
On wire-corrector optimization in the HL-LHC and the appearance of

special aspect ratios

D. Kaltchev∗

TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3

(Dated: Apr 1 2021)

∗ kaltchev@triumf.ca kaltchev@cern.ch

1

mailto:kaltchev@triumf.ca \ \ \ \ kaltchev@cern.ch


1. INTRODUCTION

Two-dimensional amplitude-independent Resonance Driving Terms (RDT), based on the coef-

ficients cpq in the multipole expansion of the beam-beam kick, have been used in [1] to describe

the effects of long-range (l.r.) beam-beam interactions in the HL-LHC and optimization of wire

correctors. The RDT represent a powerful tool to investigate the effect of beam-beam and its com-

pensation since, by combining the above coefficients with the betatronic phases (in the same way

as this is done for lattice multipoles) they account for the lattice symmetries.

In [1], a common expression is used for both the l.r. beam-beam encounter (bb) and the wire

corrector (infinite and thin wire) and an analytic formula is found that produces the optimum

parameters of the wires. The formula follows from imposing the condition for simultaneous can-

cellation of a target pair RDT (indices p1,q1, p2,q2) and gives, for a fixed location of the wire

left-right symmetric wrt the IP, two equal optimum parameters: integrated current and distance to

the axis. These guarantee that the target pair, and also a symmetric one (q1, p1,q2, p2), will vanish

over a single turn. Further, by varying the wire location, it turns out that many, in fact nearly all,

other RDT (arbitrary indices p,q) can be cancelled, if only the wires are installed very close to

longitudinal locations that correspond to two special values of the beta-function aspect ratio βx,y
βy,x

=

1/2 and 2. Section 2 focuses on the above formula, attempting to explain the appearance of these

special values.

Note: The paper is seen as first step in a study that aims to include the dependence on weak-beam-particle

amplitude ax,y, i.e on the transverse horizontal and vertical displacements x,y of the weak-beam particle from the weak

beam core. The RDT approach is amplitude-independent in a sense that the above dependence is naturally captured

in the high-order terms in the expansion parameter – interactions occurring far from the weak-beam axis (and hence

close to the strong beam core) correspond to taking high-orders of x,y. It therefore represents an interest to reproduce

the above results using Hamiltonian approach, i.e. Hamiltonian Fourier coefficients and the corresponding amplitude-

dependent Hamiltonian Driving Terms (HDT). These coefficients are denoted with Cpq = ip+qDpq , where D is a real

quantity. Thus, in the Hamiltonian approach, the beam-beam kick is replaced by the corresponding potential. Higher

orders of x,y are accounted for via the exact functions Cpq(ax,ay). The idea is that the driving term cancellation

derived below could be verified for amplitudes up to the strong beam core.

2



2. WIRE CORRECTION USING RDT

Here first the wire-correction formula is revisited. Then, expression for the residual RDT as a

function of the sigma aspect ratio r is then derived. Imposing the condition that the residual RDT

is cancelled for arbitrary indices produces the special, a.k.a. magic, values of r: r ≈ 1/
√

2 and
√

2, corresponding to r2 ≈ 1/2 and 2 – the beta aspect ratios found in [1].

The optics functions chosen are r, as defined above,
√

βx,y of the weak beam (same as in [1])

and the normalized separation in the x-plane (in IR5). These appear as vectors: rrr, σσσ and ψψψ re-

spectively as they are naturally discrete (index n). In particular, for a driving term, the components

of ψψψ are needed at the longitudinal locations of the bb collisions sn spaced half-bunch distance

3.75 m apart. The vectors will be operated upon "by component" – for example raised to an integer

power. In [1], the analogous three discrete quantities are the real separation in the y-plane and the

two weak-beam beta functions (in IR1).

Using the same spacing, we extend the above vectors to include the wire domain (“w”), i.e. we

define a “slot” at which there is either a bb encounter, or a wire may be located. If some result

appears as a smooth functions of the parameters (say r), then plots are made by simply mapping

this function over the wire domain of the vector(s).

Specifically, we consider IR5 and denote with 2×Nbb (in our example = 2× 18) the number

of l.r. bb collisions. There are then 2× 54 slots extending left and right of IP5 over a distance

s≈±200 m from IP5. Same as in [1], from the insertion symmetry it will follow that using only

the “R” slots (these on the right of IP5) is sufficient. To summarize, in general three vectors of

length 54 provide a full description of the wire-correction problem and each vector has two parts

– a beam-beam domain (index bb), of length Nbb, and a wire domain (index w).

