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Chapter 1

Near-Adiabatic Capture of Pendulum
Phase Space

“As far as I see, all a priori statements in physics have their origin in symmetry”, Hermann Weyl[1].

“When the rf voltage is turned on, the electrons are uniformly distributed along the equilibrium
orbit. After the voltage has been built up, all electron phases will oscillate about zero phase with
amplitudes which decrease adiabatically; thus the electrons tend to bunch”, David Saxon and Julian
Schwinger[2] (1946).

1.1 Prologue

Let t, x and p = ẋ be time, position and momentum; and dots denote time derivatives. This article
concerns the motion of a pendulum with a time-dependent restoring force, having the equation
of motion ẍ + ω2(t) sinx = 0. The article attempts to answer “what happens to an ensemble of
pendula (each having different initial conditions) as the restoring force is increased?” In the case
of a true pendulum, x ≡ θ is the angular deviation from vertical. The pendula may spin about the
pivot, or they may swing to-and-fro. The pendulum motion is analogous to that of a frictionless
object traveling in a periodic potential well U = V (t)(1−cosx). Particles with small kinetic energy
(K.E.) are bound in a single local minimum of the potential, whereas particles with large K.E.
stream across the top of the periodic well. If the height V (t) of the well rises, then rotations may
be transformed into confined oscillations; a process known as capture. Phase space is the manifold
of configurations (x, p). A slow transformation process is usually described as being adiabatic. We
introduce the term near-adiabatic to emphasize a deviation from the adiabatic regime.

The motivation for the study is the behaviour of charged particles in a synchrotron (or other
ring type machine) where particles undergo synchronous acceleration by the voltage V (t) while
being confined by magnetic fields. Particles with momentum deviation p slip in position at a rate
A× p, and are confined by an effective potential U(x, t). The slip constant is analogous to inverse
of pendulum length 1/L; and U is analogous to the gravitational potential g × (1 − cos θ). If
the particles are initially uniform around the ring and streaming, raising the voltage will capture
them into bunches. We may wonder “what voltage law will minimize the spread of positions and
momenta?”, i.e. how best to shape the final phase space of the particle ensemble.

1.1.1 Notation

� time t and dimensionless time z = ω0t.

� derivatives ẋ = dx/dt and x′ = dx/dz; and ẋ = ω0x
′.

� position x; momentum p.

5



6 CHAPTER 1. NEAR-ADIABATIC CAPTURE OF PENDULUM PHASE SPACE

� angular frequency ω.

� perturbations in position α and momentum α̇ induced by ω̇.

� s or u is dummy parameter for integration.

� Hamiltonian H; adiabatic invariant I or J equal to H/ω; Jacobi m-parameter m = H/ω2/2.

� For rotation m = [sin(x̂/2)]2 where x̂ is the maximum excursion.

� potential energy U ; spatial potential U(x); voltage V ; kinetic energy T .

� oscillation period for libration τ .

� ϵ (or ϵ1) is dimensionless adiabaticity parameter ϵ = ω̇/ω2 = ω′/ω.

� values subscripted 0, such as x0, p0 denote initial values x(0), p(0).

� duration of voltage ramp T ; fraction of the ramp duration τ = t/T .

� values subscripted T , denote final values such as HT ≡ H(T ).

� values subscripted c, denote values at the instant of capture; for example Vc ≡ V (tc).

� ϕ or q or Q all denote oscillation phases.

� hat, or circumflex, placed above a quantity X̂ denotes the largest or maximum value.

� bar placed above a quantity X̄ denotes time-average over a window; typically the window is
a half-oscillation period.

� bra-kets placed around a quantity ⟨X⟩ denotes ensemble-average over the oscillation phases.

� a tilde placed above a quantity H̃ denotes the double-average: time-averaged over a sliding
window and ensemble-averaged over oscillation phases.

� cn, dn and sn are the principal Jacobi elliptic functions; they have two arguments, the phase
and the amplitude parameter m.

� K(m) and E(m) are the complete elliptic integrals of the first and second kinds, respectively.

� A(u,m) is the Jacobi amplitude, the inverse of the incomplete elliptic integral.

