
TRIUMF UNIVERSITY OF ALBERTA EDMONTON, ALBERTADate 1983/06/20 File No. TRI-DNA-83-9Author GM Stinson Page 1 of 10Subjet A ourse in beam optis1. IntrodutionIn order that personnel involved with beam prodution at TRIUMF be able to be fully aware of what ishappening, it is neessary that they have some knowledge of beam transport theory. Toward this end aseries of disussions were held in early 1983 with senior operators. In these disussions the basis of beamtransport were outlined. This report is a summary of the information given in those sessions.The author makes no pretense that the ontents of this note are original. In fat, muh of what is ontainedhere follows the treatment of the subjet by Brown 1). Other material has been taken from the books ofBanford 2), Ste�en 3), Septier 4), Carey 5), Wollnik 6) and others listed in the referenes.Treatment of the subjet of beam transport in this report is done in the matrix formalism. For readerswho are not familiar with matries the information ontained in appendix A will be of use. Those familiarwith matries may proeed diretly to the next setion.2. The thin lens in matrix notationIn the study of geometrial optis one beomes familiar with diagrams that show image formation by thinlenses. The diagram below is one suh diagram for a single fousing lens.

Fig. 1. A onventional ray diagram for fousing by a thin lens.By de�nition, a lens is `thin' if it ats only to hange the slope of an inoming ray. It is assumed that the`height' of the ray immediately before lens ation and that immediately after lens ation are equal. Thisassumption is equivalent to ignoring displaement of the ray beause of refration at the entry and exitsurfaes. All rays initially parallel to the axis of the lens are bent suh that they all interset the axis ata foal point. There are two foal points: one to the right of the lens that orresponds to rays omingfrom an in�nite distane to its left, and one to the left of the lens that orresponds to rays oming from anin�nite distane to its right. The distane from the lens' enter to the foal point is alled the foal lengthand is denoted by f . If an objet is loated a distane p to the left of a lens of foal length f , then theobjet position is loated from the well-known thin lens equation1p + 1q = 1f .By onvention, p is onsidered positive if the objet lies to the left of the lens and q is positive if the image



Page 2 of 10 File No. TRI-DNA-83-9lies to its right. The foal length f is positive if the lens is fousing.For a matrix treatment of the problem we proeed as follows. Let (x0; �0) be the oordinates of a ray atthe objet a distane p upstream of a lens of foal length f and (x1; �1 = �0) be those at the lens beforelens ation. Following lens ation its oordinates are (x2; �2). A distane q downstream of the lens theoordinates of the ray are (x3; �3 = �2). We wish to �nd the relationship between (x3; �3) and (x0; �0) and,in partiular, that relation at a fous. The situation is illustrated below, noting that by onvention, anglesare onsidered positive when measured ounterlokwise from the axis of the lens.

Fig. 2. De�nition of oordinates used for a matrix treatment.2.1 The small angle approximationIn what follows we shall be using the small angle or paraxial ray approximation. Trigonometri andhyperboli funtions may be expanded in a power series of their arguments. The trigonometri expansionsare sinx = x� x33! + x55! � x77! + � � � os x = 1� x22! + x44! � x66! + � � �tan x = x+ x33 + 2x515 + 17x7315 + � � �and, for future referene, the hyperboli expansions aresinhx = ex � e�x2 = x+ x33! + x55! + x77! + � � � oshx = ex + e�x2 = 1+ x22! + x44! + x66! + � � �tanhx = ex � e�xex + e�x = x� x33 + 2x515 � 17x7315 + � � �where the angle x is expressed in radians.The small angle approximation onsists of replaing the funtion with the �rst term of these expansions.Thus, for example, we setsinx = x os x = 1 tan x = xwhere, again, the angle x is expressed in radians.To show that these approximations are not frivolous, onsider the evaluation of the trigonometri funtionsfor x = 0:20 radian = 11:459Æ. We �ndxsinx = 1:006698 1os x = 1:020339 xtan x = 0:986631 ,that is, the approximation for an angle as large as 11.5Æ is good to 2% or better. For x = 0:005 r = 5 mr|a



File No. TRI-DNA-83-9 Page 3 of 10typial divergene in a beam line|we �nd agreement to better than 0.001%;xsinx = 1:00000417 1osx = 1:00001250 xtanx = 0:99999167 .2.2 The transfer matrix for a thin lensConsider now the transformation from the point (x1; �1) to (x2; �2) in �gure 2. By the de�nition of a thinlens, the height of the ray does not hange during the ation of the lens. Thereforex2 = x1 (1)Also, for small �0, �1, and �2 we havetan �0 = tan �1 � �1 = x1=ptan �2 � �2 = � x2=q ,so that �2 = � x2q = �x2 � 1f � 1p� = �x1 � 1f �+ x1p (2)beause x2 = x1. Thus �2 = � x1f + �1 .In matrix notation, equations 1 and 2 take the form264 x2�2 375 = 2664 1 0� 1f 1 3775264 x1�1 375 (3)that we write as x2 = R�x2The matrix R = 2664 1 0� 1f 1 3775 (4)is alled the transfer matrix of the lens and relates the oordinates (x2; �2) immediately to the right of thelens|after lens ation|to those immediately to the left of the lens|before lens ation.2.3 The transfer matrix for a drift spaeNow onsider a region in whih there exists neither lenses nor eletri or magneti �elds. Suh a region isshown in �gure 3 on the next page.In suh a region a partile will travel in a straight line. If a partile has oordinates (x0; �0) at the pointA and oordinates (x1; �2) at the point B a distane L downstream of A, then we may �nd the oordinatesat B from those at A as follows.Clearly, the angle of the ray does not hange between the two points. Therefore�1 = �0 ,and, from the geometry of the situation, we have
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Fig. 3. Ray trajetory in a drift spae.x1 = x0 + L tan �1= x0 + L tan �0= x0 + Lj;�0where we have again used the small angle approximation. We again rewrite these equations in matrix formto obtain 264 x1�1 375 = 264 1 L0 1 375264 x0�0 375 (5)Thus the transfer matrix for a drift spae is R = 264 1 L0 1 375 (6)2.4 Image formation by a thin lens { Matrix-wiseLet us return to �gure 2 in whih an objet is plaed a distane p upstream of a lens of foal length f .We wish to �nd the distane q downstream of the lens where the image is loated. Thus we require therelationship between (x3; �3) and (x0; �0) and, in partiular, that relation at a fous. We trae bak fromthe image point as follows.264 x3�3 375 = 264 Driftlengthq 375264 x2�2 375= 264 Driftlengthq 375264 Lensation 375264 x1�1 375= 264 Driftlengthq 375264 Lensation 375264 Driftlengthp 375264 x0�0 375= 264 1 q0 1 37524 1 0� 1f 1 35264 1 p0 1 375264 x0�0 375 (7)



File No. TRI-DNA-83-9 Page 5 of 10where the appropriate matries have been inserted into equation 7. Doing the matrix multipliation yields264 x3�3 375 = 264 1 q0 1 3752664 1 p� 1f 1� pf 3775264 x0�0 375= 266664 1� qf q + p�1� qf �� 1f 1� pf 377775264 x0�0 375 (8)or 264 x3�3 375 = R264 x0�0 375 (9)where R is the overall transfer matrix from the objet to the image.Now we ask \What does a fous mean?" At a fous all rays emanating from any one point on the objetare refoused to the orresponding point of the image. That is, the �nal position must be independent ofthe initial divergene. This requires that the R12 matrix element be zero. Thusq + p�1� qf � = 0whih an be rewritten as 1p + 1q = 1f , (10)that is, the (standard) thin lens formula. Using this relationship, the matrix transformation between theobjet and the image beomes 264 x3�3 375 = 266664 �qp 0� 1f 1� pq 377775264 x0�0 375 .This shows that at a fous x3x0 = �qpwhih is the well-known magni�ation from geometrial optis. It follows that in a fous-to-fous situationthe magni�ation is given by the R11 matrix element.3. Thik lenses and prinipal planesThe above has been based on the assumption that the lens was thin|that is, its thikness ould be negletedand refration at its entry and exit surfaes ould be negleted. If this is not the ase then the presriptionused above annot be used.It is not the purpose of this note to give a detailed aount of geometri optis, but we will give an overviewof the treatment of thik lenses in what follows and then show its appliation to beam optis.



Page 6 of 10 File No. TRI-DNA-83-9The upper portion of �gure 4 shows the treatment of a thik lens when eah surfae is treated independently.

Fig. 4. Ray traing for a thik lens: eah surfae treated independently (top) and the prinipal planemethod (bottom).The entry fae of the lens has a radius of urvature of R1 and that of the exit fae is R2. Both R1 and R2are taken as positive if their respetive faes are onvex to inident light. Thus, R1 is positive and R2 isnegative in �gure 4.Reall that the foal lengths of the two surfaes are determined by their radii of urvature. If n is theindex of refration of the lens relative to that of the surrounding medium, the the foal lengths of the entrysurfae f1 and that of the exit surfae f2 are given byf1 = R1n� 1 and f2 = R21� n .In �gure 4, the upper dashed line is a ray that leaves an objet a distane L1 from the entrane surfaeand passes through the enter of urvature of that surfae. Beause it enters the lens normal to its surfae



File No. TRI-DNA-83-9 Page 7 of 10this ray is not refrated. If the lens extended to the right this ray would trae the trajetory shown. Thelower solid ray is one that passes through f1 and, onsequently, is refrated to be parallel to the lens' axis.Again, if the lens path. At the intersetion of these two rays an image would be formed at the point labeledI0. This image ats as the objet for the exit fae of the lens.The upper solid ray of �gure 4 leaves the objet and passes through the enter of urvature of the exitfae of the lens (as drawn, this orresponds to the point of intersetion of the entrane fae and the lens'axis). Again, this ray is normal to the exit fae and is not refrated there; it ontinues as shown. However,as far as the exit fae is onerned, the ray that passed through the foal point f1 is now parallel to theaxis. Consequently, this ray is refrated to pass through the downstream foal point f2|as indiated bythe solid line. At the point of intersetion of these two rays the �nal image is formed at the point I, adistane L2 downstream of the exit fae. In general, we �nd that1L1 + 1L2 6= 1fwhere f is neither f1 nor f2.The lower portion of �gure 4 shows how we would like to treat this problem. Our wish is to �nd two planes,the prinipal planes, P1 and P2 and an equivalent foal length f suh that if we measure with respet tothe prinipal planes we an treat the problem using the thin-lens formula. As indiated in �gure 4, supposethat P1 is loated a distane z1 from the entrane fae and P2 is loated a distane z2 from the exit faeof the lens. We take z1 to be positive if it lies to the right of the entrane fae and z2 to be positive if itlies to the left of the exit fae. We �nd that the seond prinipal plane is positioned at the intersetion ofthe inoming and outgoing ray suh that the outgoing ray intersets the lens' axis at the downstream foalpoint. Similarly, an inident ray through the upstream foal point intersets the �rst prinipal plane andexits parallel to the axis of the lens. We want to �nd the quantities z1, z2 and f suh that if we writep = L1 + z1 and q = L2 + z2 ,we an also write 1p + 1q = 1f .We must now develop a presription by whih these parameters may be determined. Let the matrix R bethe transformation from immediately outside the entrane fae of the lens to immediately outside its exitfae. We wish to replae this matrix with two drift lengths and a thin lens|that is, we wish to write" R11 R12R21 R22 # = " 1 z20 1 # " 1 0�(1=f) 1 # " 1 z10 1 # (11)Doing the matrix multipliation and equating individual matrix elements yieldsz1 = R22 � 1R21 z2 = R11 � 1R21 (12)and 1f = �R21 (13)In the above the matrix R was arbitrary. Consequently, if we know the transfer matrix for a system,equations (12) and (13) give a method for �nding the prinipal planes and equivalent thin lens with whihthat system may be replaed.Rather than expliitly indiate the prinipal plane formalism for a thik lens, an example of its use for aombination of two thin lenses will be given.



