
M9 Simulations: Summary of Work - Summer 2018

Dylan Bassi

August 22, 2018

Abstract

This is just a quick document outlining the work done over the Summer of 2018
by Dylan Bassi (University of Waterloo) on the M9 redesign. Over this time period
the M9A beamline was successfully modeled in both TRANSOPTR and G4Beamline.
The goal of the simulations was to acquire tunes for the beamline, while also validat-
ing various physical aspects of the beam. A tune for the beamline was successfully
determined in both models. The beam envelope at the focus of the TRANSOPTR
tune is: 1.96 cm in x, 1.95 cm in y. The G4BL tune results in 73% of particles
surviving. 100% of these particles falls within a 2” diameter area, 80% within a 1”
diameter area and 25% fall within a 1 cm diameter area. In G4BL it was determined
that the Wien Filter adequately rotates the spin of muons coming down the beam-
line while also effectively removing 99.99% of positrons produced by muon decay for
fields as low as 0.012 T. It was also determined that a minimum kicker strength of
17.9 kV is sufficient to provide muons-on-request. Furthermore, it was shown that
both the M9H and M9A leg cannot be running simultaneously, as the solenoid in
the M9H leg causes an extreme vertical deflection in the M9A leg. Additionally,
several limitations of the models were investigated and attempts to overcome them
were made. Finally the M9Q2 quadrupole was modeled in Opera to provide simula-
tions of asymmetrically driven quadrupoles. These models will allow researchers to
correct physical displacement in the M9B1 bending dipole by contributing a dipo-
lar component in the field produced by the quadrupoles. For a directory map see:
musim1:∼dbassi/Summer2018/documents/Overview/directory map.pdf

i

Contents

1 Introduction 5

2 TRANSOPTR 7
2.1 XML2OPTR . 7
2.2 Beam Envelope (HLA) . 8
2.3 The Tune . 8
2.4 Limitations . 11

3 G4Beamline 11
3.1 Tuning Bending Magnets . 12
3.2 The Profile Command . 14
3.3 GMINUIT . 14
3.4 XML2G4BL . 16
3.5 Wien Filter Strength . 16
3.6 Kicker Strength . 17
3.7 Solenoid Induced Vertical Deflection . 19
3.8 The Tune . 19
3.9 Limitations . 23

4 Opera 25
4.1 Opera2BLFieldMap . 25
4.2 M9Q2 . 26
4.3 Limitations . 28

5 Conclusion 28

A G4BL Build Instructions for RHEL7 derived OS 31

ii

List of Figures

1 Beamline Layout of the M9A Beamline . 5
2 Beamline Layout of the M9A Beamline . 6
3 M9Q2 Opera Model . 8
4 TRANSOPTR Simulation of the OPTR Calculated Tune 9
5 TRANSOPTR Simulation of the G4BL Calculated Tune 10
6 G4BL Viewer Image of M9A Simulation . 13
7 Spin Polarization of Muons . 13
8 G4BL Simulation of the G4BL Calculated Tune 14
9 GMINUIT Interface . 15
10 Spin Polarization of Muons . 17
11 Wien Filter as a Positron Separator . 18
12 Kicker Ability to Provide MOR . 18
13 M9A Leg Deflection from M9H Solenoid . 19
14 G4BL Simulation of the OPTR Calculated Tune 20
15 G4BL Simulation of the G4BL Calculated Tune 21
16 Close Up of Lost Particles Exiting M9AB2 . 22
17 Final Focus of M9A in G4BL . 22
18 Stopping Quadrupole Leakage with Fitting 24
19 Orientation of T2 in G4BL . 25
20 M9Q2 Opera Model . 26
21 Comparison of Opera3D Generated Field and G4BL Field for M9Q2 27

iii

List of Tables

1 Comparison of Initial Tune and TRANSOPTR Calculated Tune 10
2 Comparison of the G4BL ‘Profile’ Tune and ‘NumPy’ Calculated Tunes . . . 16
3 Comparison of the TRANSOPTR and GMINUIT Calculated Tunes 20

iv

1 Introduction

One of the secondary beamlines in the TRIUMF Meson Hall is M9. Fig. 1 displays the
overall layout of the beamlines coming off of 1AT2, hereforth referred to only as T2. The
black, or lowest, path is for M20, while the red and blue paths correspond to the two legs
of M9. M9A is the red, or middle, path while the blue/top path is for M9H. M9 is a
beamline for muon spin resonance (µSR) experiments that is split into two legs: M9A and
M9H. The M9A leg is intended for use with surface muons, which are muons that are the
decay product of stationary pions in the target T2. The dipoles and filters are set to filter
exclusively for these surface muons. Surface muons are important for experiments because
they have a relatively low penetrative depth, and allow for unique properties to be observed
near the surface of various materials. The M9H leg works a little bit differently. M9H is not
concerned with surface muons. Instead, the pions emitted from the target that have enough
momentum to leave the target material, are bent through the M9B1 dipole based on their
momenta. The strength of the M9B1 field will determine what momenta to accept into the
M9H leg. These pions will the enter into a long solenoid where they will decay into muons
which will finally be sent down the beamline.

Figure 1 – This layout shows an overview of the beamlines coming off the T2 target. The
black (bottom) line is M20, the middle (red) line is M9A, and the top (blue) line if M9H.

Throughout this term, three simulation programs were used to various effect. These three
programs were TRANSOPTR, G4beamline and Opera3D. TRANSOPTR is a simulation

5

software that uses the sigma matrix formalism to solve the equations of motion for the second
moments of the beamline in its 6-dimensional phase-space. TRANSOPTR allows the user
to set various fit constraints throughout the beamline. These fit constraints allow the user
to set values for various elements in either the transfer or the sigma matrix. TRANSOPTR
was the first simulation software used this term to model the beamline. This was followed by
using G4BL to simulate the beamline. G4BL is based off of Geant4. This means that G4BL
employs a Monte Carlo method to statistically simulate the beam, running many iterations
of individual particles with random initial starting conditions. This contrasts to the matrix
formalism used by TRANSOPTR, since TRANSOPTR only tracks the beam envelope.

Figure 2 – This layout shows an overview of the components in the M9A beamline. Although
this was not used to build the simulations, it provides the clearest overview of all components
necessary to simulate. Note in this blueprint that the final three quads are mislabelled and
should be AQ11, AQ12 and AQ13 respectively.

As previously mentioned the M9A leg was intended for use with surface muons. The goal
for the M9A leg is to provide surface muons for unique chemical physics investigations into
various materials. Almost all of the work accomplished this term was on simulating the M9A
leg. An overview of the M9A layout is shown in Fig. 2. It is important to notice that the final
three quadrupoles, labeled AQ11, AQ10 and AQ9 respectively are mislabeled. The actual
M9A beamline has AQ11, AQ12, AQ13 respectively instead. The work was accomplished
with the goal of trying to achieve a realistic tune for the beamline. Considering that there
were inherent limitations to each software, it was a worthy venture to obtains tunes using
more than one method. This will make it so that if a tune is off, there is at least another
model that could try to be implemented.

One of the issues that was required by the M9 redesign project is the realignment of
the beamline that resulted from swelling and contraction of the poured-in-place concrete
underneath M9B1[?]. It was hoped that it would be possible to asymmetrically supply
current to the poles of M9Q2 to add deflection in the beamline. The rationale being that if

6

future displacements in the beamline occur, it would be ideal to correct the misalignment
solely by changing the power supply. Opera3D was used to model M9Q2 and produce
a magnetic field map which could be implemented in G4BL. Unfortunately due to time
constraints it was not possible to determine whether a model could be produced within
G4BL to allow for quickly determining a tune to realign the beamline. It is hoped that with
the M9Q2 model built though, it will be possible to determine an efficient model that is
practical for use with GMINUIT.