1.1.2 The structure of this article

Secs. 1.2 and 1.3 provides historical context, and introduces the adiabaticity parameter ϵ. Sec. 1.4
introduces pendulum motion, and the vocabulary of capture. Sec. 1.5 makes the connection to
adiabatic capture in synchrotron particle accelerators, and introduces the concept of averaging
over an oscillation. Sec. 1.7 presents some ideas from Hamiltonian mechanics. Sec. 1.8 uses the
Hamiltonian formulation of averaging to find evolution equations for mean and deviation of the
Hamiltonian during the pre- and post-capture eras starting from an initial value H0. Sec. 1.9
demonstrates how to find the perturbed phase-space trajectories that are induced by the rising
potential well. Sec. 1.10 applies the method of Sec. 1.9 to calculate the change of Hamiltonian
during separatrix crossing for the most symmetric trajectory. Sec. 1.11 calculates the change of
Hamiltonian across the separatrix for general (asymmetric) trajectories. Secs. 1.8 to 1.11 are the
key new results in this article. Sec. 1.12 outlines how to use the results of Secs. 1.8 to 1.11 to
construct the final distribution of Hamiltonian values of the bunched particle beam in terms of
the original distribution prior to turning on the initial voltage. Sec. 1.13 elaborates some of the
properties of the time-dependent separatrix. Sec. 1.16 is essentially an appendix that contains
mathematical details for the calculation of the form factors used in Sec. 1.8.
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1.2 What is adiabaticity?

For those readers unfamiliar with adiabaticity, a brief comment to set the stage. The mathematical
description of a physical process performed with perfect adiabaticity is well known: there are
characteristic properties of the system that are conserved and called invariants. For example, in
classical mechanics, Hamilton’s Action integral is an adiabatic invariant; and in quantum systems,
the quantum number (which defines the state) is conserved. But the description developed herein
is for a near-adiabatic process; one where the invariants are imperfectly or poorly preserved.

The word adiabatic derives from the Greek adiabatos meaning impassable, and in thermody-
namics refers to a condition imposed on a system that prevents any passage of heat into or out
of the system. In mechanics, it refers to a reversible process in which work is done but no heat is
transferred. Reversible is synonymous with iso-entropic and the process being performed infinitely
slowly. In mechanics, the stipulation about “heat” means there is no form of dissipation: no friction,
no turbulence, no air resistance, etc.

A historical overview of the “meaning of adiabatic” is given by Laidler[3]. Generally, the
word adiabatic is taken to mean a process that occurs slowly; and this means slow compared
with the characteristic time of the system. The period and decay time of an oscillator are often
encountered characteristic times, but are not the only ones1. However, oscillators are encountered
everywhere; and adiabatic processes performed on them are a theme of study in classical and
quantum mechanics. The stipulation of no dissipation implies no decay of oscillations. The ubiquity
of the harmonic oscillator stems from the vast number of physical systems wherein the energy exists
in two forms (and is periodically transferred from one to the other) and each type of energy is an
(approximate) quadratic function of a dynamic variable. For example, kinetic and potential energy,
or electric and magnetic energy.

In classical mechanics, since the 1870s, adiabatic is reserved for the case that evolution is
examined as some characteristic parameter of the system is slowly varied, specifically the natural
frequency. For the harmonic oscillator Hamiltonian H = 1

2Ap
2+ 1

2V x2, the parameters being varied
could be A or V or both. In such a case ω(t)2 = A(t)V (t). It is customary to define the adiabaticity
parameter

ϵ1 ≡
dω/dt

ω2
=

ω̇(t)

ω(t)

τ

2π
≈ ∆ω

2πω
. (1.1)

∆ω is the change in angular frequency during one oscillation period τ . Notice that ϵ is synonymous
with “small fractional change per oscillation period”. As defined ϵ has two key properties: (i) it is
dimensionless; and (ii) it contains within itself the time scale of the natural oscillation, 1/ω, and the
rate of parameter variation ω̇/ω. For counter example, ω̇/ω alone does not have those properties;
and is not a suitable adiabaticity parameter. The adiabatic condition states that there is (almost)
no change in the action J = H(t)/ω(t) provided that |ϵ| ≪ 1.

A property of a physical system that stays approximately constant when changes occur slowly
is called an adiabatic invariant. By this it is meant that if a system is varied between two end
points, as the time for the variation is increased to infinity, the change of an adiabatic invariant
between the two end points goes to zero. In Hamiltonian mechanics, an adiabatic change is a slow
deformation of H, where the fractional rate of change of the total energy is much slower than the
natural oscillation2 frequency ω. The function J/(2π) = I(t) = H(t)/ω(t) is almost constant during
adiabatic changes. The action3 J and invariant I differ trivially be 2π.

