
TRIUMF UNIVERSITY OF ALBERTA EDMONTON, ALBERTADate 1998/10/23 File No. TRI-DNA-98-6Author GM Stinson Page 1 of 13Subject A further study of the design of quadrupoles for the DRAGON facility1. IntroductionPrevious notes 1;2) presented a conceptual design for the 4-inch and 6-inch diameter quadrupoles for theDRAGON facility. Since those reports were issued a question has arisen regarding the linearity of the gra-dient of these quadrupoles. Indeed, discussion has centered around the question of what linearity of thegradient is required. This report presents a study using the program POISSON 3) of the variation of the(calculated) gradient along the x-axis (y = 0) as a function of distance from the quadrupole center (x) forvarious shapes of the pole face of the quadrupoles.2. General approachThe basic design described in ref 1;2) has been maintained in all of the calculations presented here. As inref 1), a yoke thickness of 1.70 inches, a 5�5�4�4�3 coil con�guration of 0.3648 inch-square conductor andan excitation of 6,500 A-t was used for the 4-inch bore quadrupoles; a 0.05 inch mesh was used in each plane.For the 6-inch bore quadrupoles, a 0.075 inch mesh, a yoke thickness of 2.50 inches, a 7� 6� 6� 5� 5� 4con�guration of the same conductor and an excitation of 10,500 A-t has been used as in ref 2).However, in this study the pole width of each type of quadrupole has been increased in order to accommo-date the investigation of true hyperbolic pro�les for the pole faces.3. Studies of the 4-inch bore quadrupoleIn this report the following pole-face pro�les were considered.1. A true hyperbolic pole pro�le generated by the equation 2 x y = a2 with a being the half-apertureof the quadrupole.2. An approximation to a true hyperbola generated by a series of seven (7) straight cuts per half pole.This arises because, in POISSON calculations, quadrupole symmetry allows the input of one-eighthof the quadrupole geometry. Thus seven cuts per half pole implies that the actual pole pro�le wouldbe composed of a total of fourteen (14) linear cuts. In addition, the pole face at the 45� symmetrypoint would have a shallow V-shaped pro�le.3. An approximation to a true hyperbola generated by a series of �ve (5) straight cuts per half pole.Thus the actual pole pro�le would have a total of ten (10) linear cuts and, again, would have ashallow V-shaped pro�le at the 45� symmetry point.4. An approximation to a true hyperbola generated by a series of three (3) straight cuts per half pole.In this case the half-pole pro�le is generated by one 
at cut and two angled cuts. Thus the the actualpole pro�le would consist of �ve (5) linear cuts with a 
at cut at the 45� symmetry point. This wasdone to give a (rough) approximation to the pole shapes of the Chalk River quadrupoles.5. An approximation to a true hyperbola generated by a circular pole of the Banford radius (whereRpole = 1:15 a) to the intersection of the circle and the true hyperbola, followed by two straight cutsto approximate the remainder of the hyperbola. The intersection of the circle and the hyperbola ismost easily found if both the circle and the hyperbola that represent the pole are symmetric aboutthe positive y-axis. Then the equation of the circular portion of the pole isx2 + (y � y0)2 = R2pole