2 TRANSOPTR

The first simulation software that was used to tune M9 was TRANSOPTR. TRANSOPTR is
a program written in FORTRAN from 1981, and maintained in-house at TRIUMF. TRAN-
SOPTR uses the matrix formalism of beamline optics to allow for the optimization of an
n-dimensional parameter space given user constraints [1]. For a description of the sigma ma-
trix formalism, refer to Charged Particle Optics by Brown[2], the TRANSPORT manual[3]
or TRANSOPTR manual[1]. This allows the beamline to be quickly simulated since the
elements are represented as matrices, rather than complex geometrical objects, and thus
the simulation is just a series of matrix operations, which are handled exceptionally quickly
in FORTRAN, especially with modern computers. In contrast to this approach are Monte
Carlo, or raytracing methods, which require vast amount of computing power to properly
track individual particles of the beam over many simulations. G4BL is an example of a
Monte Carlo program that can be used and will be examined in Section 3.

2.1 XML2OPTR

To help streamline the process of simulating and maintaining beamlines, TRIUMF has been
developing an in-house suite of tools known as high-level applications (HLA). One of the
goals of these applications is to be implemented in a way that is easy for novice programmers
to understand. As such XML2OPTR was created to allow for researchers to create an XML
file containing all of the necessary beamline information and quickly convert this to input to
be run for TRANSOPTR. This is beneficial since the XML file format uses a simple structure
to map abstract information, requiring no real coding experience. The structure of an XML
file can easily be learned by someone with no programming experience in a day. All that is
required is an understanding of which tags will be required for the XML2OPTR code. At
present, no document type definition exists and so this can only be done by cross-referencing
the already completed examples. The eventual goal of HLA is to connect the application
to an established database with the beamline specifications. This would allow users to run
this application through a browser merely by selecting the interested beamline, requiring no
coding whatsoever. An example of this functionality is described in Section 2.2.

At present, getting access to XML2OPTR requires joining the TRIUMF gitlab at https:
//gitlab.triumf.ca and requesting permission to join the HLA/ACC repository. Once the
repository is cloned locally, the XML2OPTR script can be run through a Python 3 inter-
preter, passing the name of the beamline to generate input for in the accelerator database
as an argument. It is inadvisable to change the Python installed directly to the operating
system. Instead one should install Python 3 locally and ideally run it through a virtual
environment, to ensure that the packages used are always the correct version.

7

Figure 3 – M9A TRANSOPTR envelope as seen in the Beam Envelope web application. This
application allows the beamline to be tuned with a graphical interface through the TRIUMF
HLA web portal, requiring no knowledge of programming.

2.2 Beam Envelope (HLA)

Another example of an HLA is the Beam Envelope application. Beam Envelope uses
XML2OPTR to run TRANSOPTR interactively in a web browser based on the specifications
in the accelerator XML database. This allows researchers to add fit constraints to the XML
database and tune the beam, requiring next to no programming knowledge. Beam Envelope
can be accessed (at present) by going to https://devel.hla.triumf.ca/beam/envelope/.
Fig. 3 shows the Beam Envelope web interface for M9A, with the Tune settings window
open, illustrating the ability to tune the beam online. In the future however, the applica-
tion will be put onto a Kubernetes cluster and run through it’s own link on the TRIUMF
intranet.

2.3 The Tune

Tuning a beam in TRANSOPTR requires one to know the initial phase space shape as well as
a reasonable guess as to the strength of the field applied to the quadrupoles. The user must
also set their constraints to which TRANSOPTR will run a chi-squared minimization on.
The user is capable of constraining the beam envelope by applying “fit commands” at various
lengths along the beamline. For this simulation several fit constraints were used. The goal of
these constraints was to maximize the luminosity at a focal region. This was accomplished
by focussing the beam into as tight a region as possible at the target, while also trying
to limit the beam envelope to being within the diameter of the beampipe and beamline
elements through the entirety of the line. The aim of this was to maximize the number
of particles reaching the focus, while also minimizing the final focal area. As illustrated in
Fig. 4 this is not easy to achieve and some of the beam envelope gets clipped by the beamline
elements regardless of the fit constraints. This illustrates a problem that will be revisited in
Section 3.8, namely, that given the initial phase space chosen, it does not appear possible
to get the entirety of the beam to the end. This implies that constraining the initial phase
space more strictly might allow for more precise simulations of beamline.

The initial phase space parameters were determined by a couple different methods. First,
the x and y widths of the beam were determined from the size of the T2-Target[4]. The
initial divergence was determined empirically within the simulation software by drifing the
beam to end of the second quad with no field strength applied. It was assumed that the
value that results in the beam spreading to the diameter of the beam pipe is a good approx-

8

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000

D
is

ta
n

c
e

 f
ro

m
 O

p
ti
c
a

l
A

x
is

 (
m

m
)

s (mm)

y-envelope
Nominal Focal Strength

x-envelope
Element Height

Pipe Radius

Figure 4 – Beam envelope produced by TRANSOPTR simulation using the TRANSOPTR
calculated tune.

imation of an upper limit as to what could ever possibly reach the end. This assumption
was considered valid as the addition of the quadrupole field will result in at least one direc-
tion becoming wider, which would result in the beam hitting the beampipe and decaying.
Finally, the momentum spread was determined based on a measurement of surface muons
produced in the M15 beamline by Donald Arseneau[5]. The initial tune values were ob-
tained from TRI-DN-06-17[6]. Since the publication of TRI-DN-06-17[6], there have been
several design changes to M9, such as the replacement of M9AQ6, M9AQ7 and M9AB2 in
the M9A request form 585[7]. Therefore it is no surprise to observe that the optimized tune
from Table 1 is greatly different from the initial tune.

Since two simulation software were used to model the beamline and obtain tunes, I felt
it was appropriate to see what the result of the tunes obtained in each program would be if
they were simulated in the opposing software. Fig. 5 shows the profile obtained by using the
tune obtained from G4BL in Section 3.8. The disagreement between the horizontal beam
width is very drastic, however the beam envelope appears to first grow outside the radius
of the beampipe coming out of M9AB2 as seen in Section 3.8. Although the growth is more
drastic than observed in the G4BL tune, it would be interesting if it were possible to see
how much more closely the rest of the beam envelope would agree if we could account for
the loss of particles here. If possible, it would be beneficial for someone to decrease the
emittance and see if the profiles would look more similar. It is important to note that it
is not only the horizontal beam width that is in disagreement. Although the general shape
of the vertical beam envelope is similar between simulations the final focus is much larger,
indicating that there is still discrepancy between the two simulations.

9

Table 1 – This table compares the initial tune used to start the TRANSOPTR simulation
and the tune that the TRANSOPTR simulation determined.

