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1 Two purposes

Codes are used for designing and used for tuning. Traditionally, emphasis
was on former; little involvement of the beam physicists to use the actual
model while commissioning was taking place. Why? Was it because there was
assumed to be too many divergences between idealized model and real life?
No; the basic physics is solid and simple. Real fields (on a grid) often are
not needed as accuracy comes from adhering to conservation laws (canonical
approach). Example: With axial symmetry, for linear description, surprisingly
few points of on-axis potential are needed.
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Generally what happened was that the theoretical settings were passed on
to those tuning, and when those did not work, there was a lot of knobbing
around. But what should happen is that the deviations between model and
operation should be investigated and the model refined, so that it continues
to be useful during operation.

2 Why envelope codes?

Why not derive accurate field maps, and shoot particles through them? Need
many particles, say 106. How many field values? Can make accurate model,
but:

Often in searching through design parameter space, use a million runs. One
cannot contemplate a trillion runs through a beamline just to solve this simple
optimization problem. Not a good approach.

It is a fallacy that the most complete models are the most useful. It’s a “can’t
see forest for the trees” thing: with too many details, you cannot develop
any understanding of which are the important details. We want to organize
particles; we don’t need to know the coordinates of a billion particles.

Basic example: neither the linear, nor anything up to including third order
depend strongly upon the shape of a quadrupole’s fringe field; not even on the
width of the fringe field. You would not know why this is, from constructing
many quads with different field clamps, or from running countless cases with
varying Enge coefficients.

In many cases, it is sufficient to know the beam size (in all 6 dimensions xi
for i = 1...6). The general case is 6 sizes, 15 correlations, IOW, all second
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moments 〈xixj〉. There would be 21 equations of motion of these moments
rather than the 6N equations where N = 106. So we gain five orders of
magnitude in computational speed.

This was already capitalized in very early days (1960’s) when computers were
slow, and resulted in Brown’s formulation of the σ matrix, and the original
envelope code TRANSPORT.

3 Closed-Form Matrix Methods

For constant linear restoring force, matrix optics can be written in closed (ma-
trix) form. This is the basis of early codes such as TRANSPORT. But piecewise
constant fields do not satisfy Maxwell equations.

Thinking so, we make the same fundamental mistake as in this cheesy DOS
game of mini-Putt. Can you spot the problem?

Interestingly, though, the perturbation from making strength a continuous
function appears mostly in next higher order (cubic in the case of quadrupoles).
This is called “adding fringe fields” (even COSY-∞ does it) as if there’s a choice.
In fact elements without fringe fields are non-physical.
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3.1 First order pitfall

In first order there is also an effect, that gets larger the shorter the element.

Consider that a decoupled element has a transfer matrix

(
a b
c d

)
. Since there

are only four elements and determinant is 1, only 3 are independent. Further,
by time reverse symmetry, a = d. Thus there are only 2. What are they?

Effective length and effective strength, and fringe field does not seem to matter.

Effective length 6= insertion length. Moreover, effective length for x motion
not the same as for y motion. Thus there are in fact four parameters; the
remaining two can be called “fringe field integrals” (Wollnik[24], Irwin[1], ...).

3.2 Higher order undesirable effects

Since we want to design aberration-free, how can we do this with a purely
linear code?

In the beginning... Slow computers, costly integration meant that analytic
formulas were highly desirable. And when these were more-or-less known for
the linear part, the next effort was to find the nonlinear parts. And they
turned out to be very UGLY.
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...and this is only second order. The quadrupole aberrations start at third
order.

Brilliantly, Martin Berz[2] devised an automatic differentiation scheme that
could get these higher order matrix elements to any order. This vastly min-
imizes coding errors. But they were costly to calculate, so for example opti-
mizing a beamline (minimizing aberrations) including quad lengths, strengths,
apertures and separations proves to be impractical. Moreover, one had to give
precisely the six Enge coefficients for any quads. (And they are not known
since not yet built.) But there is an easier way. And the hint is that hardly
anyone needs to change the default Enge function built into COSY-∞ for quads.
(It happens to be the PETRA ring quads.)

Usually, we only need to understand higher order well enough to design them
to be negligible. The exceptions are the extreme conditions, for example as
in a High Resolution Spectrometers and the repeated effects of higher order
in storage rings. But for beam transport lines since we want them to be
“sufficiently small”, approximate upper limits for the aberrations arising from
individual beamline elements, are sufficient. We just calculate aberrations
element by element and minimize. We don’t bother to track nonlinear effects.

Let us first determine what is meant by “sufficiently small”.

Figure 1: Phase space ellipse with cubic distortion.
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The key parameter is of course the emittance. A higher order distortion is
shown in Fig. 1. This may be a cubic (as is common for focusing devices
where the fields are odd functions of transverse coordinates1) or parabolic in
the case of the dominant error from dipoles. The order of the dominant effect
is not particularly important for our purposes; only the location of the “edge”
of the desired emittance matters. If desired, the expected misalignment can
be included in the “size”. A high quality beam may have negligible emit-
tance growth if it is aligned to the beamline symmetry axis, but not so when
misaligned.

Let us call the integrated higher order error ∆x′. Fig. 1 makes clear that this x′

is to be compared not with the beam divergence, but with the local divergence
width ε/x0, which may be significantly smaller: the two versions agree only at
a waist.

The effective fractional growth in emittance is

∆ε

ε
∼ ∆x′ x0

ε
, (1)

and we want this to be small compared to 1. How small depends upon context:
typically 1% is sufficient but clearly if there are thousands of elements, we
would want this to be much smaller than 1%. Most often, the emittance
growth is dominated by one or two focusing elements; the ones that create the
final focus.

In any beamline design, there are many constraints besides minimizing emit-
tance growth. The main constraint is to achieve a desired match or ‘Twiss’
parameters at the final focus. This is often done by calculating the mismatch
factor, which also constitutes an emittance growth. Clearly, it matters not
whether growth comes from mismatch or from aberrations so these two are
simply added in quadrature and the sum is minimized. This is the whole
“trick” used in our code TRANSOPTR. What was wrong with the TRANSPORT

approach?

But it remains to find ∆x′. This turns out to be surprisingly simple: for any
of the standard beamline elements, simple formulas can be found.

4 Transport Elements

Solenoid third order aberration depends on aperture, or more specifically,
fringe field “hardness”. Quadrupole third order aberrations do not depend

1Early versions of TRANSPORT extended it to only second order and so missed this effect
entirely. More on this below.
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on fringe field, but fifth order does. Dipole bender second order aberrations
do not depend on fringe field hardness, but third order does.

4.1 Solenoid

Solenoids’ focal strength scale as square of the ratio of magnetic field to par-
ticle momentum, while in quadrupoles, the scaling is linear, so solenoids are
much weaker focusing elements than quadrupoles. For this reason, they are
most commonly used for low energy electron transport. They have the great
convenience that they focus both transverse directions.

It is useful to know that the magnetic field from a solenoid is completely given
by the following expansions:

Bz(r, z) =

∞∑
n=0

(−1)n

n!2

(
r

2

)2n( d

dz

)2n

Bz(0, z) (2)

Br(r, z) =
∞∑
n=0

(−1)n+1

(n+ 1)!n!

(
r

2

)2n+1( d

dz

)2n+1

Bz(0, z) (3)

These follow directly from Maxwell’s equations plus the symmetry and estab-
lishes that the fields can be completely derived in all of space, knowing only
the on-axis field function.

For small r, we have:

Bz = B0 −
r2

4
B′′ (4)

Br = −r
2
B′ +

r3

16
B′′′ (5)

(B0(z) is the on axis field Bz(0, z), and B′ etc. are derivatives of B0(z).)

To the same order,

B2
z = B2

0 −
r2

2
B0B

′′ (6)

The equation of motion through the solenoid has radial part:

r′′ +KB2
z r = 0 (7)

(K is a constant containing the magnetic rigidity: K = 1
(2Bρ)2

.)

Expanding to cubic force order gives

r′′ +K

(
B2 r − BB′′

2
r3

)
= 0 (8)
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The nonlinear term gives an r′ error, denoted by ∆r′,

∆r′ =
K

2

∫
r3BB′′dz =

K

2
r3

∫
BB′′dz (thin lens approx.)

