirror-symmetri
 systemsRather than put two identi
al systems together in the same order, we 
ould make the se
ond system themirror image of the �rst. In this 
ase we would have a 
ombined system shown in the next �gure.

Fig. 22. A mirror-symmetri
 quadrupole 
on�guration.The transfer matrix from A to B for this system isR(A!B) = " 1 L20 1 # " 1 0+F2 1 # " 1 s0 1 # " 1 0�F1 1 # " 1 L10 1 #= " 1� x1 + L2F+� s+ L1(1� x1) + L2(1 + x2 + L1F+�)F+� 1 + x2 + L1F+� # (98)where Fi = 1f , xi = sjFij, and F+� = x2(1� x1)� x1s .In the above it has been assumed that the �rst quadrupole fo
uses horizontally and that the se
ond fo
usesverti
ally. Now 
onsider the transfer matrix that would result if the system were traversed from B to A.We have R(B!A) = " 1 L10 1 # " 1 0�F1 1 # " 1 s0 1 # " 1 0+F2 1 # " 1 L20 1 #= " 1 + x2 + L1F�+ s+ L2(1� x2) + L1(1� x1 + L2F�+)F�+ 1� x1 + L2F�+ # . (99)But F�+ = F+� [Exer
ise: Prove this.℄ ands+ L2(1� x2) + L1(1� x1 + L2F�+) = s+ L1(1� x1) + L2(1 + x2 + L1F+�) ,so that if we rewrite equation (98) asR(A!B) = � " R11 R12R21 R22 # , (100)



File No. TRI-DNA-83-9 Page 39 of 10then equation (99) be
omes R(B!A) = � " R22 R12R21 R11 # . (101)Equations (100) and (101) re
all to memory the relationship between a 2�2 matrix and its inverse:" R11 R12R21 R22 #�1 = " R22 �R12�R21 R11 # ,where the fa
t that jR j = 1 has been used. Although we might expe
t R(B!A) to be the inverse ofR(A!B), it is 
lear that this is not the 
ase. The matrix obtained from traversing a system in reversedi�ers from the inverse of the matrix obtained from traversing the system in the forward dire
tion in thatthe signs of the o�-diagonal elements are reversed.With a little thought, the reason for this be
omes 
lear. Consider, for example, a system operating in afo
us-to-fo
us mode. The beam diverges from the obje
t and 
onverges to the image. However, travelingin the reverse dire
tion the beam diverges from the image and 
onverges to the obje
t. In other words,when traveling in the reverse dire
tion angles are reversed with respe
t to those found when traveling inthe forward dire
tion. It 
an be shown that the transfer matri
es for travel ind the forward and reversedire
tions are related by R(B!A) = " 1 00 �1 # [R(A!B)℄ " 1 00 �1 # . (102)Remember, however, that this result [equation (102)℄ is valid only for a mirror-symmetri
 system!We now realize that the traje
tory for B to C will be identi
al to that from B to A. Consequently,R(B!C) = R(B!A) (103)The overall transfer matrix for this system then be
omesR(A!C) = R(B!C)R(A!B)= R(B!A)R(A!B)= " 1 00 �1 # [R(A!B)℄�1 " 1 00 �1 #R(A!B) , (104)for the 
ase of a 2�2 matrix andR(A!C) = 264 1 0 00 �1 00 0 1 375 [R(A!B)℄�1 264 1 0 00 �1 00 0 1 375R(A!B) (105)for the 
ase of a 3�3 matrix.Expli
itly, for the 
ase of a 2�2 matrix the overall transfer matrixM is given byM = " 2R11R22 � 1 2R12R222R11R21 2R11R22 � 1 # , (106)and for the 
ase of a 3�3 matrix by
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e about these two expressions. First, noti
e that M11 = M22.This is a property of all mirror-symmetri
 systems. Se
ond, noti
e that if R23 = 0 then M11 = M22 = 0.The latter shows that in order to make a mirror-symmetri
 system doubly a
hromati
 it is ne
essary thatthe angular dispersion at the mid-plane (symmetry plane) be zero. If R23 
annot be made zero at themid-plane it may be 
on
luded that double a
hromati
ity is impossible.Two other 
onditions of interest may be obtained from equations (106) and (107). Suppose we design thesystem su
h that R11 = R22 = 0 at the mid-plane. In this 
ase equation (106) be
omesM = " �1 00 �1 # [R11 = R22 = 0℄ . (108)If the design is su
h that R12 = R21 = 0 at the mid-plane, then the overall transfer matrix isM = " 1 00 1 # [R12 = R21 = 0℄ . (109)Thus in both 
ases the total system is teles
opi
. Whether inversion o