1There is, for example, a “relaxation time” defined in fluid mechanics, materials science and gas dynamics.
2In celestial mechanics, replace oscillation by orbital.
3In classical mechanics, the term “action” has several meanings. Here we specify J is the action of the generalized

coordinate q. The corresponding canonical variable conjugate to J is its “angle”.
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1.2.1 Contribution of Rayleigh

The idea of “adiabatic invariant” in mechanics had existed since the 1870s or earlier, but is often
credited to a 1902 paper of Lord Rayleigh[4]. Rayleigh’s mission was to demonstrate the invariants
of motion when pressure waves are trapped inside acoustic resonators with moving boundaries. He
starts and ends with the example of a string and plumb-bob pendulum. Pendula, in general, have
two types of motion: (i) rotation in which the bob spins around the pivot; and (ii) libration in
which the bob oscillates from side to side. Libration owes its naming to the Greek libra for scales.
In phase space (x, p) these motions (in a time-independent system) are divided by a boundary
p = ±ω0

√
2(1 + cosx) known as the separatrix.

Rayleigh only studies libration; in which the oscillator is was always captured by the gravita-
tional potential well. The transition between rotation and libration is not considered. [Of course,
to consider rotation, the string has to be replaced by a massless rigid rod.] In Rayleigh’s example,
work is done on the pendulum by an external agency that shortens the string (with respect to the
suspension point). The work is returned if the string is lengthened. Using the Lagrangian formula-
tion, the work ends by showing the deviation from adiabaticity scales as the integral over time of the
difference between kinetic and potential energy (all multiplied by the derivative of the time-varying
parameter). For a harmonic oscillator, such as an acoustic resonator, this time-average difference
is zero over a single cycle of the motion; and the invariant is proven. However, for the pendulum
oscillator, the time-averaged kinetic and potential energies are unequal. Thus, for the pendulum,
the assumptions of Rayleigh’s proof are violated.

1.2.2 Contribution of Ehrenfest and antecedents

During the period circa 1860-1900, the classical and statistical theories of thermo-dynamics were
being crafted by Rudolf Clausius and Ludwig Boltzmann, respectively (and others). One of Clau-
sius’ many contributions was the realization that heat in gases could be described by mechanics,
that heat and its transfer are a mechanical problem. Boltzmann’s brilliant insight was that heat
transfer is described by the dynamics of statistical populations. Both saw the world as mechanical;
that thermal is based in mechanics. Thus both wrote papers and books[5, 6] on thermo-dynamics
that are heavily invested in classical mechanics.

Paul Ehrenfest[7, 8] introduced the concept of “adiabatic invariant” into the early discussion of
quanta over the period 1911-1916. The focus of the time was quantization of light inside a cavity,
as a resolution of the “ultra-violet catastrophe” associated with the Rayleigh-Jeans law for black-
body radiation. The time-averaged electrical and magnetic energy in an optical or radio-frequency
resonator are equal; and satisfy perfectly the conditions in Rayleigh’s proof.

Ehrenfest made a second contribution[9]: to point out the over-looked work of Clausius[10, 11],
Szily[12] and Boltzmann[6]. He credits them all with developing the idea of adiabatic invariant for
non-linear oscillations in which the time-averaged K.E. and P.E. are unequal. The three authors4

say that invariantH/ω is replaced by T/ω where T is the kinetic energy and the average is performed
over a cycle of the motion. Thus far, I have not located the elements of the derivation. Without
details, it is unclear under what circumstances and conditions this result applies.

Journal referencing to this period of 1860-1900 can be confusing. “Annalen der Physik” changed
its title from time to time, and some ranges of volume numbers are known by the editor-in-chief
of the time. For example, Annalen der Physik is known as Poggendorff’s “Annalen der Physik
und Chemie” (abbreviated Pogg. Ann.) after its editor Johann Christian Poggendorff. Obviously,
Annalen der Physik is published in German. For the time period discussed, English translations
are found in the Philosophical Magazine. Further, the structure of the volumes and series have
altered over time; leading to consistent but confusing numbering. Citations herein use the modern
numbering adopted by Annalen der Physik in the 21st century.

4Boltzmann is aware that the pendulum motion has a separatrix, but