= −K
2
r3

∫
B′2dz (9)

Thus we see that optimizing a solenoid by minimizing the off-axis focal devia-
tion is exactly the same as minimizing the mean-squared value ofB′. Solenoids’
spherical aberrations diverge in the hard edge limit. This puts to rest the no-
tion that solenoids are improved by flattening their fields, and thus shortening
their fringe fields. In fact the opposite is the case: the softer the edges, the
smaller the aberrations. For a long solenoid, it is beneficial to have more turns
at the centre than at the entrance and exit. Again this is opposite to common
practice. An example is the Rutherford Front End Test Stand[3]. If they had
not flattened their solenoid fields, and had put extra turns near the centre
rather than near the ends, the third order aberration would have been roughly
only half as large. See also Biswas[4] on this point.

Clearly, the integral (9) depends on the form of the fringe field. However, if
we can characterize it as having an effective width w, then

∆r′ ∼ r3

fwL
=

r3

4wρ2
, (10)

as the focal length for solenoids is given by 1
f

=
∫
B2dz

(2Bρ)2
= L

4ρ2
. Usually, if no

special shaping is done and there is a uniform number of turns per unit length,
w ∼ 3a where a is aperture radius.

Roughly speaking,
∆ε

ε
=

∆r′

ε/r̂
∼ r̂4

εfwL
(11)

4.2 Einzel Lens

As with solenoids, the axial symmetry of einzel or aperture lenses means that
the field in all space can be determined if the on-axis field is known. In fact,
the equations for electric field are identical to those for magnetic field in a
solenoid eqs. 2,3. Integrating the latter equation as the radial force, in the
thin lens approximation, results in zero focal effect and zero aberrations. It is
only when the particle’s changing speed is taken into account that there is a
net effect.

An einzel lens can be constructed from as few as 3 apertures; a potential plot
in Φ(r, z) is shown in Fig. 2. Near the axis, the potential is parabolic, but near
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Figure 2: Potential function plot (r, z) of 3-aperture einzel lens, where aper-
tures are at z = −1, 0, 1 in units of aperture radius.

the aperture edge, it’s clearly not. This can be investigated approximately
by considering one aperture at a time. The grounded conducting circular
aperture separating two regions that have asymptotically constant electric
fields on either side is a textbook boundary value problem, for example by
Jackson[5]. From this we find that in the plane of the aperture, the potential
is actually elliptical, given by

Φ(r, 0) =
E1

π

√
a2 − r2 (12)

where E1 is the electric field on the non-ground side, and a is the aperture ra-
dius. Thus, the radial electric field diverges at the aperture edge and this in it-
self suggests the beam should not be allowed to fill the aperture. Quadrupoles’
focusing force, for example, are not singular in this way.

One can find the focal length of the single aperture by using eqn. 5 as Er =
− r

2
E ′ and integrating in the thin lens limit:

∆r′ =

∫
r′′dz =

∫
1

v2

d2r

dt2
dz =

∫
q

mv2
Erdz ≈ −

r

4V0

E1, (13)

where qV0 = mv2

2
and V0 is the voltage through which the beam particle of

charge q has been accelerated. This a focal length f :

1

f
=

E1

4V0

. (14)

Clearly, this only applies in the non-relativistic regime: einzel lens are not used
at relativistic energies.

Two such apertures, separated by a distance l, the first kept at the source
potential V0 and the second at V1 + V0 create the field E1 = V1/l. This
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Figure 3: Focal power in units of 1/l for einzel lenses. Blue: infinitesimal
aperture. Green: a = l/10. Red: a = l, as drawn in Fig. 2.

constitutes an accelerator column and the focal power is known:

1

f

∣∣∣∣
acc.column

=
3κ2(2 + κ)

8l(1 + κ)2
(15)

where κ =
√

V1+V0
V0
− 1 is the change in momentum relative to initial momen-

tum. This can be derived from 3 transfer matrices: entrance aperture with f
given by eq. 14 (f = 4V0l/V1), body of column where E ′z = 0, and exit aperture
with f = −4V1l/V0[6].

We create an einzel lens by placing two acceleration columns back-to-back,
bringing beam energy back to source energy. The focal length of this is found
to be:

1

f

∣∣∣∣
einzel

=
3κ2(4− κ2)

8l(1 + κ)
. (16)

The plot is the blue curve shown in Fig. 3.

Unfortunately, this expression is only accurate for cases where l � a, while
in common practice, l/a ∼ 4 or less. The reason is that the superposition of
apertures is not valid for small aspect ratios. This is clear from Fig. 2: The
3 apertures are not actually equipotential surfaces, and the on axis potential
does not reach V1 + V0 at lens centre.

The green and red curves of Fig. 3 were calculated using the CEA element of
COSY-∞[2]. This code is an invaluable tool for calculating higher order effects
in general, and in particular for realistic einzel lenses where a ∼ l. COSY-∞
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uses the single-aperture on-axis potential as given by Jackson[5],

Φ(0, z) =
E1a

π

[
1− z

a
cot−1

(
z

a

)]
, (17)

and adds apertures together to form the lens.

In spite of there being no closed-form expression for focal length f , we can
still write the scaling for higher order effects, in terms of f . To compare with
other lenses, we write in terms of the total length L = 2l. From COSY, we find

∆r′ ≈ r3

ηfaL
, (18)

where η varies according to aspect ratio: for L� a, η = 3/2, but for example
for L = a, η = 1/2. Unsurprisingly, the aberrations scale similarly to solenoids
as (faL)−1, but for einzel lenses the proportionality factor is 2 to 6 times worse.

4.3 Quadrupole

Like solenoids, the lowest order aberration is cubic or third order. (BTW,
please don’t refer to it as ‘octupole’.) But unlike solenoids, this aberration
cannot be reduced by shaping the field strength function i.e. softening the
edges. It turns out that the third order aberration is independent of fringe
field shape or extent. (This is not however true of fifth and higher order; those
in fact are reduced by softening the edges.[7])

z

k(z)

k’’(z)

k’(z)

The electrostatic quadrupole potential field

V (x, y) =
k

2
(x2 − y2) (19)

is a solution to Laplace’s equation, but only if the quadrupole is infinitely long
(k=constant). For finite quads, we use the expansion

V (x, y, z) =
k

2
(x2 − y2)− k′′

24
(x4 − y4) +

k′′′′

720
(x6 − y6)− ... (20)
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(That’s right, it does not fit the rn cos(nθ) multipolar expansion.) The quartic
term gives a cubic force term which leads to the following focusing error,

∆x′ =
−1

f 2LQ

(
7

6
x3 − 1

2
xy2

)
, (21)

where LQ is the quad length and f the focal length. It is important to note
that this is independent of aperture size or fringe field hardness: indeed, the
aberration is not affected by changing the fringe field shape.

For the Hamiltonian technique used to derive these, see article[8]. I further
refine electrostatic for the relativistic case[9]:

∆x′ =
−1

f 2LQ

(
7− 3β2

6
x3 − 1− β2

2
xy2

)
. (22)

The formula for magnetic quads is similar:

∆x′ =
−1

f 2LQ

(
1

3
x3 + xy2

)
, (23)

So electrostatic quads are not really worse than magnetic quads; might actually
be better for e.g. ribbon beams.

For both cases, let’s say ∆x′ = −1
f2LQ

(
Ax3 +Bxy2

)
, where A ∼ B ∼ 1.

Roughly speaking,
∆ε

ε
=

∆x′

ε/x̂
∼ x̂4

εf 2LQ

(24)

This formula has an obvious consequence: In any transport system where op-
tics strengths and beam sizes are given, the only way to reduce emittance
growth due to aberrations is to lengthen the “worst-offending” quadrupoles.
Further, damaging effects scale as beam size to the fourth power. This can
mean that some quads may have to be shortened.

To reiterate, (1) ‘large’ does not mean large aperture occupation fraction, (2)
fiddling with fringe-field-shape gains nothing in 3rd order. (Off topic: it does
gain in 5th and higher, where softer fringe fields result in lower aberration;
opposite to intuition!)

4.3.1 Quad Match Example

We apply this to the example shown in the Fig. 4. The RFQ requires matched
βT = 6.125 cm and the beam comes from a FODO section where βT = 84.6 cm.
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Figure 4: First order beam envelopes for match to RFQ. Emittance is 50µm.
Red is x-envelope, green is y-envelope, plotted for clarity as if it is negative.
Yellow is the quadrupole strength function. This is for exact first order match
ignoring the third order aberrations. Emittance growth is very bad as can be
seen in blue curve of Fig. 6

With final quadrupoles of effective length L = 8.4 cm, we get x̂ = 1.8 cm,
f = 9.7 cm, with desired acceptance ε = 0.005 cm.2 We get

∆ε

ε
∼ 1.84

0.005× 9.72 × 8.4
= 2.6 (25)

To improve the emittance growth, we shorten the final quad in order to de-
crease the size of the beam in the next-to-final quad. In this case (Fig. 5),
beam size is only one half as large, so result is 1/16 or

∆ε

ε
∼ 0.17. (26)

These calculations were verified with COSY-∞[2] and gave ∆ε
ε
≈ 0.1. Final

phase spaces are shown in Fig. 6.