urs depends on whi
h matrixelements are made zero at the mid-plane.Exer
ise:In x6 the 
onditions ne
essary for double-a
hromati
ity in a simple system were obtained. Use the te
hniquedeveloped above to verify the results obtained previously.Exer
ise:Between target lo
ations 4BT1 and 4BT2 on beamline 4B at TRIUMF the 
on�guration sket
hed below willbe found.

Fig. 23. Con�guration between 4BT1 and 4BT2 on beamline 4B.The purpose of this array will be dis
ussed later. QuadrupolesQ1 and Q2 fo
us horizontally and are equallypowered. A similar 
ondition holds for quadrupoles Q3 and Q4 (but their �elds are not equal to those ofQ1 and Q2). Quadrupoles Q2 and Q5 fo
us in the verti
al plane and, again, their �elds are identi
al.Clearly, this system is a mirror-symmetri
 beam-transport se
tion. Its design is su
h that the transfermatrix in the horizontal plane is the unit matrix I while that in the verti
al plane is the negative unit
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tive length of all quadrupoles is 0.4090 m, L1 = 2.4096 m, L2 = 0.3048 m,L3 = 0.6348 m, and L4 = 0.5750 m, use the te
hnique dis
ussed in this se
tion together with the thin-lensapproximation to determine the quadrupole �elds ne
essary to produ
e this 
ondition. Assume a beamenergy of 500 MeV.Design values for the quadrupole �elds are B(Q1) = B(Q6) = 5.127 kG, B(Q2) = B(Q5) = �7.005 kG,and B(Q1) = B(Q6) = 8.000 kG.9. Waist-to-waist transportIn x7.3 the transformation properties of the phase-spa
e ellipse were dis
ussed. In parti
ular, it was shownin equation (82) that if an initial phase-spa
e ellipse was ere
t and des
ribed by the matrix �0, then �0 istransformed by a system with the transfer matrix R into the ellipse �1 given by�1 = " R211�11(0) +R212�22(0) R11R21�11(0) +R12R22�22(0)R11R21�11(0) +R12R22�22(0) R221�11(0) +R222�22(0) # . (110)In order that there be a waist at position 1 it is ne
essary that �21(1) = 0. This implies thatR11R21�11(0) +R12R22�22(0) = 0 . (111)From this equation three important spe
ial 
ases 
an arise.First, if the transport system is a unit se
tion or any system for whi
h the matrix R has the formR = 24 M 00 1M 35 , (112)we will have a waist at position 1 be
ause �1 will have the form�1 = 24 M2 00 1M2 35 �0 . (113)The beam size at position 1 is then q�11(1) = M q�11(0) . (114)The se
ond 
ase arises if neither R12 nor R21 is zero but the system is designed su
h thatR11R21�11(0) = �R12R22�22(0)that is, �22(0)�11(0) = � R11R22 �R21R12 . (115)In this 
ase the beam size at lo
ation 1 isq�11(1) = sR11R22 �q�11(0) . (116)The third spe
ial 
ase is that in whi
h R11 = R22. Then equation (111) redu
es to�22(0) = � R21R12 ��11(0) . (117)
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ation 1 is identi
al to that at position 0.9.1 Waist-to-waist transport in one planeConsider the simple transport system shown below.

