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Abstract: A previously developed multipole tuning algorithm was specific to
one beam energy and often provided solutions with excessively high voltages.
The updated tuning algorithm presented in this beam physics note uses a
model for the multipole shown in TRI-BN-22-22 and regularization methods to
allow it to function for any beam energy and provide lower-voltage solutions,
with a significantly simpler implementation.
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1 Introduction
An algorithm to tune the multipole corrector of the TRIUMF Canadian Rare isotope facility
with Electron Beam ion source (CANREB) High Resolution Separator (HRS) based on exit
emittance scans was previously developed by Dan Sehayek [1]. In TRI-BN-22-22 [2] a new
model that could be used to replace ray-tracing code in this algorithm was detailed, which
would allow the algorithm to function for any beam energy. In this beam physics note, an
updated algorithm that uses the new model along with regularization of the least-squares
problem to provide better results with a simpler codebase is shown.

The horizontal emittance scanner at the exit of the HRS measures beam intensity as a
function of horizontal position and horizontal angle. To maximize resolving power, it is
desired that the beam have as small positional spread at the exit as possible. Due to
high-order aberrations, the beam at the HRS exit may become deformed, such as is shown
in Figure 1a. The HRS multipole is intended to correct these aberrations and produce a
beam with minimal positional spread, as shown in Figure 1b.
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Figure 1: Example emittance scans, showing what a beam may look like before and after
correction. Note that this data was not collected on the HRS, and the corrected data is a
calculated prediction. The centroidal position is graphed for each as a solid black line.

2 Tuning Algorithm
At the HRS exit, the multipole mainly causes a constant amount of displacement in position,
the amount of which varies as a function of angle. To determine the displacement required
to minimize the positional spread, the centroidal position as a function of angle is calculated
as:

x̄(x′) =

∑n
i=0 xiI(xi, x

′)∑n
i=0 I(xi, x′)

(1)

The centroidal position of the beam is shown in Figure 1. Ideally this would be constant
over angle.

In a previous beam physics note [2] a method for calculating the displacement as a function
of angle at the HRS exit for each pole pair was shown, and the same method will be used
here. Figure 2 shows the displacement for pole pairs 11 to 13 at 1V, as well as the desired
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displacement for the example emittance scan shown in Figure 1a. The overall displacement
of the multipole can be found by multiplying the displacement of each pole by its voltage
and adding all the displacement functions together. Clearly these displacement functions
are non-orthogonal, which means that the pole voltages required for a given displacement
cannot be calculated using a method similar to Fourier decomposition. Instead, the method
of least-squares can be used.
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Figure 2: Displacement functions for pole pairs 11 to 13 graphed with the target displacement
necessary to correct the aberrations in Figure 1a.

If angle is discretized into m sections and the pole pair voltages are described by a vector
w with n = 23 entries, then the displacement as a function of angle for multiple poles
operating at the same time would be Mw, where M is the m × n displacement matrix,
defined as:

M = ∆1e
T
1 +∆2e

T
2 + · · ·+∆ne

T
n , (2)

where ∆i is the displacement as a function of angle for pole pair i at 1V, and ei is a unit
vector with a 1 in the ith place.

The least-squares problem is then:

Mw ∼= b− x̄ (3)

Where b is the corrected beam position. This can either be considered an additional free
parameter and solved for as an intercept, or it can be fixed to a desired position, such as the
position with the maximum intensity. Allowing b to vary can result in better solutions when
regularized, so both methods were implemented.

In this case, directly computing the least-squares solution results in a poor solution with
excessively high voltages on the edge poles. The cause of this can be seen by using singular
value decomposition.

2.1 Singular Value Decomposition
The material shown here comes from Scientific computing: an introductory survey [3].
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The process of singular value decomposition decomposes the displacement matrix into the
form:

M = UΣV T , (4)

where all entries of Σ are zero except for the diagonals, which are sorted in non-ascending
order (σi−1 ≥ σi) and are called the singular values of M . The displacement matrix in this
analysis is full-ranked, so the degenerate case will not be considered here. The columns of
U and V are sets of mutually orthogonal unit vectors, known as the left and right singular
vectors respectively.