It is important to understand that codes like TRANSPORT and TRACE3D can
result in aberrations as large as that of the blue curve in Fig. 6, without any
hint that there is a problem.

Input files for this case are as follows: Transport subroutine:

2commonly: “50πmm-mrad”
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Figure 5: Optimized RFQ match, taking into account third order aberrations
according to equation 21.
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Figure 6: These calculations were verified with COSY-∞. Emittance contours
(i.e. constant action) in phase space for previous envelope figures. Left is x -Px,
right is y -Py. These were calculated from the COSY-∞ transfer maps. Black
is the optimized case for the design acceptance ε = 50µm, where the long
next-to-last quad is brought forward by shrinking the final quad, as shown in
Fig. 5. Blue, green and red are for the non-optimum configuration: blue is the
matched beam ε = 50µm, green is for ε = 12.5µm, red is for ε = 3µm.
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SUBROUTINE SYSTEM

COMMON /BLOC1/q0,q1,q2,q3,q4,d2,d3,d4,d5,xcm,ycm,wab

d1=63.7205-d2-d3-d4-d5

call DRIFT( 5.0205,’. ’)

call EQUAD( q0 , 2.5400, 2.3200,wab,’Q-periodic’)

call DRIFT( d1,’. ’)

call EQUAD( -q1 , 2.5400, 2.3200,wab,’IRA:Q1’)

call DRIFT( d2,’. ’)

call EQUAD( q2 , 2.5400, 2.3200,wab,’IRA:Q2’)

call DRIFT( d3,’. ’)

call EQUAD( -q3 , 2.5400, 3.3200,wab,’IRA:Q3’)

call DRIFT( d4,’. ’)

call EQUAD( q4 , 1.2700, 1.1600,wab,’IRA:Q4’)

call DRIFT( d5,’waist’)

call match(1,xcm,1.,1) !1 means x weight = 1.

call match(3,ycm,1.,1) !3 means y

RETURN

END

Data file:

0.060 0 0 27930.0 1 0. !60keV, mass=30u

1 3 5. 0.5E-5

0 -0.

0.65054 18.4506 .65054 18.4506 1.5 0.476 !initial beam

1. 1000. 1. 1000. 1. 100. 0. .3937008 !units

3 !correlation parameters

1 2 0.909106

3 4 -0.909106

5 6 -1.

12 !number of parameters

0.000 .0 5.0 1 !5 quad strengths

0.000 .0 5.0 1

0.000 .0 5.0 1

0.000 .0 5.0 1

0.000 .0 5.0 1

8.0000 0. 60. 1 !inter-quad spacings

8.00 0. 60. 1

8.00 0. 60. 1

8.00 0. 60. 1

0.175 0. 1. 0 !waist size

0.175 0. 1. 0

5. 0. 100. 0 !weight for quad aberration deps/eps

1.E-6 900
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03 1. 0.98 50

4.4 Dipole Bender

Dipole magnets or electrostatic benders are similar to quadrupoles in that their
lowest order aberrations are insensitive to field falloff shaping and extent. The
difference is that the lowest order is quadratic rather than cubic force. See my
Snowmass talk[10] for derivations.

For the sector magnet, the nonlinear kicks are as follows (L = ρθ, the trajectory
length):

∆x′ = − L

2ρ3
y2 and ∆y′ = − L

ρ3
xy (27)

Often for dipoles, the length L is not small compared with the focal length,
so the thin lens approximation used in estimating the aberration is not very
good. In that case, the calculation can simply split the dipole once or twice.

For the electrostatic dipole bender, I’ve solved the general toroidal case. Here,
c is the ratio of electrode curvature in the bend plane to the non-bend plane.
This means c = 0 is a cylindrical bend and c = 1 is a spherical one.

∆x′ =
L

ρ3

[(
−4 +

7

2
c− c2

)
x2 +

(
−1

2
c+ c2

)
y2

]
(28)

∆y′ =
L

ρ3

(
−c+ 2c2

)
xy (29)
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5 Summary of Higher Order Kick Formulas

Table 1: Higher order kicks for a few chosen common elements.

Element ∆x′ ∆y′

Solenoid −x(x2+y2)
fwL

−y(x2+y2)
fwL

w=fringe field length, f=focal length, L=eff. length

Einzel Lens −x(x2+y2)
ηfaL

−y(x2+y2)
ηfaL

a=aperture radius, f=focal length, L=total length, 1/2 < η < 3/2
Magnetic Quadrupole −1

f2L

(
1
3
x3 + xy2

) −1
f2L

(
1
3
y3 + yx2

)
f=focal length, L=eff. length
Electric Quadrupole −1

f2L

(
7
6
x3 − 1

2
xy2
) −1

f2L

(
7
6
y3 − 1

2
yx2
)

Magnetic Sector Bend − θy2

2ρ2
− θxy

ρ2

θ=bend angle, ρ=bend radius

Electric Cylindrical Bend −4θx2

ρ2
0

Electric Spherical Bend θ(−3x2+y2)
2ρ2

θxy
ρ2
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6 Growth from mismatch

The mismatch factor is the standard definition from e.g. Bovet et al.[11]. See
Fig. 7. The ratio of area of the ellipse that is similar but encapsulates the
mismatched ellipse, to the area of the mismatched ellipse, is D +

√
D2 − 1

where D ≡ (β2γ1 + β1γ2)/2 − α1α2 and α, β, γ are the ‘Twiss’ parameters of
the mismatched ellipse (subscript 1) and the matched ellipse (subscript 2). As
D − 1� 1, it is sufficient to summarize this as ∆ε/ε ≈

√
2(D − 1).

Figure 7: Excerpt from Bovet et al.[11]

7 TRANSOPTR: Beam Transport Optimization tech-

nique

Emittance growth factors are found for each transport element and combined
with the emittance growth due to mismatch, to form a function to be mini-
mized. We simply add (in quadrature) together, and minimize this as we vary
parameters such as quad position, length, strengths.

This does not pretend to be a higher order calculation; indeed, it is possible
(though highly unlikely) that the higher order of one element is compensated
by another, and this would only show up in an actual higher order calculation.



TRI-BN-23-14 Page 21

As stated, the intention is not to find accurate higher order effects, only to
ensure that they are negligible.

7.1 Optimization Engine

There are many optimization techniques for designing and tuning beam trans-
port lines. Some are built into the transport codes themselves. Almost all of
these work on the basis of reducing an error to zero by finding local derivatives
of the error with respect to the parameters. I use a downhill simplex method.
It’s fast and robust.

It is also easily modified to incorporate simulated annealing for more than 3
free parameters. I use routines from the book Numerical Recipes by Press,
Flannery, et al.[12]

Applied to the design of a transport channel we proceed as follows.

1. Choose a set of parameters such as quad strengths, locations, and their
allowed ranges.

2. The “temperature” is the fraction of the full range of variation of any
parameter, so at T = 1, all parameters vary randomly through their full
ranges.

3. The sum (χ) of all possible effects to be minimized, such as mismatch,
emittance growth, etc. with their appropriate weights, is calculated for
each of N parameter sets.

4. A region in parameter space is chosen that contains the best values, but
the volume of the region is shrunk by reducing T , multiplying it by a
factor α(< 1).

5. This continues until either T or χ is smaller than some tolerance (typi-
cally 10−4 for single precision).

For as few as 3 parameters, α can be 0.88, with N = 8, resulting in only about
100 evaluations of the beamline to achieve 10−4 accuracy. But this number of
evaluations increases exponentially with number of parameters.

As example, we take the RFQ match mentioned above. See animation (or try
this one).