Page 2 of 13 File No. TRI-DNA-98-6where y0 = a + Rpole. That of the hyperbolic pole isy2 � x2 = a2These two curves intersect at (x1; y1) = (0; a) and at (x2; y2) = (�qR2pole � a2; Rpole). We areinterested in these coordinates relative to a coordinate system in which the pole is symmetric aboutthe 45� symmetry line of the coordinate system. Designating the latter coordinates with a subscript`45', their relation to the above coordinates is given byx45 = x cos� � y sin� = (x + y) =p2y45 = x sin� + y cos� = (y � x) =p2where � = � 45�. Thus, in our case with Rpole = 2:450 in. and a = 2:125 in., the required intersec-tion points are (x45; y45) = (1:503 in.; 1:503 in.) and (x45; y45) = (2:595 in.; 0:870 in.).6. A pole face generated with the Banford radius so as to cover a full 45� angle. Thus the pole contouris a full semi-circle. This we refer to as the quarter circle approximation; in this case the pole widthis 4.888 in.7. Finally, for comparison, the pole face design generated as is ref 1). We refer to this as the truncatedcircle approximation.In all cases that involved straight cuts, their location was determined by simply `eye-balling' a �t to thehyperbolic curve. We note again that in the cases of the 7-cut and 5-cut approximations the pole face atthe 45� symmetry point had a shallow V-shaped form and that for the 3-cut approximation the pole faceat that point was made 
at so as to (roughly) simulate the shape of the Chalk River quadrupoles.Also, in all cases, the pole sides were not chamfered but were kept straight. Thus the pole sides wereparallel to the 45� symmetry line. For each of the hyperbolic, 7-cut, 5-cut and 3-cut pole con�gurationsthe pole width was taken to be 4.4507 inches. In the quarter circle approximation the pole width used was4.8875 inches. These are to be compared with a pole width of 3.6125 inches that was used in the originaldesign of ref 1).3.1 General resultsThe results of all of the above studies for a quadrupole with bore of 4.25 inches are shown in �gure 1. Therewe plot the gradient calculated by POISSON along the x-axis (y = 0) as a function of the distance from thequadrupole center (x = 0). As in ref 1), the mesh used was 0.05 inch in each of the vertical and horizontalplanes. In its relaxation calculations POISSON uses the six nearest neighbors of a point. Consequently,at small values of x|that is, close to the 45� symmetry line|interpolation is poorer and the gradientcalculation becomes inexact. Another way of stating this is that the �eld itself is calculated from vectorpotential di�erences and the gradient is then calculated from �eld di�erences. It is for this reason thatresults are shown in �gure 1 only for values of x greater than 0.4 in.In what follows, when we talk of the predicted gradient of any con�guration we are referring to the itsabsolute value. The nominal design gradient for these 4-inch quadrupoles is 500 G/cm and, as shown in�gure 1, all of the pole con�gurations considered here produce that value. It is seen that the predictedgradient variation of the 7-cut and 5-cut approximations reasonably reproduce that for a hyperbolic polecontour. All other pole pro�les are predicted to have a reasonably 
at gradient to approximately one-halfof the quadrupole aperture. Beyond that point a decrease of the gradient is predicted.We consider these two groups separately.



File No. TRI-DNA-98-6 Page 3 of 133.2 Results of the hyperbolic pole and of the 7-cut and 5-cut approximationsFigure 2 shows, on an expanded scale, the calculated gradients for a hyperbolic pole face and for the7-cut and 5-cut approximations. The predicted value of the gradient for the hyperbolic contour is seen todecrease monotonically as the distance from the quadrupole center increases. Those of the 7-cut and 5-cutapproximations are seen to oscillate slightly.In order to produce a useful (and, possibly, doubtful) comparison of these results we take a simple averageof the predicted maximum and minimum values over the full aperture, 0:4 in.� x� 2:0 in., and considerthe percentage di�erences from those average values. Thus we haveMaximum and minimum values of j@By=@xj over 0:4 in.� x� 2:0 in.Hyperbolic 7-cut approx. 5-cut approx.Maximum (G/cm) 556.45 554.84 553.44Minimum (G/cm) 555.40 553.83 552.58Average (G/cm) 555.93 554.34 553.01Deviation from average (%) �0.094 �0.091 �0.078This comparison shows that each of the above pole pro�les is predicted to produce, on average, a variationof less than �0.1% in the gradient over the full aperture of the quadrupole. This variation should beacceptable. However, it is debatable as to whether the 7-cut approximation (that requires a total offourteen linear cuts per pole) or the 5-cut approximation (that requires a total of ten linear cuts per pole)would be less expensive to manufacture than would a pole with a true hyperbolic face.A similar comparison over 80% of the aperture, 0:4 in.� x� 1:6 in., produces the following.Maximum and minimum values of j@By=@xj over 0:4 in.� x� 1:6 in.Hyperbolic 7-cut approx. 5-cut approx.Maximum (G/cm) 556.07 554.84 553.29Minimum (G/cm) 555.45 554.66 552.58Average (G/cm) 555.76 554.75 552.94Deviation from average (%) �0.056 �0.016 �0.064Thus the predicted variation of the gradient of a quadrupole with a hyperbolic pole over its 80% apertureis roughly 60% of that over its full aperture. The small variation of the 7-cut approximation belies thepredicted oscillatory behavior of the gradient. A similar comment applies to the 5-cut approximation forwhich that behavior is much more evident.3.3 Quarter circle and 3-cut approximationsFigure 3 is a plot of the predicted variation of the quadrupole gradients of the quarter circle and 3-cutapproximations to a hyperbolic pole. For these we consider only the range 0:4 in.� x� 1:6 in.|that is,over 80% of the aperture. Clearly, the predicted variation is more extreme for these cases than for thoseconsidered above. However, if we again perform a simple averaging we �nd the following.Maximum and minimum values of j@By=@xj over 0:4 in.� x� 1:6 in.Quarter circle approx. 3-cut approx.Maximum (G/cm) 560.15 561.04Minimum (G/cm) 558.88 557.23Average (G/cm) 559.52 559.14Deviation from average (%) �0.113 �0.341Thus, of these two cases, the quarter circle approximation is predicted to provide a smaller variation of