A. RDT

A round-beam (at the IP) optics is assumed with emittance ε equal in both planes. For this

section we take ε = 1. The notations are meant to provide some link with the next section.

Using the anti-symmetry of the optics let us rewrite the (p,q)-coefficient cpq in the expansion

of the kick, delivered to the weak-beam particle by either a single bb or a wire corrector, in the

following way: denote

ψx =
|Dx|
σx

, ψy =
|Dx|
σy

; σx,y ≡
√

βx,y, (2.1)
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where βx,y and Dx are the lattice parameters: weak-beam beta function and real space separation.

Then, for the n-th slot [1]

c(n)pq =
β
(n)
x

p
2
β
(n)
y

q
2

|Dx
(n)|

p+q = (ψ
(n)
x )−p (ψ

(n)
y )−q (2.2)

where for a wire slot (n) is replaced with w. The lattice parameters appear as L-R pairs and within

each pair: σ
(n),L
x,y = σ

(n),R
y,x , Dx

(n),L =−Dx
(n),R and hence ψ

(n),L
x,y = ψ

(n),R
y,x . Only the absolute value

|Dx| participates – this accounts for the π phase jump from left to right [1] – so that all ψ are

positive.

By summing over the bb slots, the RDT (cLR
pq in [1]) is

Σpq = ∑
n∈LR

ψ
(n)
x
−p

ψ
(n)
y
−q

=

= ∑
n∈R

ψ
(n)
x
−p

ψ
(n)
y
−q

+ ∑
n∈L

ψ
(n)
x
−p

ψ
(n)
y
−q

= (2.3)

= ∑
n∈R

(ψ
(n)
x
−p

ψ
(n)
y
−q

+ψ
(n)
y
−p

ψ
(n)
x
−q
) =

= ψψψ
−p
L ·ψψψ

−q
R +ψψψ

−p
R ·ψψψ

−q
L

The third line follows from the second, because each term in the L sum has a corresponding

one in the R sum with x↔ y . In the fourth line x and y are replaced with L and R and further

ψL, ψR are the components of corresponding vectors (in bold). Bringing a vector to a power is

understood to be "by component". Thus the RDT depends on two vectors ψψψL and ψψψR of length 18

with components the values of ψL = D
σL

x
, ψR = D

σR
x

(D≡ Dx
R > 0) over IR5 Right. The vectors are

different since outside the drift region σR
x 6= σL

x . Alternatively, one can replace one of them by rrr,

whose components are the sigma aspect ratios r ≡ σR
x /σL

x = ψL/ψR. If we denote ψψψ ≡ ψψψL, then

the RDT (2.3) can then be rewritten as

Σpq = ∑
n∈R

ψ
−(p+q)
n (rp

n + rq
n) =

= ψψψ
−(p+q) · (rrrp + rrrq). (2.4)

Since in the wire domain, ψ is simply proportional to r in fact Σpq depends only on one of the

vectors, say rrr, plus one constant (see also [1]). Another vector, not participating in the driving

term, is σσσ with components σL ≡ σL
x .

We now extend the length of the three vectors to 54 to include the wire domain. Figure 1 and

Table (2.5) show ψψψ and rrr. The extreme, i.e. minimum and maximum values, for of rn are 0.48

and 1.56.
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FIG. 1. Components of the vectors: sigma aspect-ratio rrr and normalized separation ψψψ over the right half of

IR5. Left plot: over the bb domain (18 slots), where ψ is proportional to r; Right: over the full domain – bb

and wire (double spacing is used).

ψψψ = ( 10.57 10.57 10.57 10.57 10.57 10.57 10.28 9.48 8.52 7.94 7.88 8.13 8.75 10.09 11.96 13.42 13.88 13.75 )

rrr = ( 1. 1. 1. 1. 1. 1. 0.94 0.79 0.61 0.49 0.48 0.52 0.64 0.88 1.22 1.49 1.56 1.55 )

(2.5)

B. Wire correction and residual RDT

Below we will use three Σpq (a triad of RDT). One is given by (2.4). Another two are Σp1q1

and Σp2q2 (with corresponding replacements of p and q). As explained above, the plan is to first

compute the two wire parameters Nw(r) and Dw(r) that follow from the condition that the target

pair p1,q1 is p2,q2 is simultaneously cancelled, and then find the residual driving term (indices

p,q).