Page 8 of 10 File No. TRI-DNA-83-9Example:An objet is plaed 30 units to the left of a lens of foal length +15 units. A seond lens of foal length 20units is plaed 10 units beyond the �rst. Determine the position and magni�ation of the �nal image.This problem will be solved with the three methods given so far|that is,a) the thin lens equations,b) the matrix method,) the prinipal plane tehnique.In what follows the subsripts `1' and `2' refer to properties assoiated with the �rst and seond lensesrespetively.a) Thin lens approahWe �rst �nd the position of the image produed by the �rst lens. With p1 = 30 and f1 = 15 the thin-lensequation gives 1q1 = 1f1 � 1p1 = 115 � 130 = 130or q1 = 30 units. This image beomes the objet for the seond lens andp2 = lens separation � q1 = 10� 30 = � 20 units .so that 1q2 = 1f2 � 1p2 = 120 � 1�20 = 110Thus the �nal image is loated 10 units downstream of the seond lens. The overall magni�ation of thesystem is found fromM = (magni�ation of �rst lens)(magni�ation of seond lens)= �q1p1 � �q2p2= �3030 � �10�20= � 12b) Matrix methodHere we note that the problem onsists of a drift length p1, a lens of foal length f1, a drift length d1orresponding to the separation of the lenses, another lens of foal length f2, and a �nal drift of length q2to the image. In matrix notation, writing F1 = 1=f1 and F2 = 1=f2, this on�guration is written as" x2�2 # = " 1 q20 1 # " 1 0�F2 1 # " 1 d10 1 # " 1 0�F1 1 # " 1 p10 1 # " x0�0 #= " 1 q20 1 # " 1� d1F1 d1�f1 � F2(1� d1F1) 1� d1F2 # " 1 p10 1 # " x0�0 #= " (1� d1F1)(1 � q2F2)� q2F1 p1 + d1 + q2 � p1f1(d1 + q2)� q2F2(p1 + d1) + d1p1q2F1F2�F1 � F2(1� d1f1 (1� d1F2)(1� p1F1)� p1F2 # " x0�0 #= " (1=3) � (q2=12) 30� 3q2�(1=12) �2 # " x0�0 #where we have inserted the appropriate numerial values.



File No. TRI-DNA-83-9 Page 9 of 10In order that we have a fous it is neessary that x2 be independent of �0. Thus R12 = 30� 3q2 = 0 orq2 = 10 units .With this value of q2 then R11 = (1=3) � (10=12) = � (1=2)so that x2 = = � 12 x0 .Thus the �nal image lies 10 units downstream of the seond lens and is magni�ed by a fator of �0.5|asdetermined using the thin-lens equations.) Prinipal plane approahHere we onsider the two lenses and separating drift spaes as a thik lens. The transfer matrix for thissystem was found in b) above to be" 1 0�F2 1 # " 1 d10 1 # " 1 0�F1 1 # = " 1� d1F1 d1�f1 � F2(1� d1F1) 1� d1F2 # .Using the de�nitions given in equations (12) and (13) we �nd� 1f = � 112 , z1 = [1� (10=20)℄ � 1(�1=12) = 6 , z2 = [1� (10=15)℄ � 1(�1=12) = 8 .Then p = L1 + z1 = 30 + 6 = 36and 1q = 1f � 1p = 112 � 136 = 118 .Thus the image is q = 18 units to the right of the seond prinipal plane. To alulate its loation relativeto the seond lens we have L2 = q � z2 = 18� 8 = 10 units,the same loation as before. The magni�ation is obtained fromM = � qp = � 1836 = � 2 ,that, again, is in agreement with that obtained using the other approahes. It is left as an exerise to drawray diagrams for eah of the thin-lens and prinipal plane approahes.Exerise: Repeat the above for the following problem.Two lenses, eah of foal length 2 units, are plaed 10 units apart. An objet is plaed 5 units in front ofthe �rst lens. Find the position and magni�ation of the image. Draw a ray diagram for the thin lens andthe prinipal plane approahes.4. Quadrupoles and quadrupole arraysIt is not the purpose of this report to derive formulae for the alulation of partile trajetories throughmagneti elements. However, in Appendix Q the (�rst-order) transfer matrix through a quadrupole isderived from the trajetory equations. This has been done to indiate the proess involved. This setionwill take the quadrupole transfer matrix and examine it in order to show the similarities between it andthe geometri optis that have been disussed above.



Page 10 of 10 File No. TRI-DNA-83-9Appendix Q gives the transfer matrix of a horizontally-fousing quadrupole asRQ = 26666664 os � sin �k 0 0� k sin � os � 0 00 0 osh � sinh �k0 0 k sinh � osh �
37777775 (14)

in whih L = e�etive length in m of the quadrupole,� = kL,k2 = (B0=a)/(B�)0,(B�)0 = the magneti rigidity of the partile,B0 = the pole-tip �eld of the quadrupole,a = the radius in m of the quadrupole aperture.The transfer matrix of a vertially-fousing quadrupole has the two non-zero sub-matries of equation (14)interhanged.This 4�4 matrix transforms an initial oordinate x0 = (x0; �0; y0; �0) into the oordinate x1 =(x1; �1; y1; �1). Notie that the (x; �) and the (y; �) oordinates are ompletely deoupled in the ma-trix equation x1 = RQ x0. It is also important to notie that unlike an optial thin lens, a quadrupolefouses in one plane and defouses in the orthogonal plane. Thus if a quadrupole fouses horizontally, italso defouses vertially.In the following quadrupoles will be onsidered individually, in pairs as doublets, and in threes as triplets.The harateristis of eah grouping will be disussed.4.1 Quadrupole singletsAs is indiated in Appendix Q, the 2�2 matrix that represents the ation of a quadrupole in its fousingplane is 24 os � sin �k� k sin � os � 35Using the prinipal plane theory that we have developed, we may replae this matrix with a thin lens andtwo drift spaes. Using the supersript `+' to indiate that we are dealing with the fousing plane of thequadrupole, these matries are related suh that24 os � sin �k� k sin � os � 35 = " 1 z+20 1 # " 1 0�(1=f+) 1 # " 1 z+10 1 # .From the above and equation (13) it follows thatf+ = 1k sin � = 1k sinkL . (15)Similarly we �nd the loation of the prinipal planes P+1 and P+2 relative to the ends of the quadrupolefrom the values of z+1 and z+2 . We �nd z+1 = z+2 = os kL� 1� k sinkL (16)From Appendix Q, the 2�2 matrix that represents the ation of a quadrupole in its defousing plane is



File No. TRI-DNA-83-9 Page 11 of 1024 osh � sinh �kk sinh � osh � 35from whih, using the same tehnique and using the supersript `�' to indiate we are dealing with thedefousing plane of the quadrupole, we �nd f� = � 1k sinhkL (17)and z�1 = z�2 = osh kL� 1k sinhkL . (18)The above expressions for f�, z�1 , and z�2 are ompletely general. However, it is of interest to onsiderthe ase when � = kL � 1. In this ase we may expand the trigonometri and hyperboli funtions in apower series of their arguments. For the trigonometri funtions we havesinx = x� x33! + x55! � x77! + � � � os x = 1� x22! + x44! � x66! + � � �ose x = 1sinx = 1x + x6 + 7x3360 + 31x515120 + � � �and for the hyperboli funtions we havesinhx = ex � e�x2 = x+ x33! + x55! + x77! + � � � oshx = ex + e�x2 = 1+ x22! + x44! + x66! + � � �oseh x = 2ex � e�x = 1x � x6 + 7x3360 � 31x515120 + � � �Using these expansions we then have in the fousing plane of the quadrupolef+ = ose �k= 1k "1� + �6 + 7�3360 + 31�515120 + � � � #� 1k �1� + �6�= 1k2L + L6 (19)where we have kept only the �rst two terms of the expansion. Expressions are found for the positions ofthe prinipal planes in a similar manner. We obtainz+1 = z+2 = os � � 1� k sin �= � 1k "� �22! + �44! � �66! + � � �# "1� + �6 + 7�3360 + � � �#� � 1k "� �22! + � 14! � 16(2!)� �3#= L2 "1 + k2L212 # . (20)



Page 12 of 10 File No. TRI-DNA-83-9Similarly, in the defousing plane we �ndf+ = oseh �k= � 1k "1� � �6 + 7�3360 � 31�515120 + � � � #� � 1k �1� � �6�= � 1k2L + L6 (21)and z�1 = z�2 = osh � � 1� k sinh �= 1k "�22! + �44! + �66! + � � �# "1� � �6 + 7�3360 + � � �#� 1k � �2! + � 14! � 16(2!)� �3�= L2 "1� k2L212 # . (22)4.1.1 First-order approximationIf only the �rst term is kept in eah of the above expansions we have what is known as the �rst-orderapproximation for the quadrupole. In this ase we havef+ = �f� = f0 = 1k2L = (B�)0(B0=a)L = (B�)0gL (23)and z+1 = z+2 = z�1 = z�2 = z0 = L2 (24)where g = B0=a is the gradient of the quadrupole �eld. Thus, to �rst order, a quadrupole may be treatedas a thin lens at its geometri enter with drift lengths on either side of length equal to one-half of thee�etive length of the quadrupole. Notie that in this approximation the foal lengths in the fousing andthe defousing planes have the same absolute value f0; in the fousing plane f0 is taken as positive whereasit is taken as negative in the defousing plane. Figure 5 is a sketh for a quadrupole of length L.

Fig. 5. First-order approximation of a quadrupole in fousing plane (left) and in defousing plane (right).