Element Polarity Initial Tune (A) TRANSOPTR Tune (A) % Change

M9Q1 - 136.05 114.0 17.6
M9Q2 + 58.62 57.17 2.50

M9AQ3 + 47.89 56.77 17.0
M9AQ4 - 75.00 74.84 0.21
M9AQ5 + 34.93 25.71 30.4
M9AQ6 + 25.55 30.19 16.6
M9AQ7 - 31.05 35.96 14.7
M9AQ8 - 49.38 48.39 2.03
M9AQ9 + 69.10 56.50 20.1
M9AQ10 - 49.38 15.54 104
M9AQ11 + 11.29 38.73 110
M9AQ12 - 60.98 69.29 12.8
M9AQ13 + 74.18 58.10 24.3

-200

-100

 0

 100

 200

 300

 400

 0 5000 10000 15000 20000

D
is

ta
n

c
e

 f
ro

m
 O

p
ti
c
a

l
A

x
is

 (
m

m
)

s (mm)

y-envelope
Nominal Focal Strength

x-envelope
Element Height

Pipe Radius

Figure 5 – Beam envelope produced by TRANSOPTR simulation using the GMINUIT calcu-
lated tune. The tunes disagree strongly after the second group of quadrupoles. The increased
envelope size by the second bending magnet is consistent with the loss of particles observed in
G4BL. In particular, the regions near the separators disagree strongly.

10

2.4 Limitations

TRANSOPTR is very good at what it does, but it is still limited in function by its design.
One such limitation is due to the fact that TRANSOPTR tracks the envelope of the beam
and not individual particles. This makes any investigation into the misalignment of the
beam impossible since the simulation tracks the beam width in relation to the optical axis.
Another limitation of TRANSOPTR is that one can only get an idea of how optical design
constraints affect the beamline. That means that if there is a physical restriction that does
not influence the optics, it is impossible to investigate it. One example of this is the beam
pipes. Due to the large initial acceptance for the beam phase space it proved to be very
difficult to try to fit the beam through all elements within diameter of the beam pipe. In
Fig. 4 several portions of the beam envelope can be seen to exceed the beam pipe radius. In
reality this would affect the rest of the beam shape downstream, and thus how the profile
would change. Since this is not taken into consideration, characteristics of the actual beam
envelope downstream will be different than the modeled results.

One of the other issues I noticed when contrasting this optimization to the GMINUIT
optimization in Section 3.3 is how difficult it was to get the fitting algorithm to squeeze
through all elements. In TRANSOPTR several elements would exceed their fit constraints
by a little bit, since there were so many. Ultimately TRANSOPTR seems to think that a
little bit of loss everywhere provides the best tune, since it provides the lowest chi-squared
value. If the density of particles is shifted to these edges this may not be ideal. GMINUIT
allows the user to define the number of surviving particles as a parameter in the chi-squared
minimization reducing the number of constraints from the number of elements to one. This
gave GMINUIT the flexiblity to decide that losing a significant number of particles in one
region is better than losing a few in many places, as observed in Fig. 16 from Section 3.8.
This is preferred since it gives a more direct understanding of the effect on the luminosity.

The limitations for TRANSOPTR come not from any error in the program, but rather
the inherent limitation of the model for the beamline that is used. Namely, the sigma matrix
formalism only handles optical elements and the second moments. To treat these limited
cases, a different approach to modeling is needed which tracks what happens to individual
particles, rather than the entirety of the beam. With that being said, TRANSOPTR does
have a particle tracking mode. Unfortunately, this mode does not work at present and so
extra software is required at present [8].

3 G4Beamline

So far the matrix formalism of optics has been used to simulate and tune the beam envelope
with user constraints[1]. Contrasting to this is using a Monte Carlo simulation, which tracks
individual particles in the beam to get a statistical representation of the beam envelope.
This allows understanding of how physical constraints impact the beamline rather than
being constrained to optical elements only. One of the most widely used software toolkits
for building particle physics Monte Carlo simulations is Geant4[9]. The biggest hurdle to
running Geant4 simulations is the amount of coding that has to be done. To successfully
build a simulation in Geant4 requires learning the highly convoluted language employed by
Geant4 and then building a C++ program[10]. The problem with this is that C++ programs
are inherently complex and requires a lot of code to build simple simulations. Simulating
entire beamlines properly is generally beyond the ability of even a skilled researcher in a
small period of time. A description of the physics employed in G4BL will not be included
in this report, but can be referenced in [9].

11

Out of the need to be able to simulate large beamlines in Geant4 quickly, Muons Inc.
has created the G4beamline (G4BL) program[10]. The G4BL program removes the need to
generate all the C++ files for every element and instead employs a custom shell-like scripting
language for creating input files. These input files finally allow researchers to build beamlines
with little coding. As an example of the differences in the length of code, my longest G4BL
input file was around 540 lines long many of which were redundant to allow me to quickly
test various setups. In contrast, the C++ code required for genericbends, just one G4BL
beamline element, requires nearly 600 lines. In addition to the length of input codes, the
simple, functional scripting language is much easier to pickup for new programmers than
the abstract object-oriented programming required by C++. This makes G4BL something
that can reasonably be learned by a temporary, or time constrained researcher.

To obtain a copy of G4BL, you must go to the Muons Inc. website and request permission.
When I tried to, there was an error in the script for signing up, so you may have to email
Tom Roberts directly for access. There are pre-built installations as well as the source code
available. For inexperienced linux users, it may be preferred not to build from source, as
it requires linking several libraries and working with CMake. However, building the code
from source yourself is the best way to install G4BL. This is for a couple of reasons. First,
it ensures that the installation will be compiled specifically with your libraries, limiting
the chances of various bugs. One can simply put all the installed libraries into an unused
folder, as G4BL will use what is present on your system. If any library is missing from your
operating system, one can simply move it back out of the unused folder.

The second, and most important benefit, is that builing the code from source means that
you can link mpi with it to allow parallel computing of the simulations. Since the pre-built
versions by default only use one processing thread and hyper-threaded quad core processors
are being coming exceptionally common, this can provide a huge boost in computation time.
On musim1, this allows eight threads to be run simultaneously, on musim0 it allows for 12
threads. In a cluster environment this could provide incredibly detailed simulation results
in a relatively short period of time. Build instructions for G4BL from source on a RHEL7
computer is provided in Appendix A, courtesy of Donald Arseneau at TRIUMF.

Muons Inc. also provides a program, GMINUIT, for allowing users to generate scripts
for running G4BL recursively, while trying to optimize a parameter space. This software
provides the same tuning functionality to G4BL that is present in TRANSOPTR. The
difference in the tuning algorithm is inherent to the model, namely the fact that now we
are modeling individual particles in a Monte Carlo manner. This gives us a different of the
optimization however. In TRANSOPTR we had to assume that if we could fit the beam
through the beam pipe that particles wouldn’t be lost. Now we are fitting a statistical
representation of the beam, and can gain valuable information regarding the survivability
of particles, and how a loss of particles in a region impacts the profile elsewhere.

3.1 Tuning Bending Magnets

When using centerline coordinates, the corner command needs to be used at the bending
magnet positions to let G4BL know that the centerline coordinate system has rotated. This
presents a bit of an issue as particles are expected to traverse around a smooth arc rather
than two piece-wise line segments. This results in the magnet being out of relative position
to the rest of the beamline, as the corner effectively shifts where the physical arc passes
through the bending magnet and results in the simulation being misaligned.

This unfortunately results in the field strength being slightly off, as it was calculated with
the assumption that the the centerline and arc are the same. G4BL has a tune command

12

Figure 6 – This image shows the view as seen from the G4BLGUI viewer. This image
illustrates the layout of the M9A beamline used in the G4BL simulations. This beamline
includes thirteen magnetic quadrupoles, two magnetic dipoles, two Wien filters, two sets of
slits, a kicker and beam pipe in between practical elements.

(a) Without correcting for the corner displace-
ment of the centerline, the beam will not prop-
erly traverse through the dipole, resulting in a
misaligned simulation.

(b) If the bending magnet placement is shifted,
or the downstream centerline positions are
shifted, the beam should be properly realigned.
This shifting required a slight change in the field
strength, as it was calculated assuming the arc
and the centerline are the same.