To begin, recall that Eqn (2.2) also describes the wire-corrector coefficient (Introduction):

cw,R
pq = Nw,R β

w,R
x

p
2
β

w,R
y

q
2

|Dx
w,R|p+q (2.6)

and similar for “L”. Here Nw,R, an effective charge, is proportional to the integrated current of the

wire. Repeating the same steps as for (2.3), the contribution of two wires, both installed at distance

Dw and with the same Nw = Nw,L = Nw,R, to the RDT is

Σ
w
pq = Nw(ψ−p

w,Lψ
−q
w,R +ψ

−p
w,Rψ

−q
w,L) (2.7)

where r ≡ σw,R/σw,L, ψ ≡ ψw,L = Dw

σw,L
, ψw,R = Dw

σw,R
. Here quantities ψ and r now take values

within the wire domain on Figure 1.

5



The cancellation condition is

Σp1,q1
+ Σ

w
p1,q1

= 0

Σp2,q2
+ Σ

w
p2,q2

= 0. (2.8)

Omitting the derivation, we write the solutions of (2.8). For this, define the following functions

of r

A(r)≡
Σpq

(rp + rq)
= ∑

n∈bb
ψ
−(p+q)
n

rp
n + rq

n

rp + rq (2.9)

and correspondingly A1(r)≡
Σp1q1

(rp1 + rq1)
, A2(r)≡

Σp2q2

(rp2 + rq2)
. Introduce also

P1 = p1 +q1, P2 = p2 +q2

and require that P1 6= P2. With these two definitions, the solutions are:

1) for the effective charge (it depends only on r):

Nw(r) = (A−P2
1 AP1

2 )
1

P1−P2 ; (2.10)

2) for the wire distance to axis (depends on r and the components σw,L of σσσ ):

Dw = σw,L (A−1
1 A2)

1
P1−P2 . (2.11)

The solutions (2.10) and (2.11) are identical to the ones in [1]: taking some sample p1,q1, p2,q2

and values of r within the wire domain produces identical plots, see Figure2.
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3) for the residual uncorrected RDT (it depends only on r):

With h≡ (A−1
1 A2)

−P
P1−P2 (rp + rq),

Rpq(r) = Nwh−Σpq =

= A
− P2−P

P1−P2
1 A

P1−P
P1−P2
2 (rp + rq)−Σpq, (2.12)

where P ≡ p+ q. Expression (2.12) again agrees with the results in [1]. For example, by using

some of the corrected pairs p1,q1, p2,q2, Figure 3 shows |Rpq| as a function of r2 for all (p,q) (for

all orders 5 and 10).
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FIG. 3. Dependence on r2 of the residual driving term, Eqn (2.12), to be compared with Fig 7 in [1].

The meaning of Figures 2 and 3, i.e. of the last three equations, is as follows. If two wires

with parameters Nw(rw) and Dw(rw) are installed at symmetric locations where the aspect ratio is

r = rw (the left wire is at ratio 1/rw), then Σp1q1 and Σp2q2 are cancelled at these locations. With

wires thus installed, the dependence of any residual p,q-driving term on r is for any r given by

(2.12).

An inspection of the figures shows that, for the sample triads chosen: (p1,q1, p2,q2) and (p,q),

there are indeed special locations where both r2
w and r2 are near 1/2 and 2. The question is why
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this may be true for nearly every such triad (and clarify the meaning of "nearly").

C. Equation for the special aspect ratios

The special aspect ratios r, for which the residuum term (2.12) as also cancelled, satisfy the

equation Rpq(r) = 0. From (2.9) and (2.12), the equation describing them is

A1(r)
− P2−P

P1−P2 A2(r)
P1−P
P1−P2 = A(r). (2.13)

If (p1,q1, p2,q2) are not too large, then the (only) two roots can be found numerically (it proves

best to take the logarithm of both sides) and as we have seen they are near 1/
√

2 and
√

2. For large

such indices, this becomes difficult.

The symmetry of (2.13) implies some properties of its roots. If r is a solution, then notice that

in (2.13) the powers of A are related; there are the identities:

P2−P
P1−P2

+P2
P1−P
P1−P2

= P. (2.14)

First, an inspection of (2.13), the definitions of RDT (2.4), and of A (2.9), shows that if r is a

solution, then 1/r is also a solution (the signs of all pi,qi,Pi are reversed).