File No. TRI-DNA-83-9 Page 13 of 10At TRIUMF, for example, the parameters haraterizing the standard 4-inh quadrupole 4Q14/8 areL = 0:4090 m; a = 0:0508 m; B0(max) = 8 kG .Thus g = B0a = 80:0508 kG/mand at 500 MeV (B�)0 = 36:36 kG-m;so that f0 � 36:36(8=0:0508) 10:4090 = 0:57 mand z0 = L2 = 0:2045 m .For most ases of beamline work at TRIUMF this �rst-order treatment of quadrupole is adequate. Thenext setion onsiders the seond-order approximation to quadrupoles and may be omitted without loss ofontinuity.4.1.2 Seond-order approximationThe seond-order approximation to a quadrupole is obtained when the �rst two terms of the expansionsof the foal length and prinipal plane loations are kept. This yieldsf� = � 1k2L + L6 = � f0 + L6 . (25)Equation (25) shows that in its fousing plane the foal length of a quadrupole is longer than that of athin lens of foal length f0. Consequently, the fousing power of a quadrupole is less than a thin lens ofa thin lens of foal length f0. Conversely, a quadrupole has a stronger defousing ation in its defousingplane than does a defousing lens of foal length f0.Similarly, we �nd the positions of the prinipal planes fromz�1 = z�2 = L2 "1�k2L212 # = L2 �1� L12f0 � (26)To seond order a quadrupole may be represented as shown in �gure 6.

Fig. 6. Seond-order approximation of a quadrupole: fousing plane (left) and defousing plane (right).



Page 14 of 10 File No. TRI-DNA-83-94.2 Quadrupole doubletsWe now onsider the ombination of two quadrupoles, one that fouses in the horizontal plane and onethat fouses in the vertial plane. Assume that the e�etive length of eah quadrupole is 2L and that theseparation between their e�etive edges is d. We shall assume that the �rst quadrupole fouses horizontallyand the seond fouses vertially.We shall examine this on�guration using the thin-lens approximation for the quadrupoles. In x4.1.1 wehave seen that the foal lengths of a given quadrupole in its fousing and defousing planes are of equalmagnitude but of opposite sign. Thus for the �rst quadrupolef+1 = � f�1 = f1 ,and for the seond quadrupole f�2 = � f+2 = f2 .The onvention adapted here is that the numeri subsript designates the quadrupole and the supersriptrefers to the fousing (+) or defousing (�) plane of that partiular quadrupole. Then, if distanes upstreamof the doublet are measured to the enter of the �rst quadrupole and those downstream are measures fromthe enter of the seond quadrupole, the doublet may be represented as shown in �gure 7.

Fig. 7. First-order approximation of a horizontal-vertial quadrupole doublet.where s is the enter-to-enter separation of the quadrupoles, 2L is the (e�etive) length of eah quadrupole,and f1 and f2 are the foal lengths in the fousing planes of the �rst quadrupole Q1 and the seondquadrupole Q2 respetively.In the horizontal plane the transfer matrix from the entrane of lens f1 to the exit of lens f2 is, writingFi = 1=fi, " 1 0F2 1 # " 1 s0 1 # " 1 0�F1 1 # = " 1� sF1 sF2 � F1 � sF1F2 1 + sF2 # (27)



File No. TRI-DNA-83-9 Page 15 of 10and that in the vertial plane is" 1 0�F2 1 # " 1 s0 1 # " 1 0F1 1 # = " 1 + sF1 sF1 � F2 � sF1F2 1� sF2 # . (28)Thus in the horizontal plane we have � 1f+� = � 1f1 + 1f2 � sf1f2 (29)and in the vertial plane we �nd � 1f�+ = � 1f2 + 1f1 � sf1f2 (30)where the supersript `+�' indiates that the �rst quadrupole fouses (+) and the seond defouses (�)in the plane being onsidered, with a similar meaning for `�+'. Thus f+� denotes the foal length inhorizontal plane of an HV doublet and f�+ is that in its vertial plane.Equations (29) and (30) may be rewritten ashorizontal plane 1f2 = 1f+� � f1f2 � f1 + s 1f1 = 1f+� � f2f2 � f1 + s (31)and vertial plane 1f2 = 1f+� � f1f1 � f2 + s 1f1 = 1f+� � f2f1 � f2 + s (32)from whih it follows that for simultaneous fousing in both the horizontal and vertial planes it is neessarythat jf2 � f1j < s . (33)Equation (12) is used to alulate the loations of the prinipal planes. In the horizontal plane we �ndz+�1 = � F2F+� s and z+�2 = F1F+� s (34)and in the vertial plane we havez�+1 = F2F+� s and z�+2 = � F1F+� s . (35)As shown in the next setion, these relationships indiate that the prinipal planes in the fousing plane ofthe �rst quadrupole lie upstream of the doublet, and those in the fousing plane of the seond quadrupolelie downstream of the doublet.4.2.1 Antisymmetri quadrupole doubletIn most ases the quadrupole �elds of a doublet are not too di�erent. The speial ase in whih the pole-tip �elds of the quadrupoles have the same absolute value but opposite signs are alled an antisymmetridoublet. In this ase we have f1 = � f2 = fand the transfer matries|in the thin lens approximation|redue to264 1 � sf s� sf2 1 � sf 375 (36)where the upper sign is used for the horizontal plane and the lower sign for the vertial plane. From this



Page 16 of 10 File No. TRI-DNA-83-9matrix the e�etive foal length f 0 of this antisymmetri doublet is found to bef+� = f�+ = f 0 = f2s . (37)We note that beause f 0 is positive, an antisymmetri doublet is always fousing. Similarly, the positionsof the prinipal planes are given by z+�1 = z�+2 = � f (38)and z�+1 = z+�2 = f . (39)At TRIUMF, for example, with two standard 4-inh quadrupoles at half power, we havef 0 � (1:2)2=0:8 = 1:9 m for s = (0.2 m + 0.4 m + 0.2 m) = 0.8 m ,so that z+�1 = z�+2 = � f = � 1:2 mand z�+1 = z+�2 = f = 1:2 m .The diagram below shows an antisymmetri doublet operating in a fous-to-fous mode.

Fig. 8. An HV antisymmetri doublet operating in a fous-to-fous mode.From the above diagram the inherent asymmetry of a quadrupole doublet should be apparent. If thedoublet is operated in a fous-to-fous mode from a point L units upstream of the (enter of) quadrupole



File No. TRI-DNA-83-9 Page 17 of 10Q1 to a point L units downstream of the (enter of) quadrupole Q2, the objet and image distanes in thehorizontal plane are given byp+� = L+ z+�1 < L and q+� = L+ z+�2 > Lbeause z+�1 is negative and z+�2 is positive. Consequently, the magnitude of the magni�ation in thehorizontal plane is jMxj = �����q+�p+� ����� > 1 .On the other hand, the objet and image distanes in the vertial plane are given byp�+ = L+ z�+1 > L and q�+ = L+ z�+2 < Lbeause z�+1 is positive and z�+2 is negative. Consequently, the magnitude of the magni�ation in thevertial plane is jMyj = �����q�+p�+ ����� < 1 .Thus, in general, the magni�ation of a doublet operating in a fous-to-fous mode is always larger in thefousing plane of the �rst quadrupole than that in the fousing plane of the downstream quadrupole.Exerise:An HV antisymmetri quadrupole doublet onsists of two quadrupoles, eah of e�etive length 0.4 m andbore 10.16 m. The distane between their e�etive edges is s = 0:4 m. It is desired to fous 500 MeVprotons from an objet loated a distane L = 5:0 m upstream of the �rst quadrupole at a point L = 5:0 mdownstream of the seond quadrupole.a) Using the thin lens approximation, show that the overall transfer matrix for this system is given byR = 26664 1� sF (1 + LF ) 2L+ s(1� L2F 2) 0 0�sF 2 1 + sF (1� LF ) 0 00 0 1 + sF (1� LF ) 2L+ s(1� L2F 2)0 0 �sF 2 1� sF (1 + LF ) 37775 ,where F = 1=f is the inverse foal lengths of the quadrupoles.b) From the above show that the required foal lengths of the quadrupoles isf = 1F = Lr ss+ 2Land alulate the pole-tip �elds required to produe this foal length, and the magni�ations in eah of thehorizontal and vertial planes.) Using the prinipal plane tehnique verify the results obtained above.Answer: f = 1:366 m, B0 = �3:381 kG, M+� = �1:752, and M�+ = �0:571. These values are to beompared with B0 = �3:698 kG, M+� = �1:826, and M�+ = �0:548 that are obtained using the fullquadrupole matrix.℄4.3 Quadrupole tripletsAnother ombination of quadrupoles is the triplet. Consider three quadrupoles, eah of e�etive length2L, that are separated by a distane d. The pole-tip �elds of the quadrupoles are, respetively, B1, B2,and B3, whih may be onverted into the foal lengths f1, f2, and f3.



Page 18 of 10 File No. TRI-DNA-83-9In the thin lens approximation the three quadrupoles are eah replaed with a lens of the appropriatestrength at the enter of eah quadrupole. The lenses are then separated by a distane s = d+ 2L.Consider the horizontal plane of an HVH triplet. The transfer matrix from the enter of Q1 to the enterof Q3, again with the notation F = 1=f , is" 1 0�F3 1 # " 1 s0 1 # " 1 0F2 1 # " 1 s0 1 # " 1 0�F1 1 #= " �sF1 + (1� sF1)(1 + sF2) s(2 + sF2)�(1� sF3)[F1 � F2(1� sF1)℄� F3(1� sF1) �sF3 + (1� sF3)(1 + sF2) # (40)It is evident that even in the thin-lens approximation this expression ould beome unwieldly. In thefollowing setion a speial ase will be examined.4.3.1 General ase of equally powered outer quadrupolesA simpli�ation of the above expression results if the outer quadrupoles of the triplet are equally powered.We assume that all quadrupoles have equal e�etive lengths, that the pole-tip �elds of the outer quadrupolesare B1 and that of the inner quadrupole is B2, and that the orresponding foal lengths are f1 and f2. Forthe purpose of illustration we assume an HVH quadrupole on�guration.In the thin lens approximation the foal lengths in the fousing and defousing planes of a given quadrupoleare equal. Consequently, the transfer matrix of the triplet in the horizontal plane is" 1 0�F1 1 # " 1 s0 1 # " 1 0+F2 1 # " 1 s0 1 # " 1 0�F1 1 #= 24 1� 2x1 + x2(1� x1) s(2 + x2)1� x1s �[x2(1� x1)� 2x1℄ 1� 2x1 + x2(1� x1) 35 (41)where we have written xi = jsFij = js=fij. Similarly, in the vertial plane we �nd" 1 0+F1 1 # " 1 s0 1 # " 1 0�F2 1 # " 1 s0 1 # " 1 0+F1 1 #= 24 1 + 2x1 � x2(1 + x1) s(2� x2)1 + x1s �[2x1 � x2(1 + x1)℄ 1 + 2x1 � x2(1 + x1) 35 . (42)From these equations we then �nd the loations of the prinipal planes to beHorizontal plane z+�+1 = z+�+2 = s1� x1 = s1� sF1 (43)and Vertial plane z�+�1 = z�+�2 = s1 + x1 = s1 + sF1 . (44)Equations (43) and (44) show that the �eld of the enter quadrupole of a triplet may be varied withouta�eting the positions of the prinipal planes. This property has no ounterpart in a quadrupole doubleton�guration.Pitorially, we have the situation indiated below. In the diagram it has been assumed that the outerquadrupoles of the triplet fous vertially and the enter quadrupole fouses horizontally.
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Fig. 9. Shemati of a VHV triplet on�guration.From equation (41) the e�etive foal length f+�+ in the horizontal plane of an HVH triplet are found tobe f+�+ = f1f2�1� sf1� (�f1 + 2f2 + s) , (45)and we have seen that and the positions of the prinipal planes in the horizontal plane are given byz+�+1 = z+�+2 = sf1f1 � s . (46)Similarly, the e�etive foal length f+�+ in the vertial plane of an HVH triplet are found to bef�+� = f1f2�1 + sf1� (f1 � 2f2 + s) , (47)and we have seen that and the positions of the prinipal planes in the vertial plane are given byz�+�1 = z�+�2 = sf1f1 + s . (48)In the ase that s�f1 note that the positions of the prinipal planes in eah of the horizontal and vertialplanes an be written z(+�) = sf1f1�s ! s ,



