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Implementing linear coupling
analysis in CYCLOPS

Lige Zhang

TRIUMF

Abstract: We have implemented linearized motion equations in
CYCLOPS, taking into account median plane asymmetry fields, to
calculate the 4x4 coupled transverse transfer matrix. The equations
were derived from a Hamiltonian that preserves the symplecticity of
the transfer matrix. We have also developed a post-processing script
to handle the coupled matrix. Using the symplectic rotation of the
frame, the coupled matrix is converted into normal mode, where
there is no coupling, enabling the use of standard twiss parameters
for 2D motion analysis of beam dynamics in the cyclotron. We have
tested the output results of CYCLOPS against the analytical smooth
approximation formula under static tune cases.
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1 Motion equations

The usual expression for the cyclotron Hamiltonian is given in polar coordinates[1,
2], but this only includes the median plane symmetric field, which makes the
motion in the transverse directions independent of each other. In this paper,
we derive the coupled Hamiltonian by starting with the vector potential with-
out assuming median plane symmetry. The magnetic vector potential A has
a degree of freedom from gauge choosing. By adding a gradient of a proper
scalar function to the vector potential, we can make the vector potential in
the axial direction zero. The magnetic field is then given by ∇× A.
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Using Gordon’s field expansion in powers of z, the vector potential can
also be expressed in terms of two independent median plane fields B and C,
as shown below:
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where B = B(r, θ) produces a field with median plane symmetry, while
C = C(r, θ) spoils the symmetry. The inverse Laplacian is denoted by ∇−2

2 .
Since no boundary conditions need to be set for the poison equation defined
by the inverse Laplacian, the particular solution that integrates the Green
function can be used to calculate the map of ∇−2

2 using map B. To avoid the
calculation of the inverse Laplacian, a new gauge can be selected that removes
the 0th-order terms of z in Ar, which is
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The magnetic field given by this vector potential is
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The Hamiltonian in cylindrical coordinates is written as

H =
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z c
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Where the canonical momenta are

Pr = pr + qAr

Pθ = γm0θ
′r2 + qrAθ

Pz = pz

(6)

Choosing θ as the independent variable, the Hamiltonian H is −Pθ,
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To study the motion around the closed orbit, we introduce the new coor-
dinates and momenta

x = r − r0,

Px = Pr − Pr0,

y = y − y0,

Py = Pz − Pz0.

(8)

We construct a type 2 generating function as below

G = rPx − r0Px + Pr0r + zPy − z0Py + Pz0z (9)

The new Hamiltonian using the new variables could be written as

K = H +
∂G

∂θ
. (10)

We expand the Hamiltonian around the close orbit and throw out the
constant, the new Hamiltonian with up to quadratic degree terms could be
used to linearize motion equations. Due to the length of the equations, we
provide the Python script in Appendix 1 to show the derivation process. We
use Sympy, a symbolic mathematics package in Python, to derive the linearized
equations and generate the Fortran code expressions.
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With perfect median plane symmetry, the closed orbit is on the median
plane. Substituting z, pz, C = 0 in the linearized equation gives
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This is what CYCLOPS has used to calculate the transfer matrix[3], conse-
quently the twiss parameters and tunes for different energies.

2 Implement the linearized equations in CY-

CLOPS

In the current version of CYCLOPS,[4, 5, 6] the asymmetric median plane
field is only used to calculate the static equilibrium orbit for each set of ener-
gies. However, the transfer matrix, tunes and twiss parameters are all calcu-
lated using the linearized equation without considering the asymmetric field.
Thus, the transversal motion is uncoupled and can be described by two 2× 2
transfer matrices. The 8 terms of the 2 matrices are calculated by integrating
the equations of motion, eq. 11, twice with the two different initial conditions
given below, using the linearized equation:

V1 =


1
0
1
0

 , V2 =


0
1
0
1

 , (12)

where V is the coordinates vector [x, px, z, pz]
T . The uncoupled transfer matrix

is also used as an input for COMA [7], a linear simulation code for cyclotron
beam dynamic study.