Denoting ui and vi as the columns of U and V , this can be expanded to:

M = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σnunv

T
n (5)

Comparing Equation (5) with Equation (2), it can be seen that the singular value decompo-
sition has changed the 23 original displacement functions, each caused by a single pole pair
set to 1V, into 23 orthogonal displacement functions ui corresponding to a vector of pole
pair voltages vi. The singular value σi corresponding to each orthogonal function describes
how much influence that function has on the displacement. For example, if σ1 � σn, then
Mv1 ≈ M(v1 + vn), so significantly different solutions for pole voltages could result in
essentially the same displacement. The ratio between the highest singular value and lowest
of a matrix is known as the condition number, cond2(M) = σ1/σn.

Figure 3 shows the singular values of the displacement matrix divided by the first singular
value. It can be visually seen that the condition number is on the order of 104, and even if the
two lowest terms were dropped the condition number would be on the order of 103.

The orthogonal displacement functions and the pole voltages corresponding to the first and
last singular values are graphed in Figures 4a and 5a, showing the configurations with the
largest and smallest impact on displacement respectively. In Figure 3 it can be seen that the
2nd and 3rd lowest singular values are very close in value; the corresponding configurations
are shown in Figures 4b and 5b, showing that both cause a ripple with the same frequency and
amplitude, the only different being a 180◦ phase shift halfway though the angle range.
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Figure 3: Singular values for the displacement matrix, normalized by dividing by the first
singular value.
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Figure 4: Orthogonal displacement functions produced by singular value decomposition of
the displacement matrix.

For a constant b, the least-squares solution can be rewritten in terms of the singular value
decomposition:

w =
∑
σi 6=0

ui · (b− x̄)

σi
vi (6)

For large condition numbers, small changes in b − x̄ can result in large changes in the
least-squares solution w. One solution to this problem is to truncate the sum in Equation (6),
ignoring displacement functions with singular values below some threshold. Another solution
is to take advantage of the freedom to add vectors of pole pairs voltages corresponding to
these low singular values in order to obtain a “nicer” solution for pole pair voltages. The
latter approach will be used here.

2.2 Regularization Methods
Regularization introduces some bias in order to reduce the variance of least-squares solutions
for ill-conditioned problems. Different biasing methods can be chosen based on the desired
solution behavior. Typically, biasing is done based on a norm of the independent variable,
such as the L0 pseudo-norm (number of non-zero elements), the L1 norm (sum of absolute
values of elements), or the L2 norm (Euclidean norm).

Scikit-learn [4] includes several efficient methods for least-squares with regularization. A
brief summary of relevant methods, based on the Scikit-learn documentation, is included
here for completeness. To match the documentation the least-squares problem considered in
the following subsections will be Xw ∼= y.

2.2.1 Ridge Regression

Ridge regression is based on the L2 norm, and minimizes the objective function

‖y −Xw‖22 + α‖w‖22, (7)

where α is a constant that controls the regularization strength. Unlike all the other meth-
ods considered here, the solution can be directly calculated with standard least-squares
methods.
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Figure 5: Pole pair voltages corresponding to the displacement functions of Figure 4. Note
that v23 is nearly constant, implying that adding a constant voltage to all pole pairs will not
significantly affect the multipole function.

2.2.2 Lasso Regression

Lasso regression is based on the L1 norm, and minimizes the objective function

1

2nsamples
‖y −Xw‖22 + α‖w‖1. (8)

The solution to Lasso regression cannot be directly calculated, and must be found through
iteration. Due to the use of the L1 norm, it tends to prefer solutions with fewer non-zero
coefficients.

2.2.3 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit regularizes on the L0 pseudo-norm of the independent variable,
‖w‖0. It can be used to search for the least-squares solution for a given number of non-zero
coefficients, or the solution with the minimum number of non-zero coefficients for a given
tolerance on the least-squares solution.