Page 20 of 10 File No. TRI-DNA-83-9that is, for s�f1, all prinipal planes oinide at the geometri enter of the triplet. Consequently, thistriplet will at more like a thin lens in both planes than will a doublet.In general, provided that the foal lengths of the outer quadrupoles of a triplet are larger than twie theirseparation, the prinipal planes in both the horizontal and vertial diretions lie within the triplet. As wehave seen, this was not the ase with the antisymmetri doublet.Typial values of TRIUMF quadrupoles|the enter quadrupole at 5 kG and the outer pair at 3 kG|aref1 � 1:5 m f2 � 0:9 m s � 0:8 mso that f+�+ = (1:5)(0:9)(�1:5 + 2(0:9) + 0:8)(1 � (0:8=1:5)) = 2:63 mf�+� = (1:5)(0:9)(�2(0:9) + 1:5 + 0:8)((1 + (0:8=1:5)) = 0:59 mz+�+1 = z+�+2 = (1:5)(0:8)1:5� 0:8 = 1:71 mz�+�1 = z�+�2 = (1:5)(0:8)1:5 + 0:8 = 0:52 mFigure 10 shows the prinipal plane arrangements for a VHV triplet operating in a fous-to-fous modewith equal objet and image distanes.

Fig. 10. Prinipal planes of a VHV triplet operating in a fous-to-fous mode.



File No. TRI-DNA-83-9 Page 21 of 10We note that with the above on�guration|a symmetri triplet operating in a fous-to-fous mode withequal objet and image distanes|the magni�ations in the horizontal and vertial planes are eah equalto �1. As we have seen, with an equivalent doublet on�guration this is not possible.Exerise:An HVH symmetri triplet onsists of three quadrupoles, eah of e�etive length 0.4 m and bore 10.16 m,that are separated by 0.4 m. It is desired to fous 500 MeV protons from an objet situated 5 m upstreamof the triplet to an image point 5 m downstream of it. The outer quadrupoles are powered equally.a) Replae eah quadrupole by a thin lens and obtain the transfer matrix from objet to image. Calulatethe required pole-tip �elds of the quadrupoles and the magni�ations in eah of the horizontal and vertialplanes.b) Using the prinipal plane approah, verify the results obtained in part a).Answer:We �nd f+�+ = 3:291 m, f�+� = 2:881 m, B+ = 2:432 kG, B� = �4:215 kG, M+�+ = �1:0, andM+�+ = �1:0. These values are to be ompared with B+ = 2:817kG, B� = �4:215 kG, M+�+ = �1:0,and M+�+ = �1:0 that are obtained using the exat matrix.) What happens if the polarities of the quadrupoles are reversed?4.4 Chromati aberrationsIn the foregoing it has been assumed that all partiles traversing the quadrupoles have had the samemomentum. This, of ourse, is not true in pratie. Consequently, if there is a momentum spread in thebeam eah di�erent momentum will be a�eted in a slightly di�erent manner by the quadrupoles. In fat,di�erent momenta will be foused at di�erent plaes along a line through the axes of the quadrupoles. Thisis alled hromati aberration.It an be shown that this e�et an be negleted for most beamlines that we will meet. Other than amention of this e�et, no further onsideration of quadrupole hromati aberrations will be given here.However, for those interested ref 5) gives a detailed investigation of this e�et.In general, however, the e�et of magnets on partiles of di�erent momentum is not something that anbe negleted. In fat, for some magnets it is a neessary onsideration|as we shall see in the followingsetion.5. Dipole magnetsWe are all familiar with the optial prism in whih di�erent wavelengths are bent through di�erent angleswith the result of a `rainbow' e�et. This is aused by the variation of the index of refration withwavelength and is, in fat a hromati e�et. The bending power of a lens depends on the wavelength ofthe light and thus the energy of the photons (the quanta of light). [Remember that the energy of a photonis given by E = h� = h=� where  is the speed of light, � is its frequeny, � its wavelength, and h is auniversal onstant alled Plank's onstant that is equal to 6.6256�10�34 joule-se. The momentum of aphoton is p = E=.℄ The beam transport analogy of this is, of ourse, the dipole magnet in whih partilesof di�erent momentum are deeted through di�erent angles.In the disussion of quadrupoles it has been assumed that the partiles ould be treated as if they traveledparallel to a (�xed) Cartesian oordinate system. Beause deviations from travel along the z-axis wereassumed to be small, we were able to derive the equations of motion through a quadrupole �eld|at leastto a �rst-order approximation. This proedure annot be used with a dipole magnet beause we know that



Page 22 of 10 File No. TRI-DNA-83-9suh a magnet hanges the diretion of the inident beam.Certainly, we ould express the oordinates of partiles on exit from a dipole, x1 = (x1; y1; z1), in terms ofthose referred to an initial oordinate system, x0 = (x0; y0; z0) that is set up at the entrane of the dipole.However, we are interested in a oordinate system in whih the z-axis lies along the diretion of the beam.In this ase we must attah a oordinate system to the beam as it passes through the dipole.The oordinate system is hosen suh that the z-axis always points in the (instantaneous) diretion inwhih the beam travels. This oordinate system obviously rotates with the beam and when the beam exitsthe dipole the z-axis will point in the beam diretion. Thus at the dipole entrane we onvert from aCartesian system x0 to a rotating system. On exiting the dipole we onvert from the rotating system to anew Cartesian system x1 in whih the z-axis again points in the beam diretion.The proedure for developing the equations of motion through a dipole involves onepts from di�erentialgeometry. Here, however, only the results will be quoted.5.1 General oneptsFor the purposes of this report a dipole magnet will be onsidered to be a magnet in whih the magneti�eld B is given (in a Cartesian frame of referene) byB = (0; By; 0) , (49)that is, the magneti �eld lies parallel to the positive (vertial) y-axis. Furthermore, it will be assumedthat B is onstant.Qualitatively, we may desribe partile motion in a dipole as follows. With the onvention that the (loal)z-axis lies in the diretion of motion|that is, the veloity vetor of the partile lies along the instantaneousz-axis|the partile feels a deeting fore given byF = qv�Bwhere v is the veloity of the partile and q is its harge. The unit of q is the Coulomb, those of v are m/s,while that of B is T.The diretion of the magneti fore is neither in the diretion of v nor in the diretion of B but in thediretion of the vetor v�B. This vetor is alled the vetor ross produt of v and B and is de�ned tohave the magnitude vBsin�, � being the angle between v and B, and to have a diretion perpendiular tothe plane ontaining v and B as determined by the right-hand rule. [Plae the �ngers of the right handalong the vetor v and url them into the vetor B. The thumb then points in the diretion of the foreon a positively harged partile.℄Beause we have assumed B is parallel to the y-axis and v is parallel to the z-axis, they are perpendiularand the magnitude of qv�B is qBsin90deg = qvzBy = qvB. From the right-hand rule, the diretion of thefore is along the negative x-axis. Thus we haveFx = � qvB Fy = 0 Fz = 0 (50)where we have dropped the subsripts of the magneti �eld and the veloity. Consequently, looking alongthe beam, a positive partile entering the �eld will be deeted to the right.Now when v and B are mutually perpendiular and the magneti fore has a onstant magnitude ofqvB and is always perpendiular to v, it is shown in physis ourses that this results in irular motion.Equating the magneti fore to the produt of mass times entripetal aeleration we obtain



File No. TRI-DNA-83-9 Page 23 of 10qvB = m v2� (51)where � is the radius of the irle. This we rewrite asB� = mvq = pq . (52)The important quantity B� with units of T-m is alled the magneti rigidity of the partile. It dependsonly on the ratio of the momentum of the partile to its harge. Often in beam-line literature the magnetirigidity will be written as (B�)0 to indiate that it is the magneti rigidity for whih the beam line isdesigned. In the units that we are using we have for protonsB[T℄�[m℄ = 3:3356p[GeV/℄ (53)In partiular, if a magnet is designed to deet a beam of momentum p0 through an angle �0 then we write(B�)0 = 3:3356p0 . (54)At this point the onept of dispersion must be introdued. In pratie, a beam of partiles will have a�nite momentum spread. If a magnet is designed to deet a beam of momentum p0|alled the entralmomentum|through an angle �0, then partiles of higher momentum p + �p will be bent through asomewhat smaller angle. Conversely, partiles of lower momentum p��p will be bent through a somewhatlarger angle. [Again, this e�et is optially equivalent to the variation of the index of refration withwavelength.℄ The result is that the beam is spread out in spae|that is, the position of the beam onexiting from the dipole depends on the momentum of the partile. The beam is spatially dispersed.Beause the diretion of the beam is also hanged, the beam is, in general, also dispersed in angle|thatis, the angle with respet to the z-axis also depends on the momentum of the partile. The beam also hasangular dispersion.5.2 Transfer matrix for a wedge dipole magnetConsider a magnet designed suh that a beam in whih partiles with the design (entral) momentum bothenter and exit the magneti �eld region at right angles. We then have the following situation for a bendangle of �0.