Page 4 of 13 File No. TRI-DNA-98-6the quadrupole gradient over 80% of its aperture. The larger deviation of the 3-cut approximation is, ofcourse, caused by the monotonic decrease predicted of the gradient. The smaller deviation predicted forthe quarter circle approximation is a result of its predicted oscillatory behavior. Such comparison, however,may be invalid because no particular care was taken (in this study) to optimize the locations of the threecuts.3.4 Discussion of the 4-inch quadrupole resultsA study of the e�ect of various pole shapes on the gradient of the 4-inch quadrupole design for the DRAGONfacility has been undertaken. The conclusion is that a hyperbolic pole is best but that poles shapes formedby seven or �ve straight cuts are good approximations to that shape. However, the question as to whetherthe latter would be more economical must be answered.It is also shown that the use of a semi-circular pole is predicted to produce less variation in the gradientthan does one formed with three straight cuts. This conclusion is subject to the caveat noted in section3.3 above. Regardless, these shapes would be suitable if a variation in gradient of the order of �0.5%isdeemed satisfactory.Before the design of these quadrupoles is �nalized it is necessary that the optical requirements for thelinearity of the gradient be established.4. Studies of the 6-inch bore quadrupoleSimilar studies to the above were carried out for the 6-inch quadrupoles for the DRAGON facility. However,on the assumption that results for 6-inch quadrupoles with straight cuts would be similar to those ofthe studies above, only a quadrupole as designed in ref 2) and one with a hyperbolic pole pro�le wereinvestigated.The pole width of the 6-inch quadrupole of the nominal design of ref 2) was 5.300 inches. Two quadrupoleswith hyperbolic pole faces, one with a pole width of 6.371 inches and one with a pole width of 6.850 incheswere studied in order to ascertain the e�ect of an increased extension of the hyperbolic pro�le. The nominaldesign we term Circular; the narrower hyperbolic-pole quadrupole is designated Hyperbolic #1 and thewider hyperbolic-pole quadrupole is called Hyperbolic #2.Figure 4 shows the computed variation of the gradient along the x-axis for the three cases. The variationover the full aperture is shown to illustrate the rapid variation of the calculated gradient alluded to above.It is seen that the calculated gradient of the original design is reasonably 
at over roughly the half-apertureof the quadrupole. Those of the two hyperbolic pole contours are seen to be much more uniform over thefull aperture.Figure 5 is a plot, on an expanded scale, of the calculated gradients of the two hyperbolic-contoured polefaces. The implication of this plot is that there is little to be gained by increasing the pole width beyond6.4 inches.Again, we compare these three calculations by taking a simple average of the predicted maximum andminimum values over the full aperture, 0:52 in.� x� 3:07 in., and consider the percentage di�erences fromthose average values. Thus we haveMaximum and minimum values of j@By=@xj over 0:52 in.� x� 3:07 in.Hyperbolic #1 Hyperbolic #2 CircularMaximum (G/cm) 416.36 416.30 417.86Minimum (G/cm) 414.81 415.05 387.09Average (G/cm) 415.59 415.68 402.48Deviation from average (%) �0.187 �0.155 �3.822



