Tune-scans for HL-LHC and LHC

D. Kaltchev

CERN-TRIUMF HL-LHC Collab.

February 3, 2017

Optics configurations used

What's in black is kept constant including eta^\star (leveling scenarios not considered)

HL-LHC V1.2 baseline:

- bunch charge Nb=2.2 or 1.1×10^{11} ;
- IR1,5 Xing half-ang = 295 μ rad, β^* = 15 cm
- IR8 β^* = 3m, Xing half-ang =-135-250=-385 μ rad (LHCb spect. pol.=-1)
- IR2 $\beta^{\star} =$ 10m, hor. sep. = 2 mm, Xing = 170 μ rad
- emit_n= 2.5 μ m, bunch len. = 7.5 cm, $\frac{\Delta p}{p}$ =2.7×10⁻⁴
- 25 ns, chrom = 3
- LHC V6.503 at peak Lumi 1 × 10³⁴
- conditions for tracking
 - Hirata BB ON, crab cavities OFF or ON with fully crabbing of strong beam enforced (the default)
 - standard MadX-SixTrack-SixDesk env.

- <u>tune-scan A</u> HL-LHC, Nb=1.1×10¹¹, crabs OFF, along line ∥ diag. ->
- tune-scan B LHC (to compare with TS A)
- <u>tune-scan C</u> HL-LHC, Nb=2.2×10¹¹, crabs ON. It is 2D: looking for a better w.p. closer to diagonal in yellow -> (Yannis)
- $QxBB=Qx0+\Delta Qx$ $QyBB=Qy0+\Delta Qy$

Qx(y)BB is as reported by MadX or SixTrack with CC on

Tune-scan A

HL-LHC with Nb = 1.1×10^{11} , IP1,5,2,8 and crab OFF

Figure 1 OLD STYLE PLOT: DA-by-angle dep. on perturbed tune

New-style plots: Let's color intervals between the constant-angle contours. Color Hue is proportional to angle value. Some overlapping unfortunately takes place ...

Here color Hue is proportional to upper bound of the angle interval (4.5 deg)

Tune-scan A

Keeping all angles, just shortening the Legend (scaling the Hue).

And shifting by the approximately constant BB tune shift $\Delta Q_x = 0.0155$. **Qx0** is the unperturbed tune.

Tune-scan A: when in terms of QxBB explains other cases: Take CC ON, Nb= 2.2×10^{11} for two cases: 1) "no IP8" and 2) "with IP8".

D. Kaltchev (CERN-TRIUMF HL-LHC Collab.)

DA for case 1): no BB in IR2 and 8

the only case when the chaotic border was > 2 at some angles

DA for cases 1) and 2). The shift for 2) works – improves DA.

tune-scan A is quite universal

7/7

DA for case 2) with IR2 added (still at best w.p. from TS A)

some tiny increase in ΔQ from 0.0318 to \sim 0.033 due to IR2

It will further improve for w.p. closer to diagonal --> pages 14+

Tune-scan B (LHC as-built with corrected tripl. errors)

Tune-scans for seeds 1–6. Color code is same as above, but only 9 angles. The three resonance dips near 64.31 are known from previous studies.

First 6 seeds for LHC with corrected triplet. Here Qx represents Qx0 (sorry).

Tune-scans A and B compared

Top: HL-LHC, Nb=1.1×10¹¹ BB and Sext. Bottom: LHC, BB+sext and corr. tripl. for seed 1

detour 1/1: Tune-scans A and B, dip locations (X-plane only) It's a lot easier to explain the dips than the maxima of course..

The simple Two-Head-On-IPs BB model HOR plane only for the perturbed CS invariant (Poincaré surface of section) seems to explain dip locations. This invariant, when confirmed with tracking (black dots), looks like:

Near resonance it begins to oscillate fast. The blue curves on the right show module of some high-order Fourier coefficient (C10 used here).

detour 1/2: fast osc. of invariant

sample lattice

Tune-scan C (2D) 11 angles

 $\Delta {\it Q}^{\rm BB} \simeq$ 0.033

Tune-scan lines parallel to diagonal and approaching it from above:

0, 1, 2..., 6 (TS A line is 0 here) step in tune $\Delta Qx = 10^{-3}$ step in distance to diagonal (yellow) = $\sqrt{2}\Delta Qx \simeq 14 \times 10^{-4}$

Tune-scan C (by TS line)

5.5 at the best w.p. from TS A. Seen to be near 45-deg plane (green).

VERT plane (blue).

Tune-scan C

extending the domain up and to the right (to capture best-DA region)

Min DA over 11 angles. The black dot is "best w.p. from TS C": (Qx0,Qy0)=(0.316,0.319).