To calculate the transversal 4× 4 coupled transfer matrix at each integra-
tion step, we incorporated four new linearized equations, derived in Appendix
1, that take into account the asymmetric field. After finding the closed orbit,
the coordinates and field along the SEO are used as coefficients in the equa-
tions. The linear equations are then integrated four times with four different
initial conditions in the Runge-Kutta integrator to calculate all 16 terms of
the transfer matrix. The four initial conditions are given below.
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The 1-turn matrix is computed and then stored in a new output file named
”fort.40”.

3 Coupling matrix

For the coupling resonance study, it is important to preserve the invariant
in the simulation by ensuring good symplecticity of the transfer matrix. Figure
1 shows the symplecticity of the 4×4 transfer matrix over the full energy range
of TRIUMF cyclotron.

Figure 1: Symplectic error of the transfer matrix computed by CYCLOPS.
The symplectic error here is the RMS value of all the terms of the symplec-
tic checking matrix. The symplectic error is less than 2.5 × 10−5 over all the
energy ranges, which is small enough for the coupling resonance study in TRI-
UMF cyclotron as the beam travels only around one thousand turns before
extraction.
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Figure 2: Parameteres extracted from the coupling matrix. (a) νr − νz shows
the crossing of the linear coupling resonance, first at around 166 MeV, then
twice at around 300 MeV. (b) The tune difference between the original mode
and the normal mode is within 0.002, indicating that the tune diagram cal-
culated by the original CYCLOPS without considering the coupling is suffi-
ciently accurate for cyclotron design and optimization. (c) The rotation angle
between the normal mode frame and the laboratory frame is calculated using
arccos(γ), where γ varies approximately between 0 and 1, indicating that the
normal mode axis is rotating from 0 ◦ to 90 ◦ during the crossing. When it is
on resonance, the angle is 45 ◦, as shown by the three discontinuous points.
(d) κ is calculated by the difference between the normal mode vertical tune
and the radial tune, and 1/κ indicates the coupling strength. This parameter
is the same as the one in the smooth approximation[8, 9, 10].
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The coupled 1-turn matrix could be decomposed into normal mode using[11,
12, 13]

T =

[
M n
m N

]
= VUV−1 (14)
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0 B

]
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]
. The superscript ’†’donates

the symplectic conjugate. The diagonalized 4 × 4 matrix U describes the
uncoupled motion in the normal mode. The coordinates in the normal model
w are related to the laboratory coordinates x by x = Vw. The solutions of C
and γ could be found in Sagan’s paper[14], given as
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where H = m+ n†.
As long as detH > 0, a second solution of C and γ exists, which is given

as
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4 Static tune cases

To study the static tune case, we tracked one particle for 1000 turns at
fixed energies without acceleration using the 1-turn transfer matrix generated
by CYCLOPES.
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Figure 3: Single particle tracking results using the transfer matrix at 166.59
MeV, which is very close to the on-resonance point. The initial condition is
Jx = Jz, which is the theoretical fixed point. The small amplitude exchange,
not predicted by the analytical formula, is caused by the ∆ν error of 6× 10−5.
The tracking results show good agreement with the expected behavior based
on the theoretical analysis, which demonstrates the validity of the model and
the accuracy of the transfer matrix.
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Figure 4: Single particle tracking results using the transfer matrix at 166.59
MeV, which is very close to the on-resonance point. The initial condition
is with oscillations in only one direction. The results show a full oscillation
amplitude exchange.
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Figure 5: Single particle tracking results using the transfer matrix at 166.4
MeV, where ∆ν = 0.001 and κ = 0.0016. The initial condition is around the
fixed point.
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Figure 6: Single particle tracking results using the transfer matrix at 166.4
MeV, where ∆ν = 0.001 and κ = 0.0016. The initial condition is with oscilla-
tions in only one direction. The results show a maximum oscillation amplitude
exchange.