Input files for this case are as follows: Transport subroutine:

SUBROUTINE tSYSTEM

file:///Users/baartman/Documents/2023Envelope/fig/anim2017.gif
http://lin12.triumf.ca/text/Talks/2023Envelope/fig/anim2017.gif
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COMMON /BLOC1/q0,q1,q2,q3,q4,d2,d3,d4,d5,xcm,ycm,wab

d1=63.7205-d2-d3-d4-d5

call DRIFT( 5.0205,’. ’)

call EQUAD( q0 , 2.5400, 2.3200,wab,’Q-periodic’)

call DRIFT( d1,’. ’)

call EQUAD( -q1 , 2.5400, 2.3200,wab,’IRA:Q1’)

call DRIFT( d2,’. ’)

call EQUAD( q2 , 2.5400, 2.3200,wab,’IRA:Q2’)

call DRIFT( d3,’. ’)

call EQUAD( -q3 , 2.5400, 3.3200,wab,’IRA:Q3’)

call DRIFT( d4,’. ’)

call EQUAD( q4 , 1.2700, 1.1600,wab,’IRA:Q4’)

call DRIFT( d5,’waist’)

call match(1,xcm,1.,1) !1 means x weight = 1.

call match(3,ycm,1.,1) !3 means y

RETURN

END
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Data file:

0.060 0 0 27930.0 1 0. !60keV, mass=30u

1 3 5. 0.5E-5

0 -0.

0.65054 18.4506 .65054 18.4506 1.5 0.476 !initial beam

1. 1000. 1. 1000. 1. 100. 0. .3937008 !units

3 !correlation parameters

1 2 0.909106

3 4 -0.909106

5 6 -1.

12 !number of parameters

0.000 .0 5.0 1 !5 quad strengths

0.000 .0 5.0 1

0.000 .0 5.0 1

0.000 .0 5.0 1

0.000 .0 5.0 1

8.0000 0. 60. 1 !inter-quad spacings

8.00 0. 60. 1

8.00 0. 60. 1

8.00 0. 60. 1

0.175 0. 1. 0 !waist size

0.175 0. 1. 0

5. 0. 100. 0 !weight for quad aberration deps/eps

1.E-6 900

03 1. 0.98 50

8 free parameters required 140,000 calls to the transport system subroutine,
7.4 seconds CPU time (M3 Mac). Others:

free parameters Calls CPU on Mac
8 140,000 7.4 s
7 13,000 0.71 s
6 1,700 0.11 s
5 825 0.06 s
4 215 0.03 s

N.B.: In this example, almost any arrangement with 4 parameters (typically,
just the 4 quad strengths) can yield an exact match to the RFQ. But there is
only one best arrangement of quad spacing that minimizes aberrations. That
requires all 8 parameters.

Just for fun, here is a larger example but run from a GUI:
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Matching demo. First let Q5,7,8 vary to get better match. Fix them, set final
4 quads to vary and adjust Q50. Watch how it maintains the match to the
RFQ.

8 Conclusions – non-integration cases

Simple formulas for the lowest order aberrations and can be used to estimate
emittance growth. A simple strategy for beam transport system design opti-
mization is to add these growths to the growth from mismatch, to form an error
function to be minimized. Efficient first order transport codes (with or without
space charge) can be augmented in this way. An example is TRANSOPTR, which
uses a minimization engine to vary beamline parameters to find an optimum
with negligible emittance growth.

At TRIUMF, many beamlines have been efficiently designed in this way, and
perform as predicted.

9 TRANSOPTR: Integration mode

TRANSOPTR[16] was originally written in 1981. It, like the original envelope
codes TRANSPORT and TRACE3D included only elements whose transfer matrices
could be written in closed form and were known. As stated above, this required
all elements to be “hard-edged”: to get anything more accurate would require
chopping into bits.

Similarly, the first attempts to extend to include space charge were a real
kludge: to subdivide elements and interleave defocus thin lenses to carry the
linear part of the space charge force. (Some codes in use - TRACE3D, I believe
- still do this.) The right way to do it is to derive the equations of motion
of the σ matrix elements and have envelope code itself numerically integrate
through the elements. The exact differential equations of Sacherer[17] were
incorporated into TRANSOPTR by Mark deJong[18], for the express purpose
of including space charge.

History: Already in 1959[19], Kapchinsky and Vladimirsky had found the
equations of envelope evolution for case of continuous beams uniform in con-
figuration and phase space. Seems too highly idealized to be useful, right?
Also severely limited as cannot include any coupling, either between trans-
verse directions or with longitudinal. I’ll show how theirs was a special case
for a very general formalism.

https://demo.envelope.triumf.ca/isac/OLISSS-RFQ-theory/
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In 1970, Frank Sacherer[17] showed that the same equations result from finding
the equations of motion of the beam envelope (the second moments of the beam
distribution). But his more general formalism allowed for any linear forces,
including coupling, dispersion, etc. and further extended it to bunched beams.

9.1 Statistical Approach to Beam Dynamics

If there is a distribution of particles, one would like to calculate the final
distribution from the initial. The behaviour of the beam centroid

〈X〉 =
N∑
i=1

X/N (30)

(whereN is the number of particles, and X is the column vector (x, Px, y, Py, z, Pz)
T

as in eqn. 36) is determined by the same transfer matrix M as for an individual
particle. This is the equation of ‘first moments’. At the next level, one would
like to calculate the evolution of the beam widths, or, ‘second moments’ given
by

σ ≡ 1

N

N∑
i=1

XXT (31)

For example, σ11 = 〈x2〉, σ12 = 〈xPx〉, σ13 = 〈xy〉, .... For a distribution of
particles so dense that we do not see graininess on any scale of our diagnostics,
the sums go over into integrals. For example,

σ12 =

∫ ∫ ∫ ∫ ∫ ∫
xPx f(x, Px, y, Py, z, Pz) dx dPx dy dPy dz dPz,

where f is the distribution in phase space, normalized so that its integral over
all 6 phase space dimensions is 1.

Here, s is the independent variable, and as will be shown, the longitudinal
coordinates are: z = βc∆t, Pz = (βc)−1∆E.

By direct substitution into the definition of σ, we find

σf = MσiM
T (32)

The transfer matrix M = I + Fds over an infinitesimal length ds gives the
equations of motion of individual particles:

X′ = FX. (33)

We find directly the differential equation for σ:

σ′ = Fσ + σFT . (34)

This is the envelope equation. For the full 6D case, it represents 21 equa-
tions. (Because σ is symmetric.)
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9.2 What is F? Infinitesimal Transfer Matrix

The general Hamiltonian can be Taylor-expanded by orders in the 6 dependent
variables3,

H(x1, x2, x3, x4, x5, x6; s) =
∑
i

∂H

∂xi

∣∣∣∣
0

xi +
1

2

∑
i,j

∂2H

∂xi∂xj

∣∣∣∣∣
0

xixj + ... (35)

The subscript 0 means that the derivatives are evaluated on the reference
trajectory ∀i, xi = 0. (Keep in mind though that these partial derivatives in general are functions of the

independent variable t or s.)

Terms of first order are eliminated by transforming to a coordinate system
measured with respect to the reference trajectory (the Frenet-Serret system).
The remaining terms are second order and higher, and for linear motion, we
simply truncate at the second order.

Then the Hamiltonian looks like H = Ax2 +BxPx+Cxy+ ...+UP 2
z : there are

21 independent terms. A = 1
2
∂2H
∂x2

, and so on; all derivatives are evaluated on
the reference trajectory, and may be a function of the independent variable.
We know the equations of motion from the Hamiltonian to be: x′ = ∂H/∂Px,
P ′x = −∂H/∂x, etc., where primes denote derivatives w.r.t. the independent
variable. Therefore the equations of motion:



x′

P ′x
y′

P ′y
z′

P ′z


=



∂2H
∂Px∂x

∂2H
∂P 2

x

∂2H
∂Px∂y

∂2H
∂Px∂Py

∂2H
∂Px∂z

∂2H
∂Px∂Pz

−∂2H
∂x2

− ∂2H
∂x∂Px

− ∂2H
∂x∂y

− ∂2H
∂x∂Py

− ∂2H
∂x∂z

− ∂2H
∂x∂Pz

∂2H
∂Py∂x

∂2H
∂Py∂Px

∂2H
∂Py∂y

∂2H
∂P 2

y

∂2H
∂Py∂z

∂2H
∂Py∂Pz

− ∂2H
∂y∂x

− ∂2H
∂y∂Px

−∂2H
∂y2

− ∂2H
∂y∂Py

− ∂2H
∂y∂z

− ∂2H
∂y∂Pz

∂2H
∂Pz∂x

∂2H
∂Pz∂Px

∂2H
∂Pz∂y

∂2H
∂Pz∂Py

∂2H
∂Pz∂z

∂2H
∂P 2

z

− ∂2H
∂z∂x

− ∂2H
∂z∂Px

− ∂2H
∂z∂y

− ∂2H
∂z∂Py

−∂2H
∂z2

− ∂2H
∂z∂Pz





x
Px
y
Py
z
Pz


(36)

or,
X′ = FX, (37)

where F is called the ‘infinitesimal transfer matrix’. Or in other words, if
we define H := ∂2H

∂xi∂xj
, i.e. the Hessian, and S as the fundamental symplectic

matrix

S =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


,

3In this shorthand, x1 = x, x2 = Px, x3 = y, ...
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then
F = SH.