Black dot tested next \rightarrow

DA at the best w.p. of TS C

A sigma gained (compare with page 10)

w.p. set to (0.3164,0.3195) with MadX only

D. Kaltchev (CERN-TRIUMF HL-LHC Collab.)

Tune-scans for HL-LHC and LHC

Tune-scan C (2D) in terms of QxyBB

continued Jan 2017

Tune-scan D (2D), Nb= 1.1×10^{11}

So that D is same as A, but crab ON and IR2 ON, or same as C, but Nb=1.1 $\times 10^{11}.$

Left: TS C repeated and Right: TS D

(DA at the nominal tune (red point) will be studied without and with IT field errors \Rightarrow)

DA at nominal tune (no errors)

Tune-scan C and D shown by TS line

```
To see the effect of halving Nb.
Top: Nb=2.2 \times 10^{11} Bottom: Nb=1.1 \times 10^{11} from left to right – approaching the diagonal starting from Dist=0.01.
```


DA for nominal tune with IT field errors

Ref. for corrector limits

A table from HiLumi LHC WP3 page shows max Integrated strengths ¹

		MCQSX	MCSX/MCSSX	MCOX/MCOSX	MCDX/MCDSX	MCTX	MCTSX
Order		2	3	4	5	6	6
Aperture	(mm)	150	150	150	150	150	150
Integrated strength ¹	(T m)	1.000	0.063	0.046	0.025	0.086	0.017
Coil length ²	(mm)	841	123	99	107	449	102
Gradient	(T/m ⁿ⁻¹)	25	11	3690	50600	640000	613000
Number of apertures		1	1	1	1	1	1
Number of circuits		1	2	2	2	1	1
Units needed		4	8	8	8	4	4
Spares		2	4	4	4	2	2

and these are the corrector data

¹ Integrated strength is the field at the 50 mm ref radius times the magnetic length

D. Kaltchev (CERN-TRIUMF HL-LHC Collab.)

Tune-scans for HL-LHC and LHC

IT of IR1/5 correctors as IPAC13 paper (used as reference)

Results taken from ref. paper 2 are: corr. strengths (Fig 2) and integrated mult. field at 5 cm (Table 3).

Table 3: Strength of the Triplet Correctors.				
		Computed mT m at 50 mm	Specification mT m at 50 mm	
	3	31.2	63	
normal	4	22.9	46	
	5	16.9	25	
	6	57.3	86	
skew	2	500.0	1000	
	3	26.3	63	
	4	18.8	46	
	5	11.7	25	
	6	11.2	17	

mT \times meter (confirm with prev

page)

Figure 2: Distribution of the strength of the non-linear correctors: a_3, b_3 (upper left); a_4, b_4 (upper right); a_5, b_5 (lower left); a_6, b_6 (lower right).

²M. Giovannozzi, S. Fartoukh, R. De Maria: SPECIFICATION OF A SYSTEM OF CORRECTORS FOR THE TRIPLETS AND SEPARATION DIPOLES OF THE LHC UPGRADE, Proceedings of IPAC2013

D. Kaltchev (CERN-TRIUMF HL-LHC Collab.)

my result for corr. strengths

(comp. with Fig.2 of ref. paper)

Same errors and same correctors used as in ref. paper above

my result for integrated strengths

(comp. with Table 3 of ref. paper) need to explain the difference

		correctors, mT.m		
		Computed	Specified	
	3	16	63	
norm	4	15.3	46	
	5	9.6	25	
	6	30.8	86	
	2	186	1000	
skew	3	15.1	63	
	4	11.4	46	
	5	12.3	25	
	6	5.5	17	

DA at nominal tune with IT field errors, no A2, no D1,D2 i.e., at the red point for TS D on page 21

FIRST 40 seeds

February 3, 2017 28 / 34

Identify worst seeds

- "worst" seeds 38, 7, 5, 15 and 16
- good seed: 2
- may be correlated with dr. terms next \Rightarrow

skew driving terms, Beam1

Relative units. First of pair: IR5. Second of pair: IR1. Where terms is 0, means corrected. Bad seeds (red) are seen to corresp. to near maxima for A4 (1,3), A5 all not-corrected – main cause for DA loss and A6 (3,3)

normal driving terms, Beam1

Bad seeds (red) are seen to corresp. to near maxima for B4 (2,2), B6(4,2)

Use all 60 seeds. Identify worst for each angle

3 new "worst" seeds: 36, 48 and 9

	highest dr. term		
	found	on the next plots	
ang [deg]	seed	dr. term	
7.5	38	A5 (2,3)	
15	7	A6 (3,3) and B6 (4,2)	
22.5	5	B4 (2,2)	
30	7	3,3 and 4,2	
37.5	38	A5 (2,3)	
45	38	A5 (2,3)	
52.5	36	B6 (2,4) ?	
60	15	A5 2,3	
67.5	16	A4 (1,3) ? check	
75	48	B3 (3,0) and B5 (3,2)	
82.5	9	A5 (2,3)	

skew

normal