5 Conclusions

We extended CYCLOPS to include the linearized coupling motion equation
and compute the 4*4 coupled transversal transfer matrix, enabling the study of
coupling resonances in cyclotrons. Single particle tracking was used to validate
the output matrix against the smooth approximation formula. In all cases, the
invariant Jx+Jz was preserved in the simulation. The trace in the action-angle
space was found to agree with the smooth approximation, demonstrating the
accuracy of the new implementation.
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6 Appendix

6.1 Python script to generate the equations for CY-
CLOPS

import sympy as sym

n = sym.symbols(’n’)

q = sym.symbols(’q’)

p,pr,pt,pz = sym.symbols(’p,pr,pt,pz’)

r,t,z,x,px,y,py = sym.symbols(’r,t,z,x,p_x,y,p_y’)

Br=-sym.Function(’Br’)(r,t)

Bt=-sym.Function(’Bt’)(r,t)

Bz=-sym.Function(’Bz’)(r,t)

Br0=sym.Function(’B_r’)(t)

Bt0=sym.Function(r’B_{\theta}’)(t)

Bz0=sym.Function(’B_z’)(t)

DBRDR0=sym.Function(’DBRDR’)(t)

DBTDR0=sym.Function(’DBTDR’)(t)

DBZDR0=sym.Function(’DBZDR’)(t)

pt=(p**2-pr**2-pz**2)**0.5

Ar=sym.Function(’A_r’)(r,t,z)

At=sym.Function(’A_t’)(r,t,z)

Ar0=sym.Function(’A_r’)(t)

At0=sym.Function(’A_t’)(t)

r0=sym.symbols(’R’)

t0=sym.Function(’t0’)(t)

z0=sym.symbols(’z_0’)

pr0=sym.symbols(’p_r’)

pt0=sym.symbols(r’p_{\theta}’)

pz0=sym.symbols(r’p_{z0}’)

B=sym.Function(’B’)(r,t)

C=sym.Function(’C’)(r,t)

DBDT=sym.Function(r’\partial B/\partial \theta’)(r,t)

DCDT=sym.Function(r’\partial C/\partial \theta’)(r,t)
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DBDR=sym.Function(r’\partial B/\partial r’)(r,t)

DCDR=sym.Function(r’\partial C/\partial r’)(r,t)

DBDTDR=sym.Function(r’\partial^{2} B/\partial r \partial t’)(r,t)

DCDTDR=sym.Function(r’\partial^{2} C/\partial r \partial t’)(r,t)

DBDRDR=sym.Function(r’\partial^{2} B/ \partial r^2’)(r,t)

DCDRDR=sym.Function(r’\partial^{2} C/ \partial r^2’)(r,t)

DBDTDRDR=sym.Function(r’\partial^{3} B/\partial r^{2} \partial t’)(r,t)

DCDTDRDR=sym.Function(r’\partial^{3} C/\partial r^{2} \partial t’)(r,t)

DBDRDRDR=sym.Function(r’\partial^{3} B/\partial r^{3} ’)(r,t)

DCDRDRDR=sym.Function(r’\partial^{3} C/\partial r^{3} ’)(r,t)

B0 =sym.symbols(’BZ’)

C0 =sym.symbols(’C0’)

DBDT0 =sym.symbols(’DBZDT’)

DCDT0 =sym.symbols(’DCDT’)

DBDR0 =sym.symbols(’DBZDR’)

DCDR0 =sym.symbols(’DCDR’)

DBDTDR0 =sym.symbols(’D2BDTDR’)

DCDTDR0 =sym.symbols(’D2CDTDR’)

DBDRDR0 =sym.symbols(’D2BDR’)

DCDRDR0 =sym.symbols(’D2CDR’)