Fig. 11. Partile motion in a wedge magnet.In the above diagram the e�ets of dispersion are indiated shematially. Let us de�ne the quantity Æ as



Page 24 of 10 File No. TRI-DNA-83-9Æ = p� p0p0 (55)where p0 is the entral momentum of the beam for whih the magnet will deet a partile of that momen-tum through an angle �0 and p is the momentum of an arbitrary partile in the beam. The term Æ is thena measure of the `o�-momentumness' of the partile in question. Dispersion is introdued into the matrixformalism by adding another row and olumn to the transfer matrix. Thus the horizontal portion of thematrix is written as 264 x1�1Æ1 375 = 264 R11 R12 R13R21 R22 R230 0 1 375264 x0�0Æ0 375 . (56)In this equation x1 is the oordinate vetor at the exit of the dipole and x0 is that at its entrane. Thethird row indiates that the momentum of a partile is not hanged. This is beause stati magneti �eldsdo no work and, onsequently, do not hange the momenta of partiles in the beam. The matrix elementsR13 and R23 indiate that there is dispersion in both spae and angle.It an be shown that the transfer matrix in the bend plane of a uniform-�eld wedge magnet that bends apartile of momentum p0 through and angle � may be written asR(wedge, bend plane) = 2664 os� �0sin� �0(1� os�)� 1�0 sin� os� sin�0 0 1 3775 (57)where �0 is the radius of urvature in the magnet for partiles of (design) momentum p0.Motion in the non-bend (vertial) plane is not a�eted by the magneti �eld. Consequently, the momentumdependene is left out and the magnet appears as a drift spae. The transfer matrix in the non-bend planeis then R(wedge, non-bend plane) = " 1 �0�0 1 # (58)where �0� is the length of the trajetory within the magnet. As was done in the ase of quadrupoles, thesetwo matries are ombined into one. By onvention, the momentum row and olumn are written last. Thuswe have for the omplete transfer matrix through a wedge dipole2666664 x1�1y1�1Æ1
3777775 = 266666664 os� �0sin� 0 0 �0(1� os�)� 1�0 sin� os� 0 0 sin�0 0 1 �0� 00 0 0 1 00 0 0 0 1

3777777752666664 x0�0y0�0Æ0
3777775 . (59)5.3 Prinipal planes of a wedge dipole magnetUnless indiated otherwise we shall always assume that the bend plane of a dipole is horizontal. Beausethe optis of the non-bend plane of a wedge magnet are those of a �eld-free drift region, we need onlyonsider the its bend plane. In that plane we have264 x1�1Æ1 375 = 2664 os� �0sin� �0(1� os�)� 1�0 sin� os� sin�0 0 1 3775264 x0�0Æ0 375



File No. TRI-DNA-83-9 Page 25 of 10from whih we �nd � 1f = R21 = � 1�0 sin� (60)and z1 = z2 = R11 � 1R21 = ��0tan�2 . (61)Thus the prinipal planes are loated at the ross-over point|the point of intersetion of the inoming andoutgoing rays|of the magnet. In the bend plane the wedge magnet a be represented as a lens of foallength f = �0=sin� with drift spaes of length z1 = z2 = �0tan(�=2) on either side. This is illustratedin the �gure below.

Fig. 12. Prinipal planes (upper) and simpli�ed desription (lower) of a wedge magnet.Thus we may use the following simpli�ed matrix in the bend plane of a wedge magnet provided distanesare measured to/from its prinipal planes.R(wedge magnet, bend plane) = 2664 1 0 01�0 sin� 1 sin�0 0 1 3775 . (62)5.4 Magnets with arbitrary entry and exit anglesIf partiles do not enter and exit a magnet at right angles to the magnet's edge we annot use the abovepresriptions. We an, however, make suh a magnet from a wedge magnet by superimposing the �eld ofa magneti wedge on that of the wedge magnet. As illustrated in the following diagram, a magneti wedgeprodues a �eld that is positive on one side of the axis and negative on the other. This �eld adds to orsubtrats from the �eld of the wedge magnet and, with judiious plaement, an be used to generate theappropriate angles of entry and exit.It an be shown (see ref 5), for example) that the transfer matrix for a magneti wedge of angle � is
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Fig. 13. Constrution of a magnet with arbitrary entrane and exit angles using magneti wedges.
R(pole fae rotation) = 2666666664 1 0 0 0 0tan��0 1 0 0 00 0 1 0 00 0 �tan��0 1 00 0 0 0 1

3777777775 . (63)[Note: Beause we are onsidering the `hard-edge' model|that is, the magneti �eld drops to zero at thee�etive edge of the magnet|of a magnet, a orretion term to the R43 term has been omitted.℄The angle � is de�ned as positive if the normal to the pole-fae lies outside the entering trajetory withrespet to the enter of urvature. A similar matrix and sign onvention applies to the exit edge.The important result obtained from equation (63) is that edge fousing of dipoles is diretly proportional tothe radius of urvature of the entral trajetory and inversely proportional to the tangent of the edge angle.The former is usually large (> 2 m) and the latter is usually less than 0.5, resulting in a (minimum) foallength of 4 m or more. Consequently, the fousing e�et of edge angles is weak relative to that obtainedwith quadrupoles.A further, important result is that a positive edge angle provides vertial fousing and horizontal defousing.The onverse, of ourse, applies for a negative edge angle.The transfer matrix for a magnet into whih a partile enters at an angle � and exits at an angle � isobtained by premultiplying the wedge-magnet transfer matrix by the pole-fae rotation matrix for an angle� and postmultiplying it by the pole-fae rotation matrix for an angle �. ThusR(overall) = R(pole fae rotation �)R(wedge magnet)R(pole fae rotation �) . (64)5.5 The retangular magnetThe most ommon magnet at TRIUMF is one that is oriented suh that the entry and exit angles are eahone-half of the total bend angle. The magnet is the retangular in shape. We leave it as an exerise toobtain the transfer matrix for suh a magnet.Exerise:A magnet bends partiles through an angle � with a radius of urvature �0. The magnet is retangular sothat the entry and exit angles are � = � = �=2. Develop the transfer matrix for suh a magnet and showthat it is given by
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R " ret.magnet # = 266666664 1 �0sin� 0 0 �0[1� os�℄0 1 0 0 2tan(�=2)0 0 1� �tan(�=2) �0� 00 0 tan(�=2)�0 [�tan(�=2)� 2℄ 1� �tan(�=2) 00 0 0 0 1

377777775 . (65)6. Ahromati systemsAs has been mentioned previously, we always have some spread in momentum among the partiles of thebeam extrated from an aelerator. From the matrix representation above we have seen that after a beampasses through a dipole, both the position and angle in the bend plane of the dipole will be momentumdependent. If this beam falls on a target this implies that the momenta of the partiles hitting one side ofthe target will di�er from that of those striking the opposite side of the target. In most ases this is notdesirable from an experimenters point of view. Consequently, we design a system in whih the position ofthe beam on a target is independent of momentum. Suh a system is termed an ahromati system. If bothposition and angle at the target are momentum independent, the system is termed doubly ahromati.Rather than go into great details of the analysis of ahromati systems in general, their priniple of operationwill be illustrated by an example.It turns out to be possible to design a transport system that inludes a dipole suh that a beam that isahromati before entering a dipole is also ahromati after exiting it. One sheme is to split the dipoleinto two halves and plae a (horizontally) fousing lens entered between the dipoles as is shown below.

Fig. 14. Prodution of an ahromati beam with two wedge magnets and one quadrupole.In this �gure a (horizontal)ly fousing quadrupole is plaed between two wedge magnets. Eah dipolebends a beam of momentum p0 with a radius of urvature � through an angle �. The quadrupole has afoal length f and is loated midway between the dipoles at a distane L from the point of intersetion ofthe prinipal planes of eah magnet. We study this on�guration using the thin lens approximation.Let x0 the oordinate vetor of a partile at the �rst prinipal plane of the �rst dipole and x1 be that at itsseond prinipal plane. The vetors x4 and x5 have similar meanings for the seond dipole. The vetorsx2 and x3 are, respetively, the oordinate vetors immediately before and after quadrupole ation. Thenthe transfer matrix for the system is found from the matrix equation264 x5�5Æ5 375 = 264 Magnetmatrix#2 375264 DriftlengthL 375264 Lensationf 375264 DriftlengthL 375264 Magnetmatrix#1 375264 x0�0Æ0 375 .



Page 28 of 10 File No. TRI-DNA-83-9Putting in the appropriate matries and writing s = sin�,  = os�, and F = 1=f we have264 x5�5Æ5 375 = 264 1 0 0�s=� 1 s0 0 1 375264 1 L 00 1 00 0 1 375264 1 0 0�F 1 00 0 1 375264 1 L 00 1 00 0 1 375264 1 0 0�s=� 1 s0 0 1 375264 x0�0Æ0 375= 264 [1� LF ℄� (sL=�)[2 � LF ℄ L[2� LF ℄ sL[2� LF ℄f[(2s=�) + F [1� (sL=�)℄g[(sL=�) � 1℄ [1� LF ℄� (sL=�)[2� LF ℄ s[1� (sL=�)℄[2 � LF ℄0 0 1 375�264 x0�0Æ0 375 .For the system to be doubly ahromati we require that R13 = 0 and R23 = 0. Thus we havesL[2� LF ℄ = 0 and s[1� (sL=�)℄[2 � LF ℄ = 0 ,that is, f = L2 .Thus, in order to produe the doubly-ahromati ondition, it is neessary to adjust the quadrupole so asto fous from the enter of one dipole to the enter of the other.Insertion of the expression for f into the above matries shows that the transfer matrix for the dipole-quadrupole-dipole doubly-ahromati system isR(doubly ahromati) = 264 �1 0 0�(2=L)[1 � (L=�)sin�℄ �1 00 0 1 375Another tehnique, also involving splitting the dipole in half, is illustrated below. The diagram is takenfrom ref 9).

Fig. 15. An alternate tehnique of prodution of an ahromati beam.In this ase two idential fousing lenses are plaed symmetrially in the spae between the dipoles. Thelenses are adjusted to make the beam parallel to the entral trajetory in the spae between them. Fromsymmetry it should be obvious that the resulting beam will be ahromati.



File No. TRI-DNA-83-9 Page 29 of 10The problem with eah of these systems is that there is no fousing in the vertial plane|in fat thereis omplete defousing. The solution is to add a vertially fousing lens at the midpoint of the systemto provide the required fousing in the vertial plane. This is indiated by the dotted line in the abovediagram. Of ourse, the optis of the system will be hanged somewhat but the priniple remains valid.Often the single lens will be replaed with two equal lenses, again symmetrially loated about the midpoint,to allow for a slit or diagnosti devie to be inserted there. This has the advantage of allowing the insertionof a slit at the symmetry point to stop partiles of unwanted momentum.This latter tehnique (of adding two, equal, vertially fousing lenses) an also be used in the previoussystem to provide the required vertial fousing. Again, the optis will be modi�ed somewhat but thepriniple remains the same.Ahromati systems, inluding those using dipoles only, are treated in more detail in ref 5).7. Phase spae and beam size determinationSo far we have learned how to relate partile oordinates at the exit of a system to those at its entrane.Given a partile with oordinates x0 at the entrane of a system whose transfer matrix isR, the oordinatesof the partile upon exiting from the system, x1, are obtained fromx1 = R�x0 . (66)This equation relates the oordinates of individual partiles after the ation of the system to those priorto its ation. If, however, we are dealing with a beam of partiles, it would be impratial to apply thistehnique to eah partile in the beam. Furthermore, we are usually interested in parameters of the beamas a whole rather than in those of any individual partile. For these reasons, the onept of phase spae hasbeen developed and the previous matrix algebra has been extended to allow us to determine its properties.7.1 The phase spae ellipse and its usefulnessConsider the olletion of partiles that make up the `beam'. Eah individual partile an be assignedoordinates of position, angle and momentum relative to some entral trajetory. In the ontext of whathas been disussed, we would like to write the oordinates of eah partile asx1 = (x; �; y; �; Æ) . (67)For simpliity in what follows, onsider a beam of partiles whih has no vertial size or divergene andhas no momentum spread. Relative to that of some entral partile, the position of any individual partileis ompletely spei�ed by its horizontal position and divergene. We ould then get the size of the beamat any point by simply plotting the x-� distribution there. Again, however, it is lear that this would be avery tedious operation to perform.The left diagram of �gure 16, below, is meant to be suh a plot, the dots representing the oordinates ofindividual partiles. On the right, an ellipse has been drawn to enlose most of these partile oordinates.An ellipse has been hosen beause of its mathematial transformation properties. Suh diagrams are alleda phase-spae diagrams. In partiular, the ellipse is alled a phase-spae ellipse. It displays the relationshipbetween the horizontal size and horizontal divergene for eah and every partile of the beam. It is learthat, depending upon how large an ellipse is drawn, the number of partiles inluded within the ellipse willvary. However, one we are satis�ed that the ellipse that has been drawn is a reasonable approximation tothe atual beam parameters, the horizontal size of the beam an be determined by projeting the ellipseon the x-axis. Similarly, projetion of the ellipse on the �-axis will give a measure of the maximum of thedivergene of the beam.
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Fig. 16. A two-dimensional phase-spae diagram.It is also lear that the orientation of this ellipse will hange as the beam proeeds through the transportsystem. Thus, for example, the ase where a beam ellipse is initially upright. If a piture were taken ata seond point a distane L further along the drift spae, the `snapshot' of the two beam ellipses wouldappear as in the following diagram.