Fig. 24. A one-dimensional line of fo
using lenses.This system 
onsists of a series of (fo
using) lenses of fo
al length f that are spa
es a distan
e 2L unitsapart. We wish to 
al
ulate the required value of f su
h that a waist is produ
ed at the prin
ipal plane ofea
h lens and all waists are of the same minimum size.Be
ause of the repetitive nature of this system it is 
onvenient to think of it as 
omposed of a series ofsubsystems. Ea
h subsystem 
omprises two lenses, ea
h of fo
al length 2f , that are separated by a distan
eof 2L. One su
h subsystem is pi
tured below.

Fig. 25. A subsystem of the one-dimensional line of fo
using lenses.



File No. TRI-DNA-83-9 Page 43 of 10The transfer matrix of this subsystem isR = 24 1 0� 12f 1 35 " 1 2L0 1 # 24 1 0� 12f 1 35 = 266664 1� Lf 2L� 1f �1� L2f � 1� Lf 377775 . (120)From equations (118) and (119) it follows that�11(1) = �11(0) = s� R12R21 �j�0 j = s 4Lf22f � L �j�0 j . (121)Squaring this equation and substituting j�0 j = �11(0)�22(0) yields	 = �11(0)�22(0) = 4Lf22f � L .To obtain the minimum value for �11(0) we di�erentiate this expression with respe
t to f and set it equalto zero. Thus we have d	df = 8Lf(2f � L)2 (f � L) = 0whi
h requires f = L. Substitution of this result into the expression for 	 leads tof = L = 12 s�11(0)�22(0) . (122)Equation (122) expresses the values of f and L in terms of the parameters at the �rst waist.This result is quoted in ref 1) as an example of waist-to-waist transport in one plane. In the followingse
tion we will examine a more useful 
on�guration.9.2 Waist-to-waist transport in two planes | the F0D0 arrayThe example of x9.1 is interesting from an a
ademi
 point of view, but it is not pra
ti
al for beamlinetransport problems. We know that a quadrupole fo
uses in one dire
tion and defo
uses in the authorialplane. A logi
al extension of the one-dimensional array is sket
hed below.

Fig. 26. A two-dimensional F0D0 array.In this arrangement the fo
al lengths of all quadrupoles are equal in magnitude but they are arranged sothat their fo
using planes alternate in sign. The 
enter-to-
enter separation of the quadrupoles is L. This
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ture is termed a F0D0 array be
ause, for example, if the �rst quadrupole is fo
using (F) it is followedby a drift spa
e (0)|that is, no fo
using. The next quadrupole is defo
using (D) and it too is followed bya drift spa
e (0). The 
on�guration repeats again.a F0D0 array is used to transport a beam over long distan
es while keeping the beam within the availableapertures. We design the system su
h that there is a of the same size at the prin
ipal planes of the 
oursingquadrupoles. This size is adjusted so as to be within the allowable apertures of the quadrupoles and thebeam tube.As with the one-dimensional array it is 
onvenient to 
onsider the F0D0 array to be formed from subsystems.One su
h subsystem is illustrated below.

Fig. 27. A subsystem of a two-dimensional F0D0 array.The transfer matrix of this subsystem is give byRHVH(
ell) = 24 1 0� 12f 1 35" 1 L0 1 # 24 1 012f 1 3524 1 012f 1 35 " 1 L0 1 #24 1 0� 12f 1 35= 2664 1� L22f2 L�2 + Lf �� L4f2 �2� Lf � 1� L22f2 3775 = 2664 2f2 � L22f2 Lf (L+ 2f)� L4f3 (2f � L) 2f2 � L22f2 3775 , (123)where the 
enter lens (2) has been repla
ed by two half-lenses. For referen
e, the transfer matrix at themidpoint of the 
enter lens isRVH(mid) = 24 1 012f 1 35 " 1 L0 1 # 24 1 0� 12f 1 35 = 2664 2f � L2f L� L4f2 2f + L2f 3775 . (124)We have seen above that given an initial waist at the 
enter of the �rst lens, a waist will exist at the 
enterof the third lens provided that	HVH = �11(1)�22(1) ����HVH = �R12(
ell)R21(
ell) ����HVH = 4f2 �2f + L2f � L� . (125)To minimize the waist size we again di�erentiate 	HVH with respe
t to f , set the result equal to zero, andsolve for f in terms of the element separations L. Thus we �nd