2.2.4 Elastic Net

The Elastic Net method uses both the L1 and L2 norms. It minimizes the objective
function

1

2nsamples
‖y −Xw‖22 + αρ‖w‖1 +

α(1− ρ)

2
‖w‖22. (9)

Here again α controls the regularization strength, and an additional constant ρ that controls
the relative strengths of the L1 and L2 penalties has been added. For ρ = 0 this reduces to
Ridge regression, and for ρ = 1 to Lasso.

In this context of this paper many of Elastic Net’s advantages, such as its behavior when
predictors are highly correlated, are not very relevant. However, an advantage is that Elastic
Net can prefer sparse solutions like Lasso while also applying a quadratic penalty on the
independent variable like Ridge.
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3 Performance Estimates
All the previously described methods were tested on a Zgoubi [5] simulation of the HRS,
using the 30kV_U1+_multiparticle.in file created by Owen Lailey [6]. The aberrations in this
model are minor, with the mean absolute deviation of the centroids being 15.4µm, so little
correction was required. The emittance data before correction is shown in Figure 6.
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Figure 6: Emittance data from the Zgoubi simulation of the HRS before correction. The
centroidal position is graphed before and after correction with the Lasso scheme.

The pole pair voltages output by each model are shown in Table 1, and the mean absolute
deviation of the corrected beam for each model is shown in Table 2. All methods performed
well in correcting the beam; the difference between the worst and best mean absolute deviation
was less than 0.5µm. Interestingly, despite theoretically having the lowest deviation, the
unconstrained “DSehayek” method performed the worst.
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Calculated Voltages (V)
Pole Pair DSehayek* OLailey* Ridge Lasso OMP Elastic

1 −1000.000 0.544 −0.021 0 0 0
2 −551.812 0.680 −0.025 0 0 0
3 1000.000 0.841 −0.032 0 0 0
4 −11.838 2.387 −0.099 0 0 0
5 8.324 6.441 −0.244 0 0 0
6 5.091 15.896 −0.523 0 0 −0.224
7 −1.854 −13.193 −0.491 −0.937 −1.328 −0.761
8 0.378 2.461 0.329 0 0 0.013
9 −0.296 −1.007 −0.167 −0.213 −0.400 −0.186
10 0.325 0.407 0.402 0.182 0.059 0.208
11 0.033 −0.221 0.277 0.121 0.011 0.157
12 −0.261 −0.257 −0.100 −0.236 −0.422 −0.221
13 0.094 −0.043 0.344 0.124 0.068 0.165
14 −0.632 −0.465 −0.285 −0.367 −0.606 −0.353
15 −0.028 −0.235 0.293 0 0.022 0.043
16 −0.745 0.522 −0.088 0 −0.378 0
17 −0.663 −0.938 0.664 0 0 0.081
18 1.170 −0.514 −0.157 0 0 0
19 −260.063 −0.224 −0.115 0 0 0
20 −135.775 −0.087 −0.049 0 0 0
21 1000.000 −0.026 −0.016 0 0 0
22 1000.000 −0.021 −0.013 0 0 0
23 999.936 −0.017 −0.010 0 0 0

Table 1: Pole pair voltages calculated for the input shown in Figure 6, using several
regularization methods. The “DSehayek*” method is the original algorithm written by
Dan Sehayek [1], and “OLailey*” is the same algorithm with NoS = 3, start = 1 as
suggested by Owen Lailey [6]. For all regularization methods the beam position was fixed.
Hyperparameters were chosen based on judgement; it was found that α = 1× 10−6 provided
good results for Ridge, Lasso, and Elastic Net, ρ = 0.5 worked well for Elastic Net, and a
tolerance of 1× 10−4 worked for Orthogonal Matching Pursuit.