Figure 7 – The corner command must be used when placing elements on centerline coordi-
nates. This command unfortunately does not model the bend as a continuous arc, but rather
two discrete line segments.

13

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000

D
is

ta
n

c
e

 f
ro

m
 O

p
ti
c
a

l
A

x
is

 (
m

m
)

s (mm)

NumPy sigmaX
NumPy -sigmaY
Element Height

Pipe Radius
G4BL sigmaX

G4BL -sigmaY

Figure 8 – Comparison of the sigma profiles calculated by NumPy and G4BL’s profile com-
mand for the GMINUIT tune. Errors in the way that G4BL calculates the profile leads to
significant errors near the focus. As a result the tune from GMINUIT had to be recalculated
using the NumPy profile.

which allows just this functionality. The user inputs constraints on their beamline, in this
case that the beam is aligned coming out of the magnet, and an initial value. G4BL then
tries to find a field strength that satisfies the user constraints. The effect of the corner
misalignment and retuning is shown in Fig. 7. The initial prescribed strength was 0.1456 T.
G4BL found that 0.1452 T preserves the proper beam path.

3.2 The Profile Command

The G4BL-3.04 release notes indicate that “[t]he ‘profile’ command has numerous problems
in the way it computes values; the only workaround is to use a ’zntuple’ and compute the
values you want”[11]. Initially I was unaware of this as I did not have access to the release
notes when I first started working with G4BL. Therefore it was necessary to compare the
results of a calculated profile with that produced by G4BL’s profile command. To calculate
the profile from zntuples a loop was used to output a zntuple every 100 mm. Each zntuple
was then put into a NumPy array and the σx and σy values were calculated, as these are
what profile claims to represent. The results of this comparison can be seen in Fig. 8. From
this plot it is apparent that the profile command does not accurately represent the focus
region and should therefore not be used in GMINUIT.

3.3 GMINUIT

Unlike TRANSOPTR, G4BL has no native ability to tune the beam parameters. In response
to this, Muons Inc. has packaged GMINUIT with G4BL. GMINUIT is a graphical interface

14

Figure 9 – An image of what the GMINUIT interface looks like. GMINUIT can be used to
tune parameters of a G4BL input file, while showing how the changing tune affects the beam
envelope.

to the MINUIT optimization engine and a user defined script. In essence, this allows a user
to define a GMINUIT script in the language of their choice (shell, perl, tcl, etc.) to run
G4BL while varying parameters[12]. To do this, the user creates a script that completes
several tasks:

1. Define parameters to vary and to what extent to vary them.

2. (Optional) Define gnuplot file to show restrictions imposed by beam elements (such as
beam pipe).

3. Create, or run a pre-made G4BL input file with defined parameters.

4. From the data output by G4BL, determine a χ2 value based on user constraints.

5. Vary the parameters and repeat the process until the χ2 does not improve within
tolerance.

Initially the profile command in G4BL was used to output the data that was used to deter-
mine the χ2 value, but as shown in Section 3.2, the profile command does not accurately
represent the beam at the focus. As such, the data was written into a zntuple file every
100 mm and used to determine a σ profile for the beam. This did not drastically change
the tune, but the tune did change slightly, as shown in Table 2. An example display of
the GMINUIT interface is given in Fig. 9. It is worth noting that although GMINUIT was
developed by Muons Inc. to be used in conjunction with G4BL, it can be used with any
general parameter space so long as the user can generate a script to emulate the process
described above. GMINUIT has several optimization algorithms that can be used. Based on
my experience I found that using the Nelder-Mead (downhill simplex) algorithm achieved
results much more quickly and with a better ability to move coarsely around the parameter
space before fine-tuning its result. This may not always be true, but allowed for the best
results for this simulation.

15

Table 2 – Comparison of the tunes obtained through GMINUIT when: G4BL profile is used
and when the NumPy calculated profile is used. Many elements barely changed in their tune,
however M9AQ11 had a relative change of 2.25%, justifying the need to be retuned.

Element Polarity ’Profile’ Tune (A) ’NumPy’ Tune (A) % Change

M9Q1 - 113.8 114.9 0.96
M9Q2 + 53.98 54.20 0.41

M9AQ3 + 50.57 50.52 0.10
M9AQ4 - 66.87 66.88 0.01
M9AQ5 + 25.64 25.78 0.54
M9AQ6 + 22.23 22.35 0.54
M9AQ7 - 25.61 25.74 0.51
M9AQ8 - 35.22 35.26 0.11
M9AQ9 + 51.33 51.30 0.06
M9AQ10 - 31.09 31.02 0.23
M9AQ11 + 25.02 25.59 2.25
M9AQ12 - 60.30 60.77 0.78
M9AQ13 + 64.70 65.10 0.62

3.4 XML2G4BL

Although the XML2OPTR HLA described in Section 2.1 provides an easy to use python
script for generating TRANSOPTR simulation files from an XML database, no such func-
tionality exists for G4Beamline simulations. From this lack of capability, the XML2G4BL
prototype script was quickly thrown together in Python. In a similar manner to XML2OPTR,
XML2G4BL reads in the XML files for a beamline and generates G4BL input files. This
project was undertaken in the last few weeks of my work and as such are intended to be
used as a proof of concept, and a springboard for future work on this script. At present,
XML2G4BL has only been tested with the M9A leg. It presently only has the elements
that are present in both TRANSOPTR and G4BL scripts. This includes: genericquads,
genericbends (and their associated corners) and a custom built Wien Filter element that
does not take into account fringe fields.

3.5 Wien Filter Strength

One of the important aspects of the M9A beamline is to rotate the spin polarized muons so
that they are transversely polarized. This is achieved by using two Wien Filters each with
an applied magnetic field of 0.05 T. It is necessary to check not only that the Wien Filters
effectively rotate the muons, but also that they can separate out any positrons that have
been created from muon decay coming down the beamline. Fig. 10 evidences how a field of
0.05 T does in fact spin rotate the muons while Fig. 11 illustrates that down to fields as low
as 0.012 T 99.97% of the positrons can be filtered from the beamline. In Fig. 11b only 3
out of every 10000 muons results in a positron reaching a focussed area in a 1” radius and
resulted from decay past the final Wien filter.

This test was conducted by using the same tune but with a positron beam as opposed
to a muon beam. A script was written to slowly decrease the field of the separators and
checking that no more than 0.01% of the particles reach the end of the beamline. This
was done to show how a positron in the beam envelope would be effectively killed by the
separators. However the positrons produced from the decay of the muons do not necessarily

16

PolZ
Entries 7912
Mean -0.9987
RMS 0.0007099

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000
PolZ

Entries 7912
Mean -0.9987
RMS 0.0007099

PolZ

(a) Before entering the first Wien Filter, the
muon beam has a spin polarization that is an-
tiparallel to it’s momentum, as dictated by the
decay kinematics.

PolX
Entries 6999
Mean 0.9047
RMS 0.1319

-1 -0.5 0 0.5 1
0

500

1000

1500

2000

2500
PolX

Entries 6999
Mean 0.9047
RMS 0.1319

PolX

(b) At the focus of the beamline the spin po-
larization has been successfully rotated to the
positive x-direction.

Figure 10 – Histograms of the spin polarization of the muon beam before and after the Wien
Filters show that the beam is effectively spin rotated as it should be.

fill the full range of the beam envelope. Nor must they necessarily be constrained within
the phase space. As a result of this there was a minor discrepancy between the survivability
when actual muons were run, however this effect was negligible, changing the percentage
of positrons killed from 99.99% to 99.97% when 10 000 events are run. From this it was
concluded that the decay products of the beam can be closely modeled as a beam itself,
when trying to determine if the decay products will be killed.