Fig. 17. The e�et of a drift spae on phase-spae ellipse.The reason for this hange is lear. The oordinates of any partile at the seond point, x1, are related tothose at an earlier point, x0, by the matrix for a drift spae," x1�1 # = " 1 L0 1 # " x0�0 # . (68)The x-oordinate of a partile is altered by an amount proportional to the produt of the distane betweenthe points and the divergene of the partile at the �rst point. The divergene of the partile is, however,unhanged. Thus in a drift spae of length L the points (0;��max) transform to the points (�L�max; �max)whereas the points (�x; 0) are unaltered. The ellipse shears with only points lying on the x-axis unalteredand the initial upright ellipse beomes tilted to the right at the seond loation.Thus the beam spreads out in spae but not in angle. Estimates of maximum horizontal extent anddivergene may be made by projeting the ellipse on the appropriate axis.If, on the other hand, the beam were to enounter a (thin) lens of foal length f , oordinates after lensation would be related to those before lens ation by the matrix for a thin lens" x1�1 # = 24 1 0� 1f 1 35 " x0�0 # . (69)
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Fig. 18. The e�et of a thin lens on phase-spae ellipse.In this ase, the x-oordinate is unhanged but the divergene of eah partile is a�eted. In partiular,note that the points (�xmax; 0) transform to the points (�xmax;�xmax=f) and that the points (0;��max)are unaltered. Consequently, the ellipse that enlosed the beam before lens ation beomes elongated alongthe �-axis after lens ation. The horizontal size of the beam has not hanged but its divergene has.In general, partiles traverse both drift spaes and fousing and deeting devies. Their umulative e�eton the phase-spae ellipse is not obvious. However, there is one partile whose oordinates are unhangedregardless of the transport system. That partile is the entral partile; its oordinates are (and were)(x; �) = (0; 0).It has been shown that any transport system an, with the prinipal plane approah, be redued to asystem omposed of two drift lengths and one lens. Consequently, there is no need to study a moreomplex system. Further, if a method an be devised to arry the ellipse through the transport system, weould immediately obtain the important beam parameters (horizontal beam size and divergene) at anypoint in the system by simply projeting the ellipse on the oordinate axes.The above disussion has been limited to a two-dimensional beam|that is, a beam whih only had ahorizontal size and divergene. Clearly, if we wanted to inlude momentum spread, for example, eahpartile would be desribed by the three oordinates x = (x; �; Æ). Rather than drawing an ellipse aroundthe resulting three-dimensional plot, it would be neessary to draw a solid �gure|an ellipsoid. We ouldstill determine maximum beam size and divergene by projeting the ellipsoid onto the x-� plane. Similarly,inlusion of vertial size and divergene as partile oordinates requires that we now go to a �ve-dimensionalellipsoid. By projeting this ellipsoid onto the appropriate planes, all important beam properties may beattained. Thus it should be lear that the methods indiated above are not restrited to the two-dimensionalase.7.2 Transformation properties of the ellipseIn the setion above, an ellipse was (somewhat arbitrarily) introdued as a representation of the atualbeam pro�le. In this setion the reason for its introdution will be given.Let the oordinate vetor and its transpose be x0 and xT0 respetively, and let ��10 be the inverse of �0,a real, positive-de�nite symmetri matrix. In Appendix A, setion 6, it is shown that an equation of theform xT0 �0 x0 = 1 (70)leads to the equation of an ellipse. Now let the partile with the oordinate vetor x0 be transportedthrough a system that has a transfer matrix R. Equation (70) an be rewritten as follows (realling that



Page 32 of 10 File No. TRI-DNA-83-9RR�1 = 1) xT0 [RT (RT )�1℄��10 [R�1R℄x0 = 1 ,or, [Rx0℄T [R�0RT ℄�1 [Rx0℄ = 1 .But the oordinate vetor at the end of the system is x1 = Rx0 so that we havex1T ��11 x1 = 1 (71)where �1 = R�0RT . (72)Thus, if equation (70) represents the beam at the start of the system, equation (72) will represent the beamat the end of a system that has a transfer matrix R. As was shown above, all of the important parametersan be obtained from knowledge of the phase spae ellipse.7.3 Ellipse transformation in two dimensionsTo simplify things we onsider only the two-dimensional (x; �) phase spae. We then havexT = [x�℄ and x = " x� #Suppose we draw an ellipse about this phase spae suh that the ellipse has its semi-major axis along thex-axis. The lengths of the semi-major and semi-minor axes are x0 and �0 respetively. Now de�ne thematrix �0 by �0 = " �11(0) �21(0)�21(0) �22(0) # = " x20 00 �20 # . (73)Notie that �0 has been de�ned as a symmetri matrix|that is, �12(0) = �21(0). Then the inverse of �0,��10 , is ��11 = 1�2 " �22(0) ��21(0)��21(0) �11(0) # = 1�2 " �20 00 x20 # (74)where �2 = det�0 = �11(0)�22(0) � �12(0)�21(0) = x20�20 is the determinant of the matrix �0. Then theequation of the ellipse xT0 �0 x0 = 1beomes �2 = [x � ℄ " �22(0) ��21(0)��21(0) �11(0) # " x� #= �22(0)x2 + �11(0)�2= �20x2 + x20�2= x20�20 . (75)This equation shows the relationship between the elements of the matrix � and the physial parametersx0 and �0. The maximum values of these parameters are the square roots of the diagonal elements of thematrix provided that the ellipse has its semi-major axis along one of the oordinate axes.The diagrams of x6.1 indiate that the phase-spae ellipse will rotate as a beam traverses a transportsystem. In this general ase|that is, if the initial ellipse is not eret|we have



File No. TRI-DNA-83-9 Page 33 of 10�2 = [x � ℄ " �22(0) ��21(0)��21(0) �11(0) # " x� # = �22x2 � 2�21x� + �11�2 (76)where we have dropped the notation `(0)'. If this ellipse is plotted we �nd a piture that will look similarto the following.

Fig. 19. Parameters of a general two-dimensional ellipse.The area of the ellipse, A, is given byA = �pdet� = �xmax�int = �xint�max (77)where the di�erent terms are de�ned in the �gure. The orrelation between x and �|the orientation ofthe ellipse|depends on the o�-diagonal term �21. This orrelation, de�ned asr21 = �21p�11p�22 , (78)measures the tilt of the ellipse and the intersetion of the ellipse with the oordinate axes. Note that�1 � r � + 1 . (79)Consider the speial ase of r21 = 0. If r21 = 0, then �21 = �12 = 0 and the ellipse is eret. In beamtransport this situation is alled a waist. Physially, if a beam is at a waist, we have the smallest beamsize attainable for a given divergene.Suppose that a beam desribed initially by equation (73) is transported through a system that has atransfer matrix R. Equation (72) allows us to determine the matrix �1 at the exit of the system. Thus�1 = " �11(1) �21(1)�21(1) �22(1) # = " R11 R12R21 R22 # " �11(0) �21(0)�21(0) �22(0) # " R11 R21R12 R22 # . (80)This leads to the following values for the matrix elements of �1.�11(1) = R211�11(0) + 2R11R21�21(0) +R212�22(0) ,�12(1) = �21(1) = R11R21�11(0) + [R11R22 +R12R21℄�21(0) +R12R22�22(0) , (81)�22(1) = R221�11(0) + 2R21R22�21(0) +R222�22(0) .In the speial ase of an initially upright ellipse �1 redues to



Page 34 of 10 File No. TRI-DNA-83-9�1 = " R211�11(0) +R212�22(0) R11R21�11(0) +R12R22�22(0)R11R21�11(0) +R12R22�22(0) R221�11(0) +R222�22(0) # . (82)Consider now some spei� ases.Suppose we start with an initially upright ellipse|that is, we start from a waist. Now let the beam drifta distane L. Insertion of the matrix elements for a drift region into equation (82) produes�1 = " �11(1) �21(1)�21(1) �22(1) # = " �11(0) + L2�22(0) L�22(0)L�22(0) �22(0) # . (83)Equation (83) then gives the following meanings for the matrix elements of �1.�11(1) = �11(0) + L2�22(0)or (x21 )max = (x20 )max + L2( �20 )max , (84)and �22(1) = �22(0)or ( �21 )max = ( �20 )max . (85)Remember that the initial phase spae was assumed to be eret for this transformation. But x20 is thesquare of the initial beam extent and L2�20 is that of a partile that started from x = 0 with maximumdivergene.Thus equation (84) indiates that p�11(1) an be regarded as the root mean square of themaximum displaement of the partile. Equation (85) indiates that the divergene of the partile isunhanged.If the matrix elements for a thin lens is inserted into equation (82) we obtain�2 = " �11(2) �21(2)�21(2) �22(2) # = 2664 �11(0) ��11(0)f��11(0)f �11(0)f2 + �22(0) 3775 . (86)from whih it follows that �11(2) = �11(0)or (x22 )max = (x20 )max , (87)and �22(2) = �11(0)f2 + �22(0)or ( �22 )max = 1f2 (x20 )max + ( �20 )max . (88)Equation (87) shows that the maximum displaement of a partile does not hange in a thin lens. Fromequation (88) we see that p�22(2) may be interpreted as the root mean square maximum divergeneobtained from the maximum initial divergene and the maximum hange in divergene aused by the lens.