Of the 36 elements of F there are only 21 independent ones. Easily integrated
if F=constant, directly as

Xfinal = MXinitial

where

M = exp[Fs] = I + Fs+
1

2
F2s2 +

1

3!
F3s3 + ...,

Try this with the quadrupole case:

F =

(
0 1
−k 0

)
.

You just need the powers of F, which are very easy in this case. Out will pop
the Taylor series of the sines and cosines.

This is an approach that goes back to the 50’s and MURA. Here is Don
Edwards and Lee Teng from 1973 [20]:

A particular case is where the beamline consists only of elements that keep
all 3 degrees of freedom independent of each other, and there is only focusing
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forces F (s) and −G(s) that vary with s. In other words, the Hamiltonian is
38,

H =
P 2
x

2
+ F (s)

x2

2
+
P 2
y

2
+G(s)

y2

2
+
P 2
z

2γ2
(38)

so

F =



0 1 0 0 0 0
−F 0 0 0 0 0
0 0 0 1 0 0
0 0 −G 0 0 0
0 0 0 0 0 1

γ2

0 0 0 0 0 0


(39)

(These give the standard Hill equations x′′ + F (s)x = 0, y′′ +G(s)y = 0, and
also z′ = Pz/γ

2 =constant.)

9.3 Example: Quadrupole (Hard-edge)

Then force coefficients are constant: F (s) = K2, G(s) = −K2 (i.e. constants;
not functions of s), in Mathematica using MatrixExp:

MatrixExp




0 1 0 0
−K2 0 0 0

0 0 0 1
0 0 K2 0

L

MatrixExp




0 1 0 0
−K2 0 0 0

0 0 0 1
0 0 K2 0

L

MatrixExp




0 1 0 0
−K2 0 0 0

0 0 0 1
0 0 K2 0

L

 =

=


Cos[KL] Sin[KL]

K
0 0

−KSin[KL] Cos[KL] 0 0

0 0 Cosh[KL] Sinh[KL]
K

0 0 KSinh[KL] Cosh[KL]



9.4 Example: Solenoid (Hard-edge)

K(s) = B(s)
2Bρ

is often as in TRANSPORT approximated as constant (hard-edge).
Not a good approximation for short solenoids as in electron injectors.

If constant,

MatrixExp




0 1 K 0
−K2 0 0 K
−K 0 0 1

0 −K −K2 0

L

MatrixExp




0 1 K 0
−K2 0 0 K
−K 0 0 1

0 −K −K2 0

L

MatrixExp




0 1 K 0
−K2 0 0 K
−K 0 0 1

0 −K −K2 0

L

 =
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=


Cos[KL]2 Sin[2KL]

2K
Cos[KL]Sin[KL] Sin[KL]2

K

−1
2
KSin[2KL] Cos[KL]2 −KSin[KL]2 Cos[KL]Sin[KL]

−1
2
Sin[2KL] −Sin[KL]2

K
Cos[KL]2 Sin[2KL]

2K

KSin[KL]2 −1
2
Sin[2KL] −1

2
KSin[2KL] Cos[KL]2



Apply Rotation: Rot[A ] =


Cos[A] 0 Sin[A] 0

0 Cos[A] 0 Sin[A]
−Sin[A] 0 Cos[A] 0

0 −Sin[A] 0 Cos[A]

 ;Rot[A ] =


Cos[A] 0 Sin[A] 0

0 Cos[A] 0 Sin[A]
−Sin[A] 0 Cos[A] 0

0 −Sin[A] 0 Cos[A]

 ;Rot[A ] =


Cos[A] 0 Sin[A] 0

0 Cos[A] 0 Sin[A]
−Sin[A] 0 Cos[A] 0

0 −Sin[A] 0 Cos[A]

 ;

Rot[−KL].M ]]Rot[−KL].M ]]Rot[−KL].M ]] =


Cos[KL] Sin[KL]

K
0 0

−KSin[KL] Cos[KL] 0 0

0 0 Cos[KL] Sin[KL]
K

0 0 −KSin[KL] Cos[KL]



9.5 Space Charge part of F

But space charge is somewhat different.

9.5.1 Space Charge with Uniform elliptical beam

While for both a round beam and a flat beam, the equipotentials have the
same shape as the charge density contours, the in-between case does not.

Density
contours aspect ratio a

b
, but equipotential contours

√
a
b
.

For a uniformly populated elliptical beam, semi-axis a in the x-direction and
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b in the y-direction, the electric field inside the beam becomes

Ex =
λ

2πε0

2x

a(a+ b)
=

λ

4πε0

x

x̃(x̃+ ỹ)
=
I × 30 Ω

β

x

x̃(x̃+ ỹ)
(40)

Ey =
λ

2πε0

2y

b(a+ b)
=

λ

4πε0

y

ỹ(x̃+ ỹ)
=
I × 30 Ω

β

y

ỹ(x̃+ ỹ)

The last step follows because recall that for a uniform beam, a = 2x̃, b = 2ỹ.
This can be written as a potential

Φ(x, y) = − λ

4πε0

1

2(x̃+ ỹ)

(
x2

x̃
+
y2

ỹ

)
(41)

To find the derivation, try Foundations of Potential Theory by O. Kellogg. It’s
tedious, but you can at least simply show that this potential satisfies the Poisson
equation ∇2Φ = (λ/A)/ε0, where A = πab the ellipse area.

These fields give the linear part of the force. Fx = md2x
dt2

= mv2x′′ = 2Ekx
′′ =

2qV0x
′′. (V0 is the non-relativistic energy per charge, Ek/q introduced in lecture 3.)

x′′|SC =
Fx

2qV0
=
Ex
2V0

=
I × 30 Ω

2βV0

x

x̃(x̃+ ỹ)
(42)

(Remember: λ
4πε0

= 30 ΩI
β .)

The dimensionless factor 2I×30 Ω
βV0

is referred to as the ‘generalized perveance’ Kperv,
so this can be written as

x′′|SC =
Kperv

4

x

x̃(x̃+ ỹ)
(43)

(For the y equation, just swap the x’s and y’s.)

9.5.2 Envelope equation

We stay with the simple case where the beamline consists only of elements that
keep all 3 degrees of freedom independent of each other, and there is only a linear
focusing force k(s) that varies with s. Moreover, k(s) contains a component from
space charge. In other words, the Hamiltonian is P 2/2 + k(s)x2/2, so

F =

(
0 1
−k 0

)
. (44)

This can also be demonstrated from x′ = P , and P ′ = −kx, or in matrix form,
X′ = FX: (

x′

P ′

)
=

(
0 1
−k 0

)(
x
P

)
. (45)

http://www.archive.org/details/foundationsofpot033485mbp
https://en.wikipedia.org/wiki/Perveance
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Plugging F into 34, we have(
σ′11 σ′12

σ′12 σ′22

)
=

(
2σ12 σ22 − kσ11

σ22 − kσ11 −2kσ12

)
. (46)

Combining some,
σ′′11 = 2σ′12 = 2σ22 − 2kσ11 (47)

The emittance ε is given by the determinant

ε2 = σ11σ22 − σ2
12. (48)

It is constant. (Exercise: Show this by using eqn. 46 to prove that (ε2)′ = 0.)

We can eliminate σ22:
σ′′11 = 2(ε2 + σ2

12)/σ11 − 2kσ11 (49)

Now recall the RMS size as x̃ =
√
σ11. Then σ′11 = 2x̃x̃′ so σ12 = x̃x̃′ and σ′′11 =

2x̃x̃′′ + 2x̃′2. Putting this all together, we get

x̃′′ + kx̃− ε2

x̃3
= 0, (50)

This is the envelope eqn; looks like the single particle equation except for the emit-
tance term. (Remember: x̃ is the beam RMS size, not the particle coordinate.)