3.6 Kicker Strength

The purpose of the addition of the kicker is to provide the capability to create muons-on-
request at the focus. The idea here is that the application of an electrostatic field can cause
a vertical deflection in the beamline that results in the beam hitting against subsequent
elements. Fig. 12a illustrates how this deflection in the beam after the kicker and the
subsequent collision with the Wein filter and beam pipe after it, while Fig. 12b shows
how statistically, the beam is killed. This allows an experimenter to turn off the kicker
momentarily to provide the focus with individual muons.

Similarly to the test in Section 3.5, a quick script was created to run G4BL iteratively.
Each time the kicker strength would be decreased and run again. Unlike the separator test,
this was done with the time being used a random seed each run to add an extra degree of
randomness. This ensured that the beam would reliably provide the ability to selectively
allow muons, as opposed to being biased by the way G4BL usually seeds, using the track
number. Each iteration this was run three times. The point that one of these runs exceeded
the survivability was determined to be the minimum field value applicable. It should be
noted that at this field value, the particles that reach the end of the beamline are not
actually focussed in a 1” region. Around this field value they began to get qualitatively
close, as seen in Fig. 12b and so I chose to limit this as a precaution. It is possible that the
kicker field required is actually much lower if one wants to examine strictly the 1 cm focal
region, or depending on what an acceptable flux is.

17

(a) View of the M9A beamline after the sepa-
rators. An applied voltage to the Wien Filter
as low as 0.012 T provides enough of a vertical
deflection to kill 99.97% of the beam. The green
region indicates a radius of 10 mm while the blue
region indicates a radius of 1”.

(b) View of the M9A beamline at the focus. An
applied voltage to the Wien Filter as low as 0.012
T provides enough of a vertical deflection to kill
99.97% of the beam. The blue region indicates a
radius of 1”. Positrons outside of the blue region
came from decay downstream of the filter.

Figure 11 – The application of a Wien Filter field as low as 0.012 T is enough to prevent a
statistically significant amount of positrons from reaching the focus region. This field removes
approximately 99.97% of the beam. The green tracks represent muons, the red tracks represent
positrons.

(a) View of the M9A beamline after the Kicker.
An applied voltage to the kicker as low as 17.9
kV provides enough of a vertical deflection to kill
99.99% of the beam.

(b) View of the M9A beamline at the focus. An
applied voltage to the kicker as low as 17.9 kV
provides enough of a vertical deflection to kill
99.99% of the beam. The green region indicates a
diameter of 10 mm while the blue region indicates
a radius of 1”.

Figure 12 – The application of a voltage as low as 17.9 kV provides enough vertical deflection
to kill 99.99% of the beam. This indicates the specified voltage of 25 kV will be more than
sufficient to provide muons-on-request functionality.

18

Figure 13 – When the solenoid in the M9H leg is powered, an extreme vertical deflection
is felt by particles in the M9A leg. It appears highly unlikely that both legs could be run
simultaneously without a significant amount of magnetic shielding.

3.7 Solenoid Induced Vertical Deflection

It was hoped that in the future the kicker providing muons-on-request capability would allow
both the M9A and the M9H leg to be run simultaneously. The limiting factor to whether
this is possible or not is that the M9H leg starts with a solenoid that is relatively close to
the M9A leg. It was thus necessary to determine whether the solenoid would impact the
M9A leg, and if it could be corrected with an asymmetrically driven quadrupole in the M9A
leg. Using the solenoid field prescribed in the M9H G4BL simulation of 4 T, it is observed
in Fig. 13 that the field causes a significant amount of vertical deflection in the M9A leg.
It is thus concluded that the two legs cannot be run simultaneously without a great deal of
magnetic shielding to be added to the M9A leg. The amount of shielding needed, and the
proximity to the primary beamline makes this a great challenge and unlikely to occur.

3.8 The Tune

GMINUIT proved capable of providing a tune for the M9A beamline. The tune is compared
against the TRANSOPTR tune in Table 3. Most elements had a relatively appreciable
change in their tune value, with the highest percent change of 66.5%. The G4BL tune
was actually quite reasonable, with a particle survival rate around 73%. Additionally, all
surviving particles fall within a 2 inch diameter focus. Approximately 90% of the surviving
particles fall within a focal area that is 1 inch in diameter. Furthermore, 25% of the surviving
particles are focused into a circular region that is 1 cm in diameter. This can qualitatively
be observed in Fig. 17, where the blue region indicates a circular area with diameter of 1”.
Less than 10% of the surviving particles do not focus into this blue region. The green region
indicates a focal area with diameter of 1 cm.

19

Table 3 – This table compares the tunes obtained through a GMINUIT script when the G4BL
profile was used, and when the TRANSOPTR was run. Most elements have a drastic percent
difference, with an average of 20.4%.

Element Polarity TRANSOPTR Tune (A) GMINUIT Tune (A) % Change

M9Q1 - 114.0 114.9 0.79
M9Q2 + 57.17 54.20 5.33

M9AQ3 + 56.77 50.52 11.7
M9AQ4 - 74.84 66.88 11.2
M9AQ5 + 25.71 25.78 0.27
M9AQ6 + 30.19 22.35 29.8
M9AQ7 - 35.96 25.74 33.1
M9AQ8 - 48.39 35.26 31.4
M9AQ9 + 56.50 51.30 9.65
M9AQ10 - 15.54 31.02 66.5
M9AQ11 + 38.73 25.59 40.9
M9AQ12 - 69.29 60.77 13.1
M9AQ13 + 58.10 65.10 11.4

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000

D
is

ta
n

c
e

 f
ro

m
 O

p
ti
c
a

l
A

x
is

 (
m

m
)

s (mm)

NumPy sigmaX
NumPy -sigmaY
Element Height

Pipe Radius

Figure 14 – Sigma profile for the TRANSOPTR calculated tune. The simulation was run in
G4BL and the profile was calculated using NumPy to analyze the statistics from zntuples. The
start of the beam agrees well with the G4BL tune, however the two simulations diverge near
the first separator. Approximately 32-33% of particles reach the focus. In general, the shape
agrees well with the results when run in TRANSOPTR. The deviations likely come from poor
handling of fringe fields and the fact that the profile is shaped by the loss of particles.

20

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000

D
is

ta
n

c
e

 f
ro

m
 O

p
ti
c
a

l
A

x
is

 (
m

m
)

s (mm)

NumPy sigmaX
NumPy -sigmaY
Element Height

Pipe Radius

Figure 15 – Sigma profile for the GMINUIT calculated tune. The simulation was run in
G4BL and the profile was calculated using NumPy to analyze the statistics from zntuples.
The start of the beam agrees well with the TRANSOPTR tune, however the two simulations
diverge near the first separator. Approximately 71-72% of particles reach the focus.

21

Figure 16 – This image shows how most
of the particles lost in the G4BL simulation
are lost exiting M9AB2. This matches up
with the sudden drop in the profile width
observed in Fig. 15 around s ∼ 7000 mm.