File No. TRI-DNA-83-9 Page 35 of 107.4 A disussion of the waist|the upright ellipseAs was noted earlier, The speial ase of �12 = �21 = 0 is termed a waist. We should orretly understandits meaning. For an existing beam a waist is the loation of a minimum of beam size in a given region ofthe system. Although the waist is the minimum beam size in any given beam line, the minimum beam sizeattainable at a �xed target position (by varying the foal length of the upstream lens system) is not thesame as the waist de�ned above. The �gure below, taken from 1), illustrates this point.

Fig. 20. The relationship between a waist and the smallest spot size at a target.In a �eld-free region (a drift) the distane to a waist may be alulated if the sigma matrix is known atthe loation. Thus, if �0 is the sigma matrix at the lens' exit and �1 is that at the position of the waist,equation (81) gives (in the (x; �) plane) �21(1) = �21(0) + L�22(0) (89)and �21(1) must be zero for there to be a waist at this position. Solving the above equation for L yieldsL = ��21(0)�22(0) = �r21 p�11(0)p�22(0) . (90)Similarly, we obtain in the (y; �) planeL = ��43(0)�44(0) = �r43 p�33(0)p�44(0) . (91)It should also be noted that, in general, a waist and a point-to-point image are not one in the same. Inthe (x; �) plane the transfer matrix for point-to-point imaging has been shown to beR(point-to-point) = " R11 0R21 R22 # = 24 M 01f 1M 35 (92)



Page 36 of 10 File No. TRI-DNA-83-9where jR j = R11R21 = 1 and M is the magni�ation. Again assuming an initially upright ellipse, thesigma matrix at the foal point is, from equation (81),�1 = " R211�11(0) R11R21�11(0)R11R21�11(0) R221�11(0) +R222�22(0) # . (93)Clearly, exept for a very small soure size, an image and a waist will our only if R21 = R21 = 0. Inorder to have two matrix elements zero it is neessary to have (at least) two elements to vary. Given thatwe are at a fous, equation (90) gives the distane to a waist asL = ��21(0)�22(0) = � R11R21�11(0)R221�11(0) +R222�22(0) . (94)If R11R21 = 0, a waist and a point-to-point image oinide. If R11R21 < 0, a waist follows the image.8. Some `building bloks' of transport systemsIn the preeding setions various ombinations of beam-transport elements have been disussed. It istrue that they an be onsidered as `building bloks' of a beam-transport line. We have, for example,onsidered quadrupole doublets and triplets operating in a fous-to-fous mode and a simple arrangementfor the prodution of an ahromati beam. In this setion a more general treatment of some of the standardbuilding bloks used in developing a transport beamline will be onsidered. Spei�ally, some propertiesof symmetri systems will be investigated. Usually the disussions will deal with quadrupole systems only;however, in some ases quadrupole-dipole systems will be treated.8.1 Translationally symmetri systemsFor purposes of illustration, onsider a quadrupole doublet positioned a distane L1 downstream of a pointA and a distane L2 upstream of a point B. The transfer matrix for this partiular on�guration may befound using tehniques that have been disussed earlier; let that transfer matrix be written as R whereR = " R11 R12R21 R22 # .We now ask the question \What happens if another, idential doublet on�guration is installed betweenthe points B and C?" as is indiated in the �gure below.

Fig. 21. A translationally-symmetri quadrupole system.The transfer matrix for the omplete system from A to C is found from



File No. TRI-DNA-83-9 Page 37 of 10R(A!C) = R2 = " R11 R12R21 R22 # " R11 R12R21 R22 #= " R11(R11 +R22)� 1 R12(R11 +R22)R21(R11 +R22) R22(R11 +R22)� 1 # . (95)Two speial situations beome immediately apparent when we look at this overall transfer matrix.If the original (doublet system)98) between A and B is designed suh that R11 = �R22, then the overalltransfer matrix beomes R2 = " �1 00 �1 # [R11 = �R22℄ . (96)In this ase the transfer matrix between A and C is �I| the negative unity matrix. Beam onditionsat C are exat inversions of those at A. Suh a system is alled a unit setion. Notie that although aquadrupole doublet struture was used any system designed suh that R11 = �R22 ould have been used.The seond speial ase ours if the original system is designed suh that R12 = R21 = 0 at the loationB. In this ase the overall transfer matrix beomesR2 = 24 R211 00 1R211 35 [R12 = R21 = 0℄ . (97)Thus if jR11 j > 1 at the midpoint of the setion we obtain a magni�ed image at the point C but withthe divergene there redued, relative to that at A, by a fator equal to the magni�ation. This type ofsystem is alled telesopi (the �rst ase disussed is also telesopi). Conversely, if R11 at B is less thanunity, we obtain an image redued in size but having a greater divergene.A point in terminology: In the previous setions we often have talked about objets and images with themeaning that R12 = 0. In the jargon of the trade, this is alled point-to-point imaging. The terminologyis obvious: under that ondition one point on the objet is reprodued at one point on the image. In bothases disussed here we had R21 = 0. This type of fousing is alled parallel-to-parallel imaging. In thisase the divergenes of partiles at the image depend only on those at the objet, regardless of the pointon the objet where they the partiles originated. We also have parallel-to-point optis. In this ase wehave R11 = 0. Rays originating from the objet with a given divergene are foused at one point on theobjet. That position is independent of the initial position at the objet. The �nal imaging ondition isalled point-to-parallel. Here we have R22 = 0. Consequently, the divergene at the image depends only onthe position at the objet and is independent of the initial divergene of the partile.Exerise:A quadrupole pair, the �rst fousing horizontally and the seond vertially, have a enter-to-enter sep-aration s. The doublet is loated midway between points A and B. Another idential doublet is plaedbetween B and C. Thus the distanes AB and BC are equal.a) Using the thin-lens approximation determine the foal lengths of the quadrupoles that are required toprodue a unit setion between A and C.b) Two targets are separated by 17.7 m. Use the results of part a) to determine what pole-tip �elds arerequired to transport a 500 MeV proton beam from one target to the other. Assume eah quadrupole hasan e�etive length of 0.5 m and the doublets are separated by 0.4 m.



Page 38 of 10 File No. TRI-DNA-83-9) The distane between targets 1AT1 and 1AT2 on beamline 1A at TRIUMF is 17.7 m. Five quadrupoles,1AQ9{13, are loated in this region. If quadrupole 1AQ9 is turned o�, quadrupoles 1AQ10{11 and 1AQ12{13 an be treated as doublets. Do the results of b) bear any resemblane to the atual settings used for1AQ10{13?d) repeat the proedure of part a) for the requirement that R12 = R21 = 0 at the point B.8.2 Mirror-symmetri systemsRather than put two idential systems together in the same order, we ould make the seond system themirror image of the �rst. In this ase we would have a ombined system shown in the next �gure.

Fig. 22. A mirror-symmetri quadrupole on�guration.The transfer matrix from A to B for this system isR(A!B) = " 1 L20 1 # " 1 0+F2 1 # " 1 s0 1 # " 1 0�F1 1 # " 1 L10 1 #= " 1� x1 + L2F+� s+ L1(1� x1) + L2(1 + x2 + L1F+�)F+� 1 + x2 + L1F+� # (98)where Fi = 1f , xi = sjFij, and F+� = x2(1� x1)� x1s .In the above it has been assumed that the �rst quadrupole fouses horizontally and that the seond fousesvertially. Now onsider the transfer matrix that would result if the system were traversed from B to A.We have R(B!A) = " 1 L10 1 # " 1 0�F1 1 # " 1 s0 1 # " 1 0+F2 1 # " 1 L20 1 #= " 1 + x2 + L1F�+ s+ L2(1� x2) + L1(1� x1 + L2F�+)F�+ 1� x1 + L2F�+ # . (99)But F�+ = F+� [Exerise: Prove this.℄ ands+ L2(1� x2) + L1(1� x1 + L2F�+) = s+ L1(1� x1) + L2(1 + x2 + L1F+�) ,so that if we rewrite equation (98) asR(A!B) = � " R11 R12R21 R22 # , (100)



File No. TRI-DNA-83-9 Page 39 of 10then equation (99) beomes R(B!A) = � " R22 R12R21 R11 # . (101)Equations (100) and (101) reall to memory the relationship between a 2�2 matrix and its inverse:" R11 R12R21 R22 #�1 = " R22 �R12�R21 R11 # ,where the fat that jR j = 1 has been used. Although we might expet R(B!A) to be the inverse ofR(A!B), it is lear that this is not the ase. The matrix obtained from traversing a system in reversedi�ers from the inverse of the matrix obtained from traversing the system in the forward diretion in thatthe signs of the o�-diagonal elements are reversed.With a little thought, the reason for this beomes lear. Consider, for example, a system operating in afous-to-fous mode. The beam diverges from the objet and onverges to the image. However, travelingin the reverse diretion the beam diverges from the image and onverges to the objet. In other words,when traveling in the reverse diretion angles are reversed with respet to those found when traveling inthe forward diretion. It an be shown that the transfer matries for travel ind the forward and reversediretions are related by R(B!A) = " 1 00 �1 # [R(A!B)℄ " 1 00 �1 # . (102)Remember, however, that this result [equation (102)℄ is valid only for a mirror-symmetri system!We now realize that the trajetory for B to C will be idential to that from B to A. Consequently,R(B!C) = R(B!A) (103)The overall transfer matrix for this system then beomesR(A!C) = R(B!C)R(A!B)= R(B!A)R(A!B)= " 1 00 �1 # [R(A!B)℄�1 " 1 00 �1 #R(A!B) , (104)for the ase of a 2�2 matrix andR(A!C) = 264 1 0 00 �1 00 0 1 375 [R(A!B)℄�1 264 1 0 00 �1 00 0 1 375R(A!B) (105)for the ase of a 3�3 matrix.Expliitly, for the ase of a 2�2 matrix the overall transfer matrixM is given byM = " 2R11R22 � 1 2R12R222R11R21 2R11R22 � 1 # , (106)and for the ase of a 3�3 matrix by



Page 40 of 10 File No. TRI-DNA-83-9M = 264 2R11R22 � 1 2R12R22 2R12R232R11R21 2R11R22 � 1 2R11R230 0 1 375 . (107)There are two important things to notie about these two expressions. First, notie that M11 = M22.This is a property of all mirror-symmetri systems. Seond, notie that if R23 = 0 then M11 = M22 = 0.The latter shows that in order to make a mirror-symmetri system doubly ahromati it is neessary thatthe angular dispersion at the mid-plane (symmetry plane) be zero. If R23 annot be made zero at themid-plane it may be onluded that double ahromatiity is impossible.Two other onditions of interest may be obtained from equations (106) and (107). Suppose we design thesystem suh that R11 = R22 = 0 at the mid-plane. In this ase equation (106) beomesM = " �1 00 �1 # [R11 = R22 = 0℄ . (108)If the design is suh that R12 = R21 = 0 at the mid-plane, then the overall transfer matrix isM = " 1 00 1 # [R12 = R21 = 0℄ . (109)Thus in both ases the total system is telesopi. Whether inversion ours depends on whih matrixelements are made zero at the mid-plane.Exerise:In x6 the onditions neessary for double-ahromatiity in a simple system were obtained. Use the tehniquedeveloped above to verify the results obtained previously.Exerise:Between target loations 4BT1 and 4BT2 on beamline 4B at TRIUMF the on�guration skethed below willbe found.