Second, by using again (2.14), it can be checked that if there is only a single bb collision

occurring at flatness parameter rn (the sum contains only a single term), then the solution is simply

r = rn (and r = 1/rn) – optimum wire is at the same flatness as the sole l.r.

D. Explanation of the appearance of special ratios

Assume that there is a solution r of (2.13) valid for any triad of indices. Introduce, along with

the sum P = p+q, also the difference M = p−q (a measure the coupling). We are now looking

for r such that (2.13) is fulfilled for arbitrary both P and M.

To begin with P, notice that for (2.13) to be true for any P, it is sufficient that A is of the form:

A = S P (2.15)

(and hence A1 = SP1 , A2 = SP2). This again follows from (2.14).

On the other hand, the expression for A (2.9) can be rewritten as

A = ∑
n∈bb

V P
n ; Vn ≡

(
ψ
−1
n

r(P+M)/2
n + r(P−M)/2

n

r(P+M)/2 + r(P−M)/2

)1/P

. (2.16)
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The quantity S is the so called "p-norm" [2] of the vector VVV = (V1,V2, . . .):

S =

(
∑

n∈bb
V P

n

)1/P

. (2.17)

Importantly, the components Vn (they depend on the lattice parameters in the bb region) satisfy the

following: for M < P the dependence of Vn on r is nearly the same for all n. This is illustrated on

Figure 4.
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FIG. 4. Curves Vn(r) for the 18 l.r. collisions in IR5 Right. When M < P, they overlap, i.e. Vn(r) becomes

nearly independent of n.

At this point we only know that the solution r valid for any P exists if A = SP where S is a

p-norm. Next, M must be also arbitrary, so S should not depend on M. Require therefore that the

derivative of S over M is zero and use the chain rule:

dS
dM

=
d

dM

(
∑

n∈bb
V P

n

)1/P

= 0

dS
dM

=
1

PSP−1 ∑
n∈bb

d
dM

V P
n =

1
SP−1 ∑

n∈bb
V P−1

n
dVn

dM
= 0

Since V P−1
n is almost independent of n, it can be taken outside the sum so the equation for r

becomes

∑
n∈bb

dVn

dM
= 0. (2.18)

Here the signs of the terms are important as for some n they may cancel.

In practice, (2.18) is solved by minimizing the absolute value of left-hand side. The conclusion

is that finding the minimum of the p-norm of a vector over the parameter M can, at least in our

case, be done by minimizing the modulo of sum of derivatives of its components.
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By taking the derivatives of Vn (2.16), the condition (2.18) finally becomes

∑
n∈bb

1
2Pψn

(r
− 1

2 (M+P)
n r

1
2 (M−P)(rM

n +1)
rM +1

 1
P

×

(
−rM

n −1
rM

n +1
logrn +

rM−1
rM +1

logr
)
= 0. (2.19)

This equations (2.18) and the following from it (2.19) have been derived under the assumption that

(2.13) has the same solution r for any triad. They are valid for M < P. Differently from (2.13),

for arbitrary P and M their roots can easily be found numerically. Studying the dependence of the

roots on P and M should then answer to question "nearly all triads", see above:

1) When M is varied, but is small, the roots are with accuracy 10−2 equal to 1/
√

2 and √2,

but gradually deviate as M increases. By taking rn and ψn from Table (2.5), this is illustrated

on Figures 5 which show the dependence on r for both the individual dVn
dM (r) and their average

1
18 ×

dVn
dM (r) (the dashed curve).
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FIG. 5. Several arbitrary values of P and M. Derivatives (2.19) and their average (black dashed) depending

on r. The average is seen to be close to zero near the two magic ratios 1/
√

2 and
√

2 (black vertical lines)

and deviates for larger M. Individual curves are colored with Hue[n] = rn.

2) when P exceeds several units, the (only) two roots of (2.19)are (as expected) independent of

P. To explain this, note that in limit P→ ∞, (2.19) becomes

∑
n∈bb

ψ
−1
n

(
rM

n −1
rM

n +1
√

rn logrn−
rM−1
rM +1

√
r logr

)
= 0. (2.20)

For (2.20) to hold, P only needs to exceed several units, say P ≥ 4. For such P, with regard to

obtaining the same roots, equation (2.20) is equivalent to (2.19).