File No. TRI-DNA-98-6 Page 5 of 13From this data it is clear that a quadrupole design with a hyperbolic pole pro�le is clearly better whenone considers the variation of the gradient over the entire aperture of the quadrupole.We may repeat the above averaging process over 80% of the quadrupole aperture|that is, for0:52 in.� x� 2:47 in.|and again consider the percentage di�erences from those average values. Thuswe obtain Maximum and minimum values of j@By=@xj over 0:52 in.� x� 2:47 in.Hyperbolic #1 Hyperbolic #2 CircularMaximum (G/cm) 416.36 416.30 417.86Minimum (G/cm) 415.80 415.36 410.67Average (G/cm) 416.08 415.83 414.27Deviation from average (%) �0.067 �0.113 �0.868Again it is seen that even over 80% of the quadrupole aperture, a hyperbolic pole pro�le is preferable to acircular one.5. DiscussionThis report has presented a study of the e�ects of various pole-face pro�les on the linearity of the gradientalong the x-axis for both 4-inch and 6-inch diameter quadrupoles. Not surprisingly, the conclusion in bothinstances is that a hyperbolic pole pro�le produces the most linear gradient.It is pointed out, however, that other pro�les could be viable if a gradient linearity of better than �0.1%is not required and/or if only one-half of the quadrupole aperture is �lled. Consequently, for the DRAGONquadrupoles in particular, further studies of these criteria are necessary before its quadrupole designs are�nalized.For completeness, �gures 6 and 7 show the dimensions of the 4-in. bore quadrupole as designed with ahyperbolic pole contour. Figures 8 and 9 show similar data for the 6-in. bore quadrupole with a hyperbolicpole contour.References1. G.M. Stinson, A conceptual design for the 4-inch diameter quadrupoles for the DRAGON facility,TRIUMF Report TRI-DNA-98-4, July, 1998.2. G.M. Stinson, A conceptual design for the 6-inch diameter quadrupoles for the DRAGON facility,TRIUMF Report TRI-DNA-98-5, July, 1998.3. M. T. Menzel and H. K. Stokes, User's Guide for the POISSON/SUPERFISH Group of Codes, LosAlamos National Laboratory Report LA-UR-87-115, January, 1987.Note added in proof: As this study was completed it was realized that with alternate coil con�gurationsthe transverse dimensions of these quadrupoles could be reduced. Figure 10 shows a 4-in. quadrupole witha hyperbolic pole and a 6� 5� 4� 3� 2 coil con�guration. It is seen that the pole depth is decreased from3.926 in. shown in �gure 6 to 3.547 in. with the revised coil con�guration. Also the 3.826 in. dimensionshown that �gure is reduced to 3.447 in. This reduction is achieved by removing one layer of coil parallelto the yoke. Thus the dimension of 13.802 in. shown in �gure 7 is reduced to 13.044 in. (=2(2.225 in. +3.447 in.) + 1.700 in.). Similarly, as shown in �gure 11, if a 6� 6� 5� 5� 4� 3� 2� 1 coil con�gurationis used for the 6-in. quadrupole, the pole depth is decreased from the 4.646 in. dimension of �gure 8 to4.294 in. and the 4.585 in. dimension of that �gure is reduced to 4.234 in. Again, this reduction is achievedby removing one layer of coil parallel to the yoke. The 18.042 in. dimension shown in �gure 9 is thusreduced to 17.339 in. These comments are, of course, subject to a POISSON veri�cation of the suitabilityof such designs.
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Fig. 1. Variation of the calculated �eld gradient along y = 0 as a function of x for the pole shapesconsidered for the 4-inch quadrupoles.
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Fig. 2. Variation of the calculated �eld gradient along y = 0 as a function of x for the hyperbolic poleshape and the 7-cut and 5-cut approximations for the 4-inch quadrupoles.
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Fig. 3. Variation of the calculated �eld gradient along y = 0 as a function of x for the quarter circle and3-cut approximations for the 4-inch quadrupoles.
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Fig. 4. Variation of the calculated �eld gradient along y = 0 as a function of x for the circular andhyperbolic pole faces for the 6-inch quadrupoles.
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Fig. 5. Variation of the calculated �eld gradient along y = 0 as a function of x for the hyperbolic polefaces for the 6-inch quadrupoles.
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Fig. 6. Dimensions of an octant of a 4-in. quadrupole with hyperbolic pole; yoke thickness = 1.70 in.

Fig. 7. Overall dimensions of such a quadrupole.
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Fig. 8. Dimensions of an octant of a 6-in. quadrupole with hyperbolic pole; yoke thickness = 2.50 in.

Fig. 9. Overall dimensions of such a quadrupole.
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Fig. 10. Dimensions of an octant of a 4-in. quadrupole with hyperbolic pole; yoke thickness = 1.70 in.

Fig. 11. Dimensions of an octant of a 6-in. quadrupole with hyperbolic pole; yoke thickness = 2.50 in.