File No. TRI-DNA-83-9 Page 45 of 10d	HVHdf = � 8f2 L+ 2f(L� 2f)2 � 8f(L+ 3f)L� 2f = � 8f(L� 2f)2 [L2 + 2f(L� 2f)℄ = 0 ,from whi
h we obtain fHVH = 8>>><>>>: L4 (1�p5)0L4 (1 +p5) . (126)Be
ause we have taken both f and L to be positive, and dis
arding the trivial solution of fHVH = 0, we�nally have LfHVH = 41 +p5 (127)It is readily shown that there is a waist at the 
enter of the se
ond lens for we have�12(2) = R11(mid)R21(mid)�11(1) +R12(mid)R22(mid)�22(1)= �R11(mid)R21(mid)�R12(mid)R22(mid)R21(mid)R12(mid)��11(1)= �� L4f2 2f � 12f � L2f + 12f L(L� 2f)4f3 fL(L+ 2f)��11(1)= [0℄�11(1) . (128)Thus �12(2) = 0, meaning that there is also a waist at the 
enter of the (defo
using) lens 2.It is instru
tive to 
ompare the sizez of the waists at the 
enters of the fo
using and defo
using lenses. Wehave �12(2) = R211(mid)�11(1) +R212(mid)�22(1)= �R211(mid)�R212(mid)R21(mid)R12(mid)��11(1)= " (L� 2f)24f2 � L2L(L� 2f)4f3 fL(L+ 2f)# �11(1)= �L� 2fL+ 2f �11(1) , (129)or �11(1)�11(2) = �L+ 2fL� 2f . (130)Substituting the result from equation (127) above we have�11(1)�11(2) = �3 +p51�p5 = 4:236 , (131)and the ratio of the beam sizes at the two lo
ations isx(1)x(2) = s�11(1)�11(2) = 2:058 . (132)
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ise: Consider now the verti
al plane of a F0D0 array. Show that the transfer matrix for a 
ell isRVHV(
ell) = 2664 2f2 � L22f2 Lf (2f � L)� L4f3 (2f + L) 2f2 � L22f2 3775 , (133)where the 
enter lens (2) has been repla
ed by two half-lenses, and that the the transfer matrix at themidpoint of the 
enter lens is RHV(mid) = 2664 2f + L2f L� L4f2 2f � L2f 3775 . (134)Hen
e show that 	VHV = �11(1)�22(1) = � R12(
ell)R21(
ell) = � 4f2 �L� 2fL+ 2f � ,from whi
h we see that the 
onditions on the initial phase-spa
e ellipse for waist-to-waist transport in theverti
al plane di�er from those in the horizontal plane. Pro
eed as before to show thatd	VHVdf = 8f2 L� 2f(L+ 2f)2 � 8f(L� 3f)L+ 2f = � 8f(L+ 2f)2 [L2 � 2f(L+ 2f)℄ .Equate this to zero and show that the relationship between fVHV and L arefVHV = 8>>><>>>: L4 (p5� 1)0�L4 (1 +p5) . (135)||||||||||||||||||||Comparison of equations (125) and (134) shows that if the system is designed to mimimize the beam sizein the horizontal plane, that in the verti
al plane is not simultaneously minimized. However, the ratio ofthe extrema of the verti
al and horizontal ellipses is given by	VHV	HVH = �11(1)�22(1) ����VHV, �11(1)�22(1) ����HVH = "�4f2(L� 2f)L+ 2f # � L� 2f�4f2(L+ 2f)� = �L� 2fL+ 2f �2 . (136)Using the value given in equation (126) for fHVH we �nd	VHV	HVH = "1�p53 +p5#2 = 0:05573 . (137)