9.5.3 Space Charge Envelope Equations

Let us separate k = kx − Kperv

4x̃(x̃+ỹ) where the former is from externally applied fields
of linear lenses, and latter term comes from eqn. 43.

x̃′′ + kxx̃−
Kperv/4

x̃+ ỹ
− ε2x
x̃3

= 0 (51)

ỹ′′ + kyỹ −
Kperv/4

x̃+ ỹ
−
ε2y
ỹ3

= 0

Alternatively, if we let a = 2x̃, b = 2ỹ then emittances εa = 4εx, εb = 4εy:

a′′ + kxa−
Kperv

a+ b
− ε2a
a3

= 0 (52)

b′′ + kyb−
Kperv

a+ b
−
ε2b
b3

= 0

These two are the “Kapchinsky-Vladimirsky” equations.[19]

9.5.4 Bunched beams

In F-matrix form, the space charge contribution is

Fsc =


0 0 0 0 0 0

Kxsc 0 0 0 0 0
0 0 0 0 0 0
0 0 Kysc 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (53)
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where Kxsc =
Kperv

a(a+b) , Kysc =
Kperv

b(a+b) . If the beam is in bunches rather than continu-
ous, we need the electric field of an ellipsoidal distribution of charge. It turns out,
surprisingly (Sacherer, 1971), that the RMS linear part of the space charge self-field
depends mainly on the RMS size of the distribution and only very weakly on its
exact form. To within a few percent, the RMS linear part of space charge is the
same as that for a uniformly populated ellipsoid. The space charge infinitesimal
transfer matrix is

Fsc =



0 0 0 0 0 0
Kxsc 0 0 0 0 0

0 0 0 0 0 0
0 0 Kysc 0 0 0
0 0 0 0 0 0
0 0 0 0 Kzsc 0


(54)

where

Kxsc =
Q

4πε0(mc2/e)β2γ3

1

a3
g

(
b2

a2
,
c2

a2

)
(55)

Kysc =
Q

4πε0(mc2/e)β2γ3

1

b3
g

(
c2

b2
,
a2

b2

)
(56)

Kzsc =
Q

4πε0(mc2/e)β2γ3

1

c3
g

(
a2

c2
,
b2

c2

)
(57)

where Q is the bunch charge, the ellipsoid semi-axes in the x, y, z directions are
a, b, c, and the function g is

g(u, v) =
3

2

∫ ∞
0

(1 + s)−3/2(u+ s)−1/2(v + s)−1/2ds (58)

This is from the family of Carlson elliptic integrals.

9.6 But space charge is nonlinear... what about arbi-
trary bunch distributions, orientations

This was thought to be a huge impediment to using envelope formulation for when
space charge not negligible.

http://en.wikipedia.org/wiki/Carlson_symmetric_form
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But there is a surprising property that if the beam is not uniform, as long as we use

RMS values, and the distribution has elliptical symmetry f(x, y) = f
(
x2

a2
+ y2

b2

)
,

it remains true. This remarkable theorem was discovered and proved by Frank
Sacherer (1971).

The only complication is that the RMS emittance is then not guaranteed to be
constant. However, for well-designed beamlines, the emittance growth is minimal.

For arbitrary distributions of the type f(x, y, z) = f
(
x2

a2
+ y2

b2
+ z2

c2

)
, replace a, b, c

with the RMS values according to the values they have for the uniform case, namely,

http://cdsweb.cern.ch/record/322516/files/cer-000245740.pdf
http://cdsweb.cern.ch/record/322516/files/cer-000245740.pdf
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a2 = 5σ11, b2 = 5σ33. Because of relativity, c2 is a special case: c2 = 5γ2σ55.
For arbitrary orientations, have to apply a rotation matrix to F , thus making
F23, F25, F41, F45, F61, F63 also non-zero.

Notice the recursiveness. This is the essential property of space charge: Particle
trajectories are linear even though the envelopes themselves are nonlinear.

9.7 Successfully applied to:

• beamlines, achromatic fitting, space charge

• complex transport problems such as einzel lenses, soft-landing, into solenoid,
cyclotron inflectors

• synchrotrons: finding β-functions with space charge, investigating linear cou-
pling and coherent envelope oscillations (half-integer resonances)

• linear accelerators...

As well, it has optimization routines; simplex method, simulated annealing.

9.7.1 Example: FNAL Booster

An interesting example is the FNAL booster. First of all, how do we find the optics
of a synchrotron? Simple: Launch a σ matrix, integrate around the ring, find how
it’s changed, allow input σ matrix to vary to fit the final beam to the initial. This
gives the (space charge-modified) periodic beta and dispersion functions: animation
(or try this one). These weird β-functions can be understood as in the following.
Bottom is when they diverge due to an ordinary 13/2 resonance driven by a focusing
irregularity. The top is the case when the resonance is approached due to space
charge tune depression. This is from paper[21].

file:///Users/baartman/Documents/2023Envelope/fig/animFNAL.gif
http://lin12.triumf.ca/text/Talks/2023Envelope/fig/animFNAL.gif
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For comparison: CSNS multi-particle (pyIMPACT) simulation of similar case.

10 Extra dividend from use of equations of

motion

There is only a very small subset of elements that are well described by “canned”
analytic transfer matrices, and these are highly idealized: solenoids, quadrupoles and
dipoles with hard edges, and of course drifts. That’s about it! Cannot do: Quads
with soft edges, realistic solenoids, einzel lenses, Ambient Axial Magnetic Field,
Arbitrary Axial Electric Field for soft-landing on target, Soft-edge Acceleration
Column, Spiral Inflector, Permanent Magnet Axial Lens, RF devices: Bunchers,
Linear Accelerator, RFQ. Yes, these are all now in TRANSOPTR.

This methodology allows not only space charge, but any general case with no closed-
form solution to equations of motion, e.g. varying axial fields either magnetic or
electric as in soft-landing ions into a sample; linear accelerators; short-soft-edge
quads;... virtually any element whose Hamiltonian is known.

In fact, for any optics device that is intended to be linear, the procedure for adding
it to the code is:

1. Write down the Hamiltonian for Frenet-Serret frame.

2. Expand to quadratic order (there should not be any linear terms, why?).

3. Find the F-matrix, and code it in.

file:///Users/baartman/Documents/2023Envelope/fig/CSNS.png
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11 Example: Cyclotron injection line

After 37 years of operation, we needed to replace the 13 metre, 300 keV vertical
section of the injection line into the cyclotron. All optics in this line are electrostatic,
and the insulators were becoming conductive with accumulated deposits. This line
has everything: a bunching beam with strong space charge (5 mA peak), a varying
axial solenoid field, and finally a spiral inflector: a device that strongly couples
are phase space variables. We did not want to reproduce the existing line, which
performed poorly and contained features we no longer needed. It consists of a FODO
periodic section of about 10 meters and 10 periods, and a matching section that has
to accommodate various levels of space charge and match to a pathologically-coupled
device, the spiral inflector.

The wide range of conditions requires millions of simulations while varying quad
lengths, strengths, orientations, and locations. Multiparticle is impractical here.
Instead all calculations were made using TRANSOPTR; not a single multi-particle sim-
ulation was run. Yet, it operated as soon as we turned it on in 2011, at theoretical
quadrupole settings, and has run evr since. Reminder: as all optics is electrostatic,
and internal to the vacuum chamber, a local spill of as little as 1% can melt elec-
trodes.
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11.1 As built (1974∼2011)

11.2 Bunching into a 36◦ phase acceptance

Ignore the details of 2-harmonic bunching, take only the linear part. I.e. launch the
beam at buncher with a negative correlation between phase and energy. r56 = −1,√

5σ55 = βλ/2, and
√

5σ66 ∝ Vbuncher optimized to give minimum bunch length at
injection gap.
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11.3 Strong x-y coupling due to axial field

0 0.1 0.2 0.3
0

2

4

6

8

10

12

B
(s)  [T

e
sla

s, m
e
te

rs]

FaxialB =



0 1 −1
2ρ(s) 0 0 0

−1
4ρ(s)2

0 0 −1
2ρ(s) 0 0

1
2ρ(s) 0 0 1 0 0

0 1
2ρ(s)

−1
4ρ(s)2

0 0 0

0 0 0 0 0 1
0 0 0 0 0 0


(59)

which arises from the solenoid Hamiltonian

HaxialB =
1

2

(
Px −

y

2ρ(s)

)2

+
1

2

(
Py +

x

2ρ(s)

)2

+
1

2
P 2
z , (60)

where 1/ρ(s) = B(s)/(Bρ), is a function of the independent
variable s. Interpolate it using cubic spline.

11.4 Strong x-y-z coupling in the inflector

(See A Canonical Treatment of the Spiral Inflector for Cyclotrons Baartman and
Kleeven, Part. Acc. 41 (1993).)