Figure 17 – The outer blue region indicates
a diameter of 1”. Considering that particles
outside barely don’t make it in, all particles
clearly reach a focus of 1” in diameter. The
inner green region indicates 1 cm in diameter

Mirroring the analysis from Section 2.3, the tune calculated from TRANSOPTR was
used in G4BL to to compare the profiles. When one compares Figs. 14 and 15, it is easy to
see that the two profiles agree reasonably well until the second last triplet of quadrupoles.
This differs from what we saw in Section 2.3, where the profiles began to diverge drastically
around M9AB2. This doesn’t really come as a surprise when one stops to think about
what is happening here. In TRANSOPTR, the beam phase space volume is preserved by
Liousville’s theorem, however this is not necessarily true in real life. In reality, particles can
hit something and stop, as is treated in G4BL. In TRANSOPTR the G4BL tune extends
well beyond the beam pipe because TRANSOPTR is unaware that a large portion of the
beam has shrunk due to the physical constraints of the pipe. This causes the shape to change
dramatically and indicates why what is observed in G4BL is so different from TRANSOPTR.
Looking at the results in Fig. 14, we can see that just as observed in TRANSOPTR, there
are several points along the beam line where the envelope becomes too large. This resulted
in only 32-33% of muons reaching the target area. This is a significant loss compared to the
71-72% loss when applying the GMINUIT calculated tune using the NumPy profile, from
Section 3.3.

One of the striking features of the GMINUIT tuning was that it appeared, as indicated
by TRANSOPTR, that the initial phase space acceptance was too large to be practical.
Fig. 16 illustrates how the beam envelope in the horizontal direction grows to be much
wider than could be accepted by the beam pipe. Still, despite the large loss here, this tune
had the best results, with ∼73% of muons reaching the focus target. Attempts at forcing
the beam to fit through this region results in a greater loss of particles elsewhere. This
contradicts the results given by TRANSOPTR, which implied that the best tune would hit
several elements just a little bit. I personally think that the decision made by GMINUIT
is likely the better choice. This is because TRANSOPTR weights each element equally, the
assumption being that maintaining a tight beam width is sufficient to ensure all particles
reach the end. GMINUIT, however, can read the number of particles that reach the target as
an input parameter. This allows G4BL to arrive at conclusions based on the bigger picture.
There were tunes that could fit through M9AB2, however these tunes often had a larger
focus and almost always had a lower survivability. This is almost certainly an issue with
the initial beam parameters. If the initial phase space created was smaller, an investigation
could be done to try to characterize a tune that would never exceed the beam pipe through
the entirety of the beamline.

22

3.9 Limitations

Due to the complexity of G4BL there are many things that can go wrong. Some of these
things are inherent problems in Monte Carlo simulations, and some of these are issues that
reside within the G4BL program itself. The most glaring of these issues is that Monte
Carlo simulations are quite computationally intensive. This places a great burden on users
to make trade-offs between what is technically correct and what is practically achievable.
An example of this can be seen in the creation of the beam element. One could create an
initially huge phase space, that creates particles isotropically. The majority of these particles
would never be able to reach the beamline. For instance, it is clear just by reasoning that
the particles that are ejected from the source away from the beamline will never end up
in the beamline. When one starts to place elements into the bealine, such as beam pipes,
that allow for the killing of particles this results in the majority of events simulated having
absolutely no effect on the results of the simulation, since they will just be killed. This has
a couple of effects. The first of which is that it means the number of events required to run
are much higher than they would otherwise need to be, in order to get enough particles at
the focal region to have good statistics. This ties into the second effect, which is that all of
the extra events that are run and killed quickly still consume computational power. When
one is running <100000 events this might not be very noticeable, but the effect is certainly
appreciable when you consider the increased number of events required for good focusing
statistics.

An issue that arises solely from limitations of the code, rather than the limitations of
Monte Carlo, is the way that G4BL builds the world. In brief, all elements are placed
inside of a parent element. The top-level parent is the world itself, all elements are either
“daughters” of the world, or “daughters of a daughter...” of the world. This is an efficient
way to build the world, as it allows the world to be built bottom-up with only one read
through of the code. The problem is that not every element can be a parent. Of particular
note is the genericquad element, which is the element used to model quadrupole magnets.
This is a serious issue because by the nature of the quadrupoles, expansion of the beam
envelope in one transverse direction is guaranteed, at least within the quadrupole field. It is
known that a series of quadrupoles can have a focussing effect in both transverse directions
[2]. Thus it is possible for a beam to enter a series of quadrupoles, and to actually expand
beyond the diameter of the beam pipe while inside but still come out with a beam width
less than it entered with. This results in some particles, which should have been killed by
beam pipe within the element, actually surviving since only the poles themselves limit the
particles inside. Clearly this is an erroneous result.

This is illustrated most clearly in Fig. 18. This figure illustrates this effect by taking
it to the extreme. In this simulation, a source is created with an initial divergence great
enough that drifting the beam from the source to the end of the quadrupole, with the
quadrupole turned off, will result in expansion of the beam to be greater than the radius
of the beam pipe, despite entering with a radius less than the beam pipe. In Fig. 18a it is
shown that these particles are seen to exit the quadrupole outside of the beam pipe. This is
not physically possible in reality, as there is beam pipe inside of the quadrupole field region,
restricting expansion of the beam envelope. This is a tremendous setback, as it means that
a great deal of attention must be paid to the statistics, since particles may be reported
by zntuples while existing outside of the beam pipe. Essentially one would have to use a
beamlossntuple and look for tracks that end outside of the beam pipe, and then remove
them from the zntuple files. As mentioned before, this is a waste of computer resources. It
is isn’t necessary to track the particles outside the pipe as they are essentially not real, but
time is still spent tracking them.

Initially I tried to alter the C++ code for the genericquad element to allow it to take

23

(a) The beam envelope can grow significantly
larger than the beam pipe would physically allow
since quadrupoles cannot take children. This re-
quires a more careful analysis of the statistics as
well as wasting computational resources.

(b) By placing kill regions just outside of the
quadrupole it is possible to approximately sim-
ulate a radial constraint within the field re-
gion. This drastically increases computational
efficiency while leaving the result unchanged.

Figure 18 – Fittings can be placed on the ends of quadrupole elements to make up for the
inability to place beampipe segments within quadrupole elements. This allows for particles
to be more accurately tracked throughout the beamline, eliminating the need to determine if
tracks recorded in zntuples are outside of the beam pipe or not, as they will be killed by the
fittings.

children. I was successful in allowing them to take children, however the simulation still failed
to interact with the children inside of the quadrupole. The code for this attempt can be
found in my directory map, within the Scripts subdirectory. Rather than try to understand
specifically what was incorrect, I opted to try a quick fix, since I did not know how long
rewriting the genericquad element would take me. It is my belief that the issue arises from
the fact that the genericquad element is actually constructed as subtracted volumes of a
larger volume, with their inner volume subtracted to be the field region. It is my hypothesis
that the inner field region is already treated similarly to a daughter, and so just altering
the code to accept children is not enough, as you need to ensure those children are properly
being placed in the field region and not the volume union of the subtracted volumes. I
believe to get around this, it could possible to actually force a pipe creation in the creation
of the genericquad element, rather than trying to pass it as a daughter. To preserve time
however, cylindrical kill regions were placed just on the ends of the quadrupoles. These kill
regions have an inner radius equal to the radius of the beam pipe, and an outer radius equal
to the outer iron radius of the quadrupole.

Another problem encountered with the G4BL program is the way that elliptical beams
are generated. Elliptical beams are created as a rectangular region with x and y half-widths
supplied by the sigmaX/Y parameters. The momentum of the beam is equal to the value
assigned to the meanMomentum parameter. The issue comes from not being able to assign
any transverse momenta to the initial beam. Assigning any value to this parameter has
no effect whatsoever on the beam. This is a problem because the target at T2 is at a
45 angle with respect to M9. The beam parameter allows the user to rotate the beam
on its creation, which allows for the proper target orientation. The problem is then that
the whole beam comes out as if that rotated angle is the longitudinal direction, since no
transverse momentum can be applied. Therefore the user must resign to not having the
proper orientation of the source, considering it is vitally important that the direction of the
longitudinal axis is correct. This dichotomy is best illustrated in Fig. 19.