DBDTDRDR0 =sym.symbols(’DBZ3DTDR2’)

DCDTDRDR0 =sym.symbols(’DC3DTDR2’)

DBDRDRDR0 =sym.symbols(’DB3DR’)

DCDRDRDR0 =sym.symbols(’DC3DR’)

####eqt for cyclops

H=-r*sym.sqrt(p**2-(pr-q*Ar)**2-pz**2)-q*r*At

HHI=sym.hessian(H,(r,pr,z,pz))

HH=HHI.subs(sym.sqrt(p**2-pz**2-(pr-q*Ar)**2),pt0)

HH=HH.subs((pr-q*Ar),pr0)

HH=HH.subs(pz,pz0)

J=sym.Matrix([[0,1,0,0],[-1,0,0,0],[0,0,0,1],[0,0,-1,0]])

HH=sym.simplify(J*HH)

HH=HH.subs(At,-1/r*sym.integrate((B*r),r)+DCDR*z+DBDR*z**2/2)
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HH=HH.subs(Ar,1/r*(-DCDT*z-DBDT*z**2/2))

HH=sym.simplify(HH)

HH=HH.subs(sym.diff(B,r),DBDR)

HH=HH.subs(sym.diff(C,r),DCDR)

HH=HH.subs(sym.diff(DBDT,r),DBDTDR)

HH=HH.subs(sym.diff(DCDT,r),DCDTDR)

HH=HH.subs(sym.diff(DBDR,r),DBDRDR)

HH=HH.subs(sym.diff(DCDR,r),DCDRDR)

HH=HH.subs(sym.diff(DBDTDR,r),DBDTDRDR)

HH=HH.subs(sym.diff(DCDTDR,r),DCDTDRDR)

HH=HH.subs(sym.diff(DBDRDR,r),DBDRDRDR)

HH=HH.subs(sym.diff(DCDRDR,r),DCDRDRDR)

HH=HH.subs(DBDTDRDR,DBDTDRDR0)

HH=HH.subs(DCDTDRDR,DCDTDRDR0)

HH=HH.subs(DBDRDRDR,DBDRDRDR0)

HH=HH.subs(DCDRDRDR,DCDRDRDR0)

HH=HH.subs(DBDTDR,DBDTDR0)

HH=HH.subs(DCDTDR,DCDTDR0)

HH=HH.subs(DBDRDR,DBDRDR0)

HH=HH.subs(DCDRDR,DCDRDR0)

HH=HH.subs(DBDR,DBDR0)

HH=HH.subs(DCDR,DCDR0)

HH=HH.subs(DBDT,DBDT0)

HH=HH.subs(DCDT,DCDT0)

HH=HH.subs(B,B0)

HH=HH.subs(C,C0)

HH=HH.subs(z,z0)

HH=HH.subs(r,r0)
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HH=sym.simplify(HH)

HH=HH.subs(q,1)

HH=sym.simplify(HH)

HH

###output for krout.f

R11,R21,R31,R41,R12,R22,R32,R42,R13,R23,R33,R43,R14,R24,R34,R44=sym.symbols(’R11,R21,R31,R41,R12,R22,R32,R42,R13,R23,R33,R43,R14,R24,R34,R44’)

R0=sym.Matrix([[R11,R21,R31,R41],[R12,R22,R32,R42],[R13,R23,R33,R43],[R14,R24,R34,R44]])

HH=HH*R0

print(HH[0,0])

print(HH[1,0])

print(HH[2,0])

print(HH[3,0])

print(HH[0,1])

print(HH[1,1])

print(HH[2,1])

print(HH[3,1])

print(HH[0,2])

print(HH[1,2])

print(HH[2,2])

print(HH[3,2])

print(HH[0,3])

print(HH[1,3])

print(HH[2,3])

print(HH[3,3])

6.2 CYCLOPS repository

https://gitlab.triumf.ca/beamphys/cyclops.git
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