Fig. 23. Con�guration between 4BT1 and 4BT2 on beamline 4B.The purpose of this array will be disussed later. QuadrupolesQ1 and Q2 fous horizontally and are equallypowered. A similar ondition holds for quadrupoles Q3 and Q4 (but their �elds are not equal to those ofQ1 and Q2). Quadrupoles Q2 and Q5 fous in the vertial plane and, again, their �elds are idential.Clearly, this system is a mirror-symmetri beam-transport setion. Its design is suh that the transfermatrix in the horizontal plane is the unit matrix I while that in the vertial plane is the negative unit



File No. TRI-DNA-83-9 Page 41 of 10matrix �I. Given that the e�etive length of all quadrupoles is 0.4090 m, L1 = 2.4096 m, L2 = 0.3048 m,L3 = 0.6348 m, and L4 = 0.5750 m, use the tehnique disussed in this setion together with the thin-lensapproximation to determine the quadrupole �elds neessary to produe this ondition. Assume a beamenergy of 500 MeV.Design values for the quadrupole �elds are B(Q1) = B(Q6) = 5.127 kG, B(Q2) = B(Q5) = �7.005 kG,and B(Q1) = B(Q6) = 8.000 kG.9. Waist-to-waist transportIn x7.3 the transformation properties of the phase-spae ellipse were disussed. In partiular, it was shownin equation (82) that if an initial phase-spae ellipse was eret and desribed by the matrix �0, then �0 istransformed by a system with the transfer matrix R into the ellipse �1 given by�1 = " R211�11(0) +R212�22(0) R11R21�11(0) +R12R22�22(0)R11R21�11(0) +R12R22�22(0) R221�11(0) +R222�22(0) # . (110)In order that there be a waist at position 1 it is neessary that �21(1) = 0. This implies thatR11R21�11(0) +R12R22�22(0) = 0 . (111)From this equation three important speial ases an arise.First, if the transport system is a unit setion or any system for whih the matrix R has the formR = 24 M 00 1M 35 , (112)we will have a waist at position 1 beause �1 will have the form�1 = 24 M2 00 1M2 35 �0 . (113)The beam size at position 1 is then q�11(1) = M q�11(0) . (114)The seond ase arises if neither R12 nor R21 is zero but the system is designed suh thatR11R21�11(0) = �R12R22�22(0)that is, �22(0)�11(0) = � R11R22 �R21R12 . (115)In this ase the beam size at loation 1 isq�11(1) = sR11R22 �q�11(0) . (116)The third speial ase is that in whih R11 = R22. Then equation (111) redues to�22(0) = � R21R12 ��11(0) . (117)



Page 42 of 10 File No. TRI-DNA-83-9But �11(0)�22(0) = det�0 = j�0 jso that j�0 j�11(0) = � R21R12 ��11(0) ,or �11(0) = s� R12R21 �j�0 j . (118)From equation (118) it follows immediately that�11(1) = �11(0) , (119)that is, the waist at loation 1 is idential to that at position 0.9.1 Waist-to-waist transport in one planeConsider the simple transport system shown below.

Fig. 24. A one-dimensional line of fousing lenses.This system onsists of a series of (fousing) lenses of foal length f that are spaes a distane 2L unitsapart. We wish to alulate the required value of f suh that a waist is produed at the prinipal plane ofeah lens and all waists are of the same minimum size.Beause of the repetitive nature of this system it is onvenient to think of it as omposed of a series ofsubsystems. Eah subsystem omprises two lenses, eah of foal length 2f , that are separated by a distaneof 2L. One suh subsystem is pitured below.

Fig. 25. A subsystem of the one-dimensional line of fousing lenses.



File No. TRI-DNA-83-9 Page 43 of 10The transfer matrix of this subsystem isR = 24 1 0� 12f 1 35 " 1 2L0 1 # 24 1 0� 12f 1 35 = 266664 1� Lf 2L� 1f �1� L2f � 1� Lf 377775 . (120)From equations (118) and (119) it follows that�11(1) = �11(0) = s� R12R21 �j�0 j = s 4Lf22f � L �j�0 j . (121)Squaring this equation and substituting j�0 j = �11(0)�22(0) yields	 = �11(0)�22(0) = 4Lf22f � L .To obtain the minimum value for �11(0) we di�erentiate this expression with respet to f and set it equalto zero. Thus we have d	df = 8Lf(2f � L)2 (f � L) = 0whih requires f = L. Substitution of this result into the expression for 	 leads tof = L = 12 s�11(0)�22(0) . (122)Equation (122) expresses the values of f and L in terms of the parameters at the �rst waist.This result is quoted in ref 1) as an example of waist-to-waist transport in one plane. In the followingsetion we will examine a more useful on�guration.9.2 Waist-to-waist transport in two planes | the F0D0 arrayThe example of x9.1 is interesting from an aademi point of view, but it is not pratial for beamlinetransport problems. We know that a quadrupole fouses in one diretion and defouses in the authorialplane. A logial extension of the one-dimensional array is skethed below.

Fig. 26. A two-dimensional F0D0 array.In this arrangement the foal lengths of all quadrupoles are equal in magnitude but they are arranged sothat their fousing planes alternate in sign. The enter-to-enter separation of the quadrupoles is L. This



Page 44 of 10 File No. TRI-DNA-83-9struture is termed a F0D0 array beause, for example, if the �rst quadrupole is fousing (F) it is followedby a drift spae (0)|that is, no fousing. The next quadrupole is defousing (D) and it too is followed bya drift spae (0). The on�guration repeats again.a F0D0 array is used to transport a beam over long distanes while keeping the beam within the availableapertures. We design the system suh that there is a of the same size at the prinipal planes of the oursingquadrupoles. This size is adjusted so as to be within the allowable apertures of the quadrupoles and thebeam tube.As with the one-dimensional array it is onvenient to onsider the F0D0 array to be formed from subsystems.One suh subsystem is illustrated below.

Fig. 27. A subsystem of a two-dimensional F0D0 array.The transfer matrix of this subsystem is give byRHVH(ell) = 24 1 0� 12f 1 35" 1 L0 1 # 24 1 012f 1 3524 1 012f 1 35 " 1 L0 1 #24 1 0� 12f 1 35= 2664 1� L22f2 L�2 + Lf �� L4f2 �2� Lf � 1� L22f2 3775 = 2664 2f2 � L22f2 Lf (L+ 2f)� L4f3 (2f � L) 2f2 � L22f2 3775 , (123)where the enter lens (2) has been replaed by two half-lenses. For referene, the transfer matrix at themidpoint of the enter lens isRVH(mid) = 24 1 012f 1 35 " 1 L0 1 # 24 1 0� 12f 1 35 = 2664 2f � L2f L� L4f2 2f + L2f 3775 . (124)We have seen above that given an initial waist at the enter of the �rst lens, a waist will exist at the enterof the third lens provided that	HVH = �11(1)�22(1) ����HVH = �R12(ell)R21(ell) ����HVH = 4f2 �2f + L2f � L� . (125)To minimize the waist size we again di�erentiate 	HVH with respet to f , set the result equal to zero, andsolve for f in terms of the element separations L. Thus we �nd



File No. TRI-DNA-83-9 Page 45 of 10d	HVHdf = � 8f2 L+ 2f(L� 2f)2 � 8f(L+ 3f)L� 2f = � 8f(L� 2f)2 [L2 + 2f(L� 2f)℄ = 0 ,from whih we obtain fHVH = 8>>><>>>: L4 (1�p5)0L4 (1 +p5) . (126)Beause we have taken both f and L to be positive, and disarding the trivial solution of fHVH = 0, we�nally have LfHVH = 41 +p5 (127)It is readily shown that there is a waist at the enter of the seond lens for we have�12(2) = R11(mid)R21(mid)�11(1) +R12(mid)R22(mid)�22(1)= �R11(mid)R21(mid)�R12(mid)R22(mid)R21(mid)R12(mid)��11(1)= �� L4f2 2f � 12f � L2f + 12f L(L� 2f)4f3 fL(L+ 2f)��11(1)= [0℄�11(1) . (128)Thus �12(2) = 0, meaning that there is also a waist at the enter of the (defousing) lens 2.It is instrutive to ompare the sizez of the waists at the enters of the fousing and defousing lenses. Wehave �12(2) = R211(mid)�11(1) +R212(mid)�22(1)= �R211(mid)�R212(mid)R21(mid)R12(mid)��11(1)= " (L� 2f)24f2 � L2L(L� 2f)4f3 fL(L+ 2f)# �11(1)= �L� 2fL+ 2f �11(1) , (129)or �11(1)�11(2) = �L+ 2fL� 2f . (130)Substituting the result from equation (127) above we have�11(1)�11(2) = �3 +p51�p5 = 4:236 , (131)and the ratio of the beam sizes at the two loations isx(1)x(2) = s�11(1)�11(2) = 2:058 . (132)



Page 46 of 10 File No. TRI-DNA-83-9||||||||||||||||||||Exerise: Consider now the vertial plane of a F0D0 array. Show that the transfer matrix for a ell isRVHV(ell) = 2664 2f2 � L22f2 Lf (2f � L)� L4f3 (2f + L) 2f2 � L22f2 3775 , (133)where the enter lens (2) has been replaed by two half-lenses, and that the the transfer matrix at themidpoint of the enter lens is RHV(mid) = 2664 2f + L2f L� L4f2 2f � L2f 3775 . (134)Hene show that 	VHV = �11(1)�22(1) = � R12(ell)R21(ell) = � 4f2 �L� 2fL+ 2f � ,from whih we see that the onditions on the initial phase-spae ellipse for waist-to-waist transport in thevertial plane di�er from those in the horizontal plane. Proeed as before to show thatd	VHVdf = 8f2 L� 2f(L+ 2f)2 � 8f(L� 3f)L+ 2f = � 8f(L+ 2f)2 [L2 � 2f(L+ 2f)℄ .Equate this to zero and show that the relationship between fVHV and L arefVHV = 8>>><>>>: L4 (p5� 1)0�L4 (1 +p5) . (135)||||||||||||||||||||Comparison of equations (125) and (134) shows that if the system is designed to mimimize the beam sizein the horizontal plane, that in the vertial plane is not simultaneously minimized. However, the ratio ofthe extrema of the vertial and horizontal ellipses is given by	VHV	HVH = �11(1)�22(1) ����VHV, �11(1)�22(1) ����HVH = "�4f2(L� 2f)L+ 2f # � L� 2f�4f2(L+ 2f)� = �L� 2fL+ 2f �2 . (136)Using the value given in equation (126) for fHVH we �nd	VHV	HVH = "1�p53 +p5#2 = 0:05573 . (137)