H(x, y, z, Px, Py, Pz; s) = (61)

1

2

[(
Px +

TC

A
y

)2

+

(
Py −

TC

A
x

)2

+

(
Pz +

2TS

A
y +

2

A
x

)2
]

− 1

2A2

[
ξ(x+ k′Sy)2 + x2 + kk′(C2x2 + y2) + 2TSxy

]
.

where

ξ =
1 + kk′S2

1 + k′2S2
, S = sin(s/A), C = cos(s/A), T =

k + k′

2
, k =

A

ρ
+ k′,
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A is electric radius, ρ = ρ(s) is magnetic radius, k′ is tilt parameter.

11.5 inflector matrix

Finflector =



0 1 TC
A 0 0 0

3−ξ+(T 2−kk′)C2

−A2 0 3TS−k′ξS
−A2

TC
A 0 −2

A

−TC
A 0 0 1 0 0

3TS−k′ξS
−A2

−TC
A

(1+3S2)T 2−kk′−k′2ξS2

−A2 0 0 −2TS
A

2
A 0 2TS

A 0 0 1

0 0 0 0 0 0


.

(62)

BTW, if integrated with no space charge, this gives matrix that agrees with other
codes (CASINO, AXORB).

The inflector is followed by a deflector: crossed E and B fields so looks like a Wien

filter.

11.6 Injection Matching Detail
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12 The original sin of TRANSPORT (what are the

canonical variables?)

I’ll cover the specific case of the linear accelerator, but first, we have to clarify
something:

TRANSPORT (and many other codes since) use incorrect longitudinal vari-
ables and these prohibit proper calculation of accelerated beams. SLAC-91
(Karl Brown[22]) mentions “At any position in the system... ”. This means
that time t is NOT the independent variable. Then goes on: “...particle
represented by a vector”:

(x, θ, y, φ, l, δ)

(where l is trajectory length and δ ≡ ∆P/P ).

This is wrong: The canonical pair are (t − t0, E − E0) or (∆t,∆E), not
(l,∆P/P ).

The reason it works usually is by applying a trick: If we scale by βc, we can
make them agree, since βc∆t = z, ∆E/(βc) = ∆P , but only true of static

magnetic elements: Electric potential Φ = 0, ~A 6= ~A(t).
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Table 2: Various codes and their longitudinal coordinate definitions. The fifth
column (EoM?) refers to whether the equations of motion are integrated as
opposed to having stored transfer matrices. The rightmost column refers to
whether the reference particle can be accelerated within an element. (K ≡
(γ0 − 1)mc2, ∆t ≡ t− t0)

code Order x5 x6 Canonical? EoM? β0(s)?

transport[23] up to 3 −(βct− β0ct0) ∆P
P0

No No –

gios[24] 3 ∆t
t0

∆E
K

No No –

trace3d[25] 1 −β0c∆t
∆P
P0

No No impulses

cosy-∞[26] ∞ −β0c∆tγ0
1+γ0

∆E
K

Yes Yes No

marylie[27] 3 −c∆t ∆E
P0c

Yes Yes No

transoptr[28] 1 −β0c∆t
∆E
β0c

Yes Yes Yes

13 Linac:

This includes any rf gap, bunchers, multi-gap DTL tanks, elliptical electron
cavities, etc. Anything symmetric, all that is needed is an interpolatable axial
electric field.

Here is the Hamiltonian for the distance along the reference trajectory s as
the independent variable,

H(x, Px, y, Py, t, E; s) = (63)

= −qAs −

√(
E − qΦ

c

)2

−m2c2 − (Px − qAx)2 − (Py − qAy)2

13.1 Potentials

The case of RF axially-symmetric electric field can be handled entirely with no
electric potential (Φ = 0), and time-varying vector potential. This has been
presented a number of times in the past (e.g. E.E. Chambers;1968[29]), but we
are interested in the following more experimentally-useful case: The electric
field along the axis E(s) has been measured and is therefore known, and the
geometry is exactly axially symmetric.
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For a gauge that zeroes both Ax and Ay, the potentials are

Ax = 0, Ay = 0, As = −E(s)

(
1− ω2

c2

x2 + y2

4

)
sin(ωt+ θ)

ω
(64)

and scalar potential:

Φ = −∂Ψ

∂t
= E ′ cos(ωt+ θ)

x2 + y2

4
(65)

Now if we expand the Hamiltonian, we get:

H(x, Px, y, Py, z, Pz; s) =
P 2
x

2P
+
P 2
y

2P
+

q

2βc

(
E ′C − ESωβ

c

)
r2

2
+

P 2
z

2γ2P
+
qEC
βc

zPz
γ2P

− qEωS
β2c2

z2

2
(66)

(C ≡ cos(ωt0(s) + θ), S ≡ sin(ωt0(s) + θ)) This has nice intuitive explanations
for the individual terms. (1) The factor in parentheses represents usual the
focal power of an RF gap, e.g. a buncher. (2) Taking the limit as ω → 0
reproduces precisely the Hamiltonian of the DC accelerator. Note that in that
case, E ′ = −φ′′.

13.2 Infinitesimal Transfer Matrix F

Now that the Hamiltonian for linear motion (eqn. 66) has been obtained, it is a
simple matter to find the infinitesimal transfer matrix F . Writing the equations of
motion (x′ = ∂H/∂Px, P ′x = −∂H/∂x, etc.), the following F -matrix is found for the
axially symmetric linear accelerator:

F =



0 1
P 0 0 0 0

A(s) 0 0 0 0 0

0 0 0 1
P 0 0

0 0 A(s) 0 0 0

0 0 0 0 β′

β
1

γ2P

0 0 0 0 B(s) −β′

β


. (67)

where we have defined:

A(s) =
−q
2βc

(
E ′C − ESωβ

c

)
, B(s) =

qEωS
β2c2

. (68)

But:
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• F-matrix is now a function of time as well as s,

• Energy is changing so

• Therefore, time and energy of the reference particle not known a priori any-
more: they must be calculated by separate integrals.

This means there are 2 more equations of motion besides the 21 for the σ matrix.[30]
A priori, we do not know the reference particle’s energy and time coordinates. We
need these in order to expand about them. (See eqn. 35.) They can be found from
the equations of motion evaluated at x = y = Px = Py = 0:

dE0

ds
=

∂H

∂t
= qE cos(ωt0 + θ) (69)

dt0
ds

= −∂H
∂E

=
E0

P0
=

1

β0c
(70)

These 2 are added to the 21 mentioned previously; 23 solved together.[30]

13.3 Example: ISAC DTL

Here’s an example of what you can do with a fast code: Find all possible combi-
nations of phase and amplitude on a 15-gap DTL designed for accelerating heavy
ions.
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This particular tank, accelerates ions from 0.46 MeV/u to 0.78 MeV/u. (β = 3.1%
to 4.1%) The frequency is 105 MHz so βλ = 9.0 cm at start and 11.7 cm at the exit.
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Plots are from a single calculation of half a million runs through the DTL, that took
a few hours to run.

Reminder: TRANSOPTR can only do linear optics, so if bunch is too long, it will
“banana” due to the rf nonlinearity. The black areas are for bunches of half-length
longer than 1 cm, i.e. bunches extending over a length of greater than 80◦. The
preferred path is the light colour, typically one tenth this length.

The design operating condition is the centre of the white island in the following plot,
where the energy gain has been divided by the rf amplitude:
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14 RFQ:

Not satisfied with axially symmetric linacs, we’ve also coded an RFQ, where x and y
focusing have opposite signs. Interesting and subtle difference in that spatial phase
must be tracked.[31]

14.1 Hamiltonian Dynamics

In an RFQ, the fields are electric and the magnetic forces are negligible. It is
therefore possible to analyze it with only a time-varying scalar potential. Then with
the independent variable is s, the distance along the path taken by the reference
particle, the Hamiltonian is −Ps, the canonical momentum in the direction of the
reference trajectory.

Hs(x, Px, y, Py, t, E; s) = −
√

(E − qΦ)2 /c2 −m2c2 − P 2
x − P 2

y (71)

14.2 RFQ Spatial Phase

We confine ourselves to the simplest, ‘two-term’ scalar potential for the RFQ (e.g.
Wangler[32], Staples[33])

Φ(x, y, s, t) =
V0

2

(
A10 cos(ks)I0(kr) +A01

(
x2 − y2

))
sin (ωt+ φ) , (72)
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where I0 is the modified Bessel function and r2 = x2 + y2. The potential features
both the accelerating and focusing efficiencies, respectively defined as:

A10 =
m2 − 1

m2I0(ka) + I0(mka)
(73)

A01 =
1−A10I0(ka)

a2
(74)

The parameters k, A10, A01 are usually tabulated, one value per halfcell, versus s.
This potential is used in codes such as parmteq and TRACE3D which calculate
through only one halfcell at a time. In that case s would be reset to zero at each
halfcell start. But we would like the ODE solver to run s from the beginning of the
RFQ to its exit, choosing its own stepsize for accuracy and efficiency, while spline-
interpolating the three parameters k, A10, A01. Thus equation 72 is incorrect for
non-piecewise constant values of k and s not re-starting at every piece: the spatial
modulation to the point s is not ks but

∫ s
0 k(ζ) dζ.