24

(a) It is necessary to run the simulations with an
incorrect orientation of the T2 target, as it is the
only way to produce an elliptical beam heading
longitudinally.

(b) Rotating the beam when creating it is not
possible since no transverse momentum can be
given to the particles. This results in the beam
terminating.

Figure 19 – Elliptical beams in G4BL cannot have transverse momenta at their creation.
This prevents users from being able to rotate their source, since the beam will not be produced
longitudinally.

4 Opera

One of the issues leading up to this term with the M9 beamline is the fact that M9B1 had
shifted place and caused a misalignment in the beamline. Although this will physically be
corrected, it would be a useful feature of the beamline to be able to steer the beamline using
the quadrupoles in case a misalignment occurs in the future. Ideally, the M9Q2 quadrupole
would be able to steer the beamline in such a way as to allow it to enter M9B1 correctly
should it shift again in the future. Alternatively, the M9AQ3 quadrupole, after the dipole
could be used, but since there are two legs it would be preferable to control this before the
split in the beamline.

Unfortunately this is impossible in TRANSOPTR since there is no notion of alignment.
Neither is it possible natively in G4BL, as the user merely provides the field strength rather
than the individual currents supplied to the poles. G4BL does allow users to provide elec-
tromagnetic field maps through ASCII files however. It was concluded that rather than
trying to write an element that also calculated the field map for an asymmetrically driven
quadrupole, that it would be less work to use a well established program for creating the field
map, and just having it be read into G4BL. The software chosen to model the quadrupole
was Opera3D. Opera3D is a program that allows users to build a 3D model and determine
various physical characteristics of the object [13]. The functionality needed for this project
was the ability to determine the electromagnetic field produced and to export it in some
sort of ASCII format to be used in G4BL.

4.1 Opera2BLFieldMap

Producing a working Opera model is only part of the solution to the simulation of asym-
metrically driven quadrupoles. It is also required to be able to export the Opera field map
and read it into a G4BL simulation. Opera fortunately has the capability to output the
field map data into an ascii file. Complementary to this, in G4BL, is the fieldmap command
which allows users to supply a text BLFieldMap file to supply an electromagnetic field to the
simulation. Fred Jones has written a handy FORTRAN program, Opera2BLFieldMap, for

25

Figure 20 – Opera generated model of the M9Q2 magnet. This model will allow for the
investigation of driving the M9Q2 magnet with asymmetric current to realign the beam should
a future displacement in the M9B1 magnet occur since G4BL does not have asymmetrically
driven quadrupoles implemented.

converting the Opera table format into the G4BL BLFieldMap format[14]. Putting the field
into G4BL using Opera2BLFieldMap provides the result in Fig. 21, indicating that the field
is being imported successfully to G4BL. This enables the investigation of asymmetrically
driving M9Q2 in order to offset a M9B1 misalignment.

4.2 M9Q2

Opera proved capable of successfully building a model for the magnetic field produced by
M9Q2. The result of the simulation is shown in Fig. 20. For testing purposes, it was deemed
necessary to compare the fields produced by Opera and G4BL to check if there is good
agreement, verifying whether the Opera model is appropriate for use in G4BL. A comparison
of the field’s affect on the beam envelope can bee seen in Fig. 21. This was accomplished by
first simulating the effect of the genericquad element and observing the shape of the beam
envelope. Next, the field produced by Opera was imported into G4BL using fieldmap and
placed at the center at the M9Q2 element, this time supplied with no gradient. In this sense,
the fieldmap acts as the field produced by the quadrupole. Qualitatively, the comparison
of the effect on the horizontal beam width yields little information, as shown in Figs. 21a
and 21c. When one looks at Figs. 21b and 21d it is clear that the strength of the field map
computed does not agree, as much greater focusing is seen in Fig. 21d.

This is likely the result of the current density being improperly calculated for use in
Opera. Due to time constraints, it was not possible to investigate this further before writing
this report. Considering that the results appear generally reasonable though, correcting
this should just be a matter of carefully recalculating the supplied current density. The

26

(a) The horizontal view of M9Q2 in G4BL us-
ing the genericquad element.

(b) The vertical view of M9Q2 in G4BL using
the genericquad element.

(c) The horizontal view of M9Q2 in G4BL us-
ing the field modeled from Opera3D.

(d) The vertical view of M9Q2 in G4BL using
the field modeled from Opera3D.

Figure 21 – A comparison of the transverse profiles of a simulated beamline consisting only
of M9Q2 and the source. Figs. 21a and 21b Show the affect of the G4BL calculated tune on
the profile, while Figs. 21c and 21d show the field calculated by Opera3D. The general affect
is quite similar, but the strength of the tuning is off, indicating that an error has likely been
made in calculating the current density required in Opera3D.

27

magnetic field map takes approximately twenty minutes to calculate in Opera3D, however
once generated just takes a couple of seconds to be read into G4BL.

4.3 Limitations

The most obvious limitation to using Opera3D is that calculating the model can be quite
time consuming. As an example, modeling the field in Fig. 20 took twenty minutes to
complete. This means that is not possible to quickly model the asymmetric quadrupole in
G4BL this way, preventing any ability to tune with a program like GMINUIT, which might
require hundreds of iterations. Opera instead merely provides the ability to get a feel for
what kind of driving might be required, as well as providing a reliable standard to measure
future attempts of modelling against.

The Opera model can be assumed to be quite accurate, and so models built off of
assumptions required to speed up the calculation can be verified with the Opera model1.
One such model that I did not have time to test is to treat each pole tip as an individual
entity and calculate the magnetic field map. The hope would be that a linear combination
of the fields produced by each independent pole will be a close approximation to the field
produced by treating the entire system as one entity and solving it in Opera. This would
be preferred as the calculation for an individual pole is relatively quick to compute and
could be handled in G4BL itself, either by adding in the fields with fieldmap, or by writing
a custom element to compute these fields and combine them. This would likely provide
the ability to write a GMINUIT script to steer the beamline misalignment by varying the
currents supplied to each individual pole.

5 Conclusion

At the completion of the work term several results had been achieved. Most notably, tunes
were successfully obtained for the M9A leg using both TRANSOPTR and G4BL. There was
disagreements between the two simulations due to the nature of the computations involved,
but the tunes do not vary too drastically. Using TRANSOPTR, a doubly achromatic focus
was obtained at. The beam width in the horizontal direction is 1.96 cm and in the vertical
direction was 1.95 cm. In G4BL, the tune supplied a final focus where all particles fall
within within a 2” diameter focus. Additionally, 80% of surviving particles fall within a 1”
diameter focus, and 25% fall within a 1 cm diameter focus. Furthermore, it was found that
the survival rate of the muons was approximately 72% using this tune, with the majority of
particles being stopped coming out of M9B2.

Various restrictions on specification of elements were also successfully investigated. The
minimum voltage required by the kicker to provide muons-on-request was found to be 17.9 kV
provided that one wishes to remove 99.99% of particles from the beamline. Similarly, it was
found that a minimum magnetic field strength of 0.012 T was required for the Wien Filters
to prevent positrons that occur from decay in flight to be filtered by the separators. This
field strength successfully eliminates 99.97% of positrons from reaching the target focus. It
was also found that the specified field strength of 0.05 T successfully spin rotates the muons
as required.