Method
Mean Absolute
Deviation (µm)

Number of Active
Pole Pairs

Maximum Absolute
Voltage (V)

DSehayek* 3.23 23 1000.0
OLailey* 2.79 23 15.9
Ridge 2.77 23 0.7
Lasso 3.17 7 0.9
OMP 2.83 9 1.3
Elastic 3.12 11 0.8

Table 2: Summary of the configurations specified by each regularization method. The mean
absolute deviation of the corrected beam centroids was found using a Zgoubi simulation.
Before correction the mean absolute deviation was 15.4µm. For method hyperparameters
and an explanation on the starred methods see the caption of Table 1.
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All the regularization methods tested were able to lower the required voltages, and those
based on the L1 or L0 norms were able to significantly reduce the number of required
active pole pairs. The Lasso method is recommended for future work, as it often provides a
simple well-performing solution. Orthogonal Matching Pursuit often performs well, but has
occasionally failed to converge for specific emittance data, so it is not recommended. Elastic
Net may be a good compromise if the voltages recommended by Lasso are too large.

4 Recommendations for Future Work
The following are recommended:

• The current high-level application at https://devel.hla.triumf.ca/atom uses the
old algorithm, based on a Zgoubi simulation that contains errors [6]. This should be
rewritten with the new MultipoleOptimizer class, and options for the beam energy and
regularization parameters should be added.

• Both the new and old algorithms require that emittance data be first processed with
Rick Baartman’s Matlab scripts located at http://lin12.triumf.ca/emittance/em
itmat/. This processing could be implemented into the MultipoleOptimizer class.

• Currently, all angles with non-zero intensity are weighted equally in the least squares
problem. Weighting based on the intensity could be introduced.

• The method shown here recommends the solution with the smallest possible pole pair
voltages. If the multipole performs poorly for small voltages, a multiple of v23 could
be added to the solution.

5 Conclusion
The updated multipole tuning algorithm performs well on Zgoubi simulations, with the
Lasso regularization method providing the nicest solutions. Given the equivalent simulated
performance with nicer solutions for pole pair voltages, it is recommended that the previous
algorithm be replaced with this one for upcoming tests of multipole tuning.

A The MultipoleOptimizer Class
A new MultipoleOptimizer class was written that replaces the files Optimize.py, TableData.py,
ZPSModuleCentralizer.py, ZPSModuleCentroid.py, and ZPSModuleDataHandler.py. Through increased
use of vectorized operations, the use of Scikit-learn, and the new method for calculating pole
displacement [2], the MultipoleOptimizer class provides improved functionality despite the
code being one third the length of the original. Example usage is shown in Listing 1.

1 import pathlib
2 from multipole_optimizer import MultipoleOptimizer
3

4 data_directory = pathlib.Path('emittance_data')
5

6 optimizer = MultipoleOptimizer(charge=1.602176487E-19,
7 energy=30 * 1.6022e-16,
8 free_position=False)
9 optimizer.method = 'lasso'

10 optimizer.alpha = 1e-6
11

12 # Note that emittance data should be pre-processed to remove noise

https://devel.hla.triumf.ca/atom
http://lin12.triumf.ca/emittance/emitmat/
http://lin12.triumf.ca/emittance/emitmat/


TRI-BN-22-26 Page 9

13 optimizer.optimize_multipole(data_directory / 'TOMO_FIT.txt')
14

15 voltages = optimizer.voltages

Listing 1: Example usage of the MultipoleOptimizer class. For parameter documentation
see multipole_optimizer.py. For more detailed examples, see multipole_optimizer.ipynb.

B Source Code
All relevant code was archived at a common location on Gitlab.

• The implementation of the MultipoleOptimizer class is located at https://gitlab.t
riumf.ca/hla/atom/-/blob/master/multipole_code_and_docs/multipole_jkra
an/multipole_optimizer.py. A Jupyter notebook of the same name shows example
usage.

• The Zgoubi simulation used in this report is located at https://gitlab.triumf.ca
/hla/atom/-/blob/master/multipole_code_and_docs/multipole_olailey/Mult
ipole.py.

• The original optimization code is located at https://gitlab.triumf.ca/hla/atom/
-/tree/master/multipole_code_and_docs/multipole_olailey/hla_code_multi
pole.
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