In a perfect RFQ, k(s) = 2π
β(s)λ = ω

βc = ω dt
ds , or k(s) ds = ω dt, we integrate,

arbitrarily using the initial condition s = 0 at t = 0 to define phase, and find∫ s
0 k(ζ) dζ = ωt. In other words, as time t progresses, the particle experiencing the

potential (72) will not stay synchronous unless the argument of the cosine is

ψ(s) =

∫ s

0
k(ζ) dζ (75)

rather than ks:

Φ(x, y, s, t) =
V0

2

(
A10 cosψI0(kr) +A01

(
x2 − y2

))
sin (ωt+ φ) (76)

14.3 The On-Axis Reference Particle

In order to transform from (t, E) to (z, Pz) = (−β0(s)c∆t,∆E/(β0(s)c)), we need
to first find time t0 and energy E0 of the reference particle. We find time t0 from
eqn. (71) as:

dt0
ds

= −∂H
∂E

=
E0 − qΦ

c
√

(E0 − qΦ)2 −m2c4
=

γ

c
√
γ2 − 1

=
1

βc
. (77)

(This is essentially the definition of β and γ; from here on, unsubscripted β and γ
refer to the reference particle and both are functions of s.)

We find the energy of the on-axis reference particle now as follows:

dE0

ds
=
∂H

∂t
=

1

βc

∂Φ

∂t
(78)

As above, energy E0 is not directly γmc2 because the scalar potential in an RFQ is
not zero on axis. In fact, γmc2 = E0 − qΦ, so:

mc2γ′ =
d(E0 − qΦ)

ds
=

1

βc

∂Φ

∂t
− q

(
∂Φ

∂s
+
∂Φ

∂t

dt

ds

)
= −q∂Φ

∂s
(79)
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This can be identified as the longitudinal electric field. Performing the derivative of
eqn. (76) above for on-axis,

mc2γ′ =
qV0

2
kA10 sinψ sin (ωt0 + φs) , (80)

and this agrees with standard references[32], except that the argument of the sine
function is ψ rather than ks.

14.4 Hamiltonian in (z, Pz)

This follows the technique developed for the axially symmetric linac[34]. The Hamil-
tonian (71) with the potential (76) is transformed to new longitudinal coordinates

z = −β(s)c
(
t− t0(s)

)
and Pz =

E − E0(s)

β(s)c
, (81)

where t0(s) =
∫

ds
βc . The transformation is most easily understood if done in two

steps: first transforming from (t,−E) to (−∆t,∆E). The generating function that
accomplishes this is [35]:

G1 = −
(
t−
∫

ds

βc

)
(∆E + E0) (82)

This produces the Hamiltonian-added terms:

∂G1

∂s
=

∆E + E0(s)

βc
−∆tE′0 (83)

Next, we transform once more from (−∆t,∆E) to (−βc∆t,∆E/(βc)), accomplished
by using a second generating function [35]:

G2 = −βc∆tPz, (84)

thus adding
∂G2

∂s
=
β′

β
zPz =

γ′

β2γ3
zPz (85)

to the Hamiltonian (71).

14.5 Hamiltonian for Linear motion

We then substitute eqn. (81) into the Hamiltonian. Since we are only interested in
the linear motion, we expand the resulting Hamiltonian to second order in the 6
canonical variables (using the abbreviation P ≡ βγmc):

H(x, Px, y, Py, z, Pz) =
E0

βc
−P +

P 2
x

2P
+
P 2
y

2P
+

P 2
z

2γ2P
+
A+

2
x2 +

A−
2
y2 +

C
2
z2 +B zPz

(86)
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where

A± =
qV0 sin (ωt0 + φ)

(
k2A10 cosψ ± 4A01

)
4βc

, (87)

B =
qV0A10

(
k sinψ sin (ωt0 + φ) + (ω/(βc)) cosψ cos (ωt0 + φ)

)
2β2γ3mc2

, (88)

C =
qV0(ω/(βc))2A10 cosψ

(
qV0A10/(β

2γ3mc2) cosψ cos2 (ωt0 + φ)− 2 sin (ωt0 + φ)
)

4βc
.(89)

There are no terms first order in the six dependent coordinates, confirming that the
reference particle’s coordinates are invariant.

14.6 Implementation in TRANSOPTR

From the Hamiltonian (86) we find directly the F-matrix:

F =



0 1
P 0 0 0 0

−A+ 0 0 0 0 0
0 0 0 1

P 0 0
0 0 −A− 0 0 0
0 0 0 0 B 1

γ2P

0 0 0 0 −C −B


(90)

For the full 6D case, it represents 21 equations (the σ-matrix is symmetric), but
in the present case 12 of these are trivial because there is no coupling between the
3 planes. A Runge-Kutta integrator is used to solve eqn. ??, simultaneously while
integrating ψ′ = k (75), t′0 (77), and γ′ (80). Space charge is included if needed
by augmenting the F-matrix with the appropriate linear space charge defocusing
terms[36, 34].

In TRANSOPTR a global input data file contains beam initial parameters plus the
element parameters one is free to vary. A subroutine describing the transport system
optical elements (quads, drifts, solenoids, linacs, etc.) are called in order, or in do
loops if they are periodic. The RFQ element is called via the new subroutine rfq
which reads the file containing the table of (s,A01, A10, k), and has as arguments
the phase and amplitude of the RFQ, and a length scale.



TRI-BN-23-14 Page 50

14.7 TRIUMF’s RFQ
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2-term TRANSOPTR simulation of the ISAC-RFQ, showing two times rms envelopes
on the left-hand vertical axis, with the y-envelopes shown as negative values for
clarity. The simulation runs from the start of the RFQ tank at s = 0. Two separate
envelopes are shown, corresponding to a matched and a mismatched case, in the
transverse dimensions. The mismatched case highlighting the betatron oscillation
is shown in color including the longitudinal envelope. The beam energy is shown on
the right-hand vertical axis. The transversely matched envelope is shown in light
grey.

We’ve also run the CERN Linac-4 RFQ case, without and with space charge. The
former takes 30,000 RK steps, and 131 ms on my Mac, the latter with 35 mA (100 pC
per bunch) takes 146 ms.

14.8 Comparison to PARMTEQ

parmteq normalized particle density distribution compared to TRANSOPTR ellipse
of area 4πεrms, corresponding to 86% containment for Gaussian distributed beam.
Profiles for x-Px, y-Py and t-E, taken at the RFQ vacuum tank exit, 15.83 cm
downstream of the vanes.

https://demo.envelope.triumf.ca/cern/LINAC4-RFQ/
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15 Application examples

15.1 elinac

We have fitted the initial beam right at the cathode, where initially beam energy is
20 eV, and energy spread is 14% and divergence is ∼ 1 radian.
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Here’s a closer look at the starting gun... 3 solenoids, buncher, injector linac:
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15.2 OLIS steering training for the Bayesian optimiza-
tion

See animation (or try this one).

15.3 MCAT

Model-Coupled Accelerator Tuning intended to sequentially optimize a transport
and/or accelerator string, using the TRANSOPTR model.

16 Conclusions

Envelope calculations (TRANSOPTR) are most efficient for linear optics with space
charge and/or any time the focal parameters vary with s and no closed-form matrix is
possible. Calculations are orders of magnitude faster than multi-particle simulations.

• Beamlines, including minimizing aberrations, can be rapidly designed.

• On-the-fly tuning/optimization is possible in control rooms, even with space
charge. This is useful to correct for failed hardware, e.g. as a cavity quenches.

• All aspects of the linear behaviour, including linear coupling, envelope oscil-
lations (half-integer resonances).

Not good for

file:///Users/baartman/Documents/2023Envelope/fig/OLISanimation.gif
http://lin12.triumf.ca/text/Talks/2023Envelope/fig/OLISanimation.gif
https://beamphys.triumf.ca/~oshelb/physnotes/dev-MCAT/dev-mcat-2021.pdf
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• Designing higher order corrections, such as required for spectrometers and
separators.

• Simulating anything inherently nonlinear. Examples are bunching a DC beam,
bunch deformation due to sinusoidal rf waveform.

• Collimation, High intensity beam losses due to halo.
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