The M9Q2 quadrupole was also successfully modeled in Opera3D, and it was possible to
export its field as an ASCII file and to put it into G4BL as a fieldmap. The strength of the

1I just spoke quickly with Syd about this. An asymmetric quadrupole has been solved analytically. With
any luck this will provide a usable field and could implemented directly into a G4BL element.

28

field between the Opera model and the genericquad in G4BL were not the same however,
indicating that the current densities were likely not calculated correctly in Opera. There
was not time to correct this though before writing this report. In the future, it would be
advisable for someone to use the Opera3D model to verify models that could be implemented
directly in G4BL, so that the beamline can be realigned quickly using GMINUIT. There
are a couple models that could be tested quickly. The first is a linear combination of each
independent pole. The second is an analytic solution referred to me by Syd.

Work was also done in conjunction with the beamphysics group regarding the accelerator
XML database as well. The M9A and M9H leg had XML files prepared for them and
uploaded to the database, allowing for the HLA XML2OPTR to generate TRANSOPTR
files for the beamline. Furthermore, this allows the beamline to be tuned through the HLA
web portal in the Beam Envelope application, requiring no knowledge of programming. A
prototype for a similar script XML2G4BL was also produced, providing similar functionality
but for creating G4BL input files. The XML2G4BL script presently only generates input
file for beamlines consisting of: qenericquads, genericbends and Wien Filters, such as M9A.
Extra components will have to be coded in the future, but should be relatively simple
provided one knows what they need. Additionally, there were several shortcuts used to
get this proof of concept finished quickly that will have to be ironed out. I attempted to
outline any glaring deficiencies in the script throughout using comments so that in the future
someone can quickly identify basic problems.

29

References

[1] E. Heighway, A Second Order Beam Transport Design Code with Automatic Internal
Optimization and General Constraints. Chalk River Nuclear Laboratories, aecl-6975 ed.,
July 1980.

[2] K. L. Brown, “First-and second-order matrix theory for the design of beam transport
systems and charged particle spectrometers.,” Tech. Rep. SLAC-PUB-3381, Stanford
Linear Accelerator Center, Calif., July 1984.

[3] K. L. Brown and F. Rothacker, TRANSPORT: A Computer Program for Designing
Charged Particle Beam Transport Systems. Stanford Linear Accelerator Center, slac-91
rev. 3 ed., May 1983.

[4] D. Arseneau, “1at2 dimension conversation.” Private Conversation, May 2018.

[5] D. Arseneau, “Surface muon momentum distribution measurement.” Beamline Mea-
surement Stored on Computer, May 2018.

[6] S. Kreitzman, “The m9a surface muon channel rebuild: M9a magnet power supplies,”
Tech. Rep. TRI-DN-06-17, TRIUMF, Nov 2006.

[7] G. Clarke, “M9a request form,” Nov 2008. Seq. #585.

[8] A. Pikor, “Transoptr mode 2 conversation.” Private Conversation, July 2018.

[9] S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai,
D. Axen, S. Banerjee, G. . Barrand, et al., “Geant4: A simulation toolkit,” Nuclear
instruments and methods in physics research section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 506, no. 3, pp. 250–303, 2003.

[10] T. Roberts, G4beamline User’s Guide. Muons, Inc., 3.04 ed., Feb 2017.

[11] T. Roberts, “G4beamine download.” http://www.muonsinternal.com/muons3/G4beamlineDownload.php?
dbassi@triumf.ca, Mar 2017. Accessed: 2018-08-03.

[12] K. Paul, “Gminuit.” http://www.muonsinternal.com/muons3/gminuit, Feb 2016. Ac-
cessed: 2018-08-03.

[13] Cobham Technical Servies, Opera-3D User Guid, 18r2 ed., May 2016.

[14] F. Jones, “Modified 3d field map block input.” Private E-mail, July 2018.

30

A G4BL Build Instructions for RHEL7 derived OS

Run these instructions in command line to build G4BL from scratch

Install all necessary libraries

yum update

yum install gsl gsl-devel fftw-libs fftw fftw-static

yum install qt5-qtbase-devel qt5-qtbase qt5-qtbase-doc qt5-qtbase-common \

qt5-qtbase-gui

Optionally (recommended) install MPI to use multithreads for simulations

yum install openmpi openmpi-devel

Build root 5.34 in msrorg -- has CINT, and is used for musrfit

Will have to be altered off musim1, just make sure you build root 5.34 \

which is needed to use historoot.

. /home/msrorg/root/bin/thisroot.sh

Also put preceding line in personal profile (.bash_profile) \

Could use system root-6 instead for g4bl. Historoot needs root-5 and \

CINT though. - Donald

I actually put it into my bashrc since I don’t like using \

too many different .bash* files - Dylan

I also put ’. /home/msrorg/root/bin/thisroot.sh’ > /dev/null \

in here too, since my OS root is ver. 6

export GEANT4_DIR=/home/asnd/build-g4bl3.04/geant4.10.03

export GSL_DIR=/usr

export FFTW_DIR=/usr

PATH=/usr/lib64/qt5/bin:$PATH

Make build directories and untar the archives

cd

mkdir build-g4bl3.04

cd build-g4bl3.04

tar -xf ~/scratch/G4beamline-3.04-source.tgz

tar -xf ~/scratch/geant4.10.03-source-tjr.tgz

Build geant4 from patched sources geant4.10.03-source-tjr

mkdir geant4.10.03

cd geant4.10.03

cmake3 -DCMAKE_INSTALL_PREFIX=$PWD -DBUILD_SHARED_LIBS=OFF -DBUILD_STATIC_LIBS=ON \

-DGEANT4_USE_SYSTEM_EXPAT=OFF -DCMAKE_BUILD_TYPE=Release \

-DGEANT4_USE_RAYTRACER_X11=ON -DGEANT4_USE_QT=ON ../geant4.10.03-source-tjr

make -j$(nproc)

make -j$(nproc) install

cd ..

Build g4bl

edit G4beamline-3.04-source/g4bl/CMakeLists.txt

Change

> file(GLOB GEANT4_PKG ${GEANT4_DIR}/lib/Geant4-*)

31

to

< file(GLOB GEANT4_PKG ${GEANT4_DIR}/lib*/Geant4-*)

If making MPI version, edit MPI.cmake to insert the block:

elseif(${SITE_NAME} MATCHES musim) # XXX = the result of ‘uname -n‘

set(LIBS ${LIBS} mpi_cxx mpi) # the libraries your MPI uses

include_directories(/usr/include/openmpi-x86_64) # the MPI include dir

link_directories(/usr/lib64/openmpi/lib)# # the directory for the libs

before the final else().

Note: You will have to append ’module load mpi’ somewhere into your .bashrc file \

or call once in every new terminal before trying to run g4blmpi

mkdir G4beamline-3.04

cd G4beamline-3.04

cmake3 ../G4beamline-3.04-source

or

cmake3 -DG4BL_MPI=ON ../G4beamline-3.04-source

make install

(I did make install and got distro files, but if you just "make" \

the executables aren’t even put in the bin dir. The install puts \

all used libs in a private lib dir, which fail after system updates, \

so hide them away.)

Cleanup

You can add a source command for the g4bl you built into your bashrc

Ex. source /home/dbassi/Downloads/G4beamline-3.04/bin/g4bl-setup.sh > /dev/null

cd

rm -r G4beamline-3.04

tar -xf build-g4bl3.04/G4beamline-3.04/G4beamline-3.04-Linux64.tgz

cd G4beamline-3.04

mkdir lib/unused

mv lib/*.* lib/unused

32