E. Dependence on the long-range flatness parameters via weight function

As it turns out, the special locations depend on the flatness parameters rn, but not on the nor-

malized separations ψn (at least for the sample lattice considered).
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To show this, an approximate equation of r is derived as follows. Define an average < ψ−1
n >

with ∑
n∈bb

ψ
−1
n = Nbb < ψ

−1
n >. Then (2.20) becomes

∑
n∈bb

ψ
−1
n

rM
n −1

rM
n +1

√
rn logrn = Nbb < ψ

−1
n >

rM−1
rM +1

√
r logr. (2.21)

Further, for r within 0.5 < r < 2, the square root may be ignored:
√

r logr can be replaced with

logr, and if we also approximately replace ψ
−1
n ≈< ψ

−1
n >, then (2.20) is equivalent to

∑
rn 6=1

FM(rn) = NbbFM(r), where FM(r)≡ rM−1
rM +1

logr. (2.22)

Here still Nbb = 18, but since FM(1) = 0, the summation is only over the “flat” collisions. The FM

has the meaning of a weight function: the solution r is such that the value of FM at r equals the

average contributions of all collisions taken with a weights FM(rn). In other words, FM shows how

much the flatness at the beam-beam collision contributes to the magic root. It is seen to depend

on the coupling parameter M. (It also has its analogy in the problem of approximating an integral

with the value of the integrand at some point.)

If the exact curves on Figure 5 are replaced the approximate ones, the roots are preserved. The

approximate curves that follow from (2.22) ∑rn 6=1 FM(rn)−NbbFM(r) = 0 are plotted on Figure 6

for comparison with Figure 5. When M is small, the error thus made (in finding r) is again∼ 10−2.
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FIG. 6. Same as Figure 5, but for the approximation (2.22).

F. Subsets of long-range collisions

We have shown that for all Nbb = 18 l.r. collisions, the roots of (2.18) and its approximation

(2.22) nearly equal 1/
√

2 (and inverted), this being the case for arbitrary triads of indices when M

is small.

The above remains true to the same degree for some appropriate subsets of l.r. collisions (sub-

sets of rn) – say for Nbb = 3,6. If there was only a single bb collision present occurring at ratio
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rn, then, as mentioned above, the solution is r = rn (and r = 1/rn). In the same time, a fundamen-

tal property of the p-norm is that for large P it can be replaced by the maximum (modulo) of its

elements.

lim
P→ ∞

S = max
1≤ n≤ 18

|Vn|. (2.23)

One may then speculate that the sum in (2.18) is for large P well represented by appropriate subsets

of n. I.e., they produce the same roots as all of the 18. An indication for this is that on Figure 5,

there are three well separated groups of curves: the top one mostly representing rn ∼ 1/2, the

middle one – rn ∼ 3/2, and the bottom one – the (overlapping) red ones with rn ≈ 1.

Such appropriate subsets turn out to be a mix of several round-beam l.r. with l.r. positioned near

the extremes: rn ≈ 1/2 or rn ≈ 3/2 (see (2.5)). The observations is that these subsets “produce”

the special roots, while the effect of the rest tends to cancel near the magic roots – Figure 7.
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FIG. 7. As on Figure 6 but for several subsets containing increasing number of round (rn = 1) l.r. bb

collisions and a fixed number flat ones. For the flat ones, rn are taken near the extreme values (rn ≈ 1/2,

or rn ≈ 3/2). When there are two round ones per flat one, the roots (shown on top) are very close to
√

2 or

1/
√

2. Again this behaviour is violated for large M.

Thus the specific value r ≈
√

2 may be explained with the flatness being ≈
√

2 and ≈ 3
√

2 for

l.r. collisions near the extremes of the aspect parameter in the beam-beam region.
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3. CONCLUSIONS

By deriving equation (2.12) for the residuum driving term, the paper confirms the findings in

[1]. Namely, it follows from this equation that for small M = p−q (stronger coupling) the lattice

locations at which multiple driving terms are cancelled by the wire correspond to the special

(magic) values of the flatness parameter reported in [1]. It is further found that the same equation,

combined with the properties of the p-norm of a vector, explains the mechanism of appearance of

special values.

A simple weight function is proposed to measure the contribution of an individual collision to

the optimum flatness parameter at the wire, Eqn (2.22). It could be further used to predict how the

special locations depend on the IR optics and number of long range collisions.

The specific value r ≈
√

2 may, for the sample HL-LHC lattice taken, be explained with the

flatness being ≈
√

2 and ≈ 3
√

2 for l.r. collisions near the extremes of the aspect parameter in the

beam-beam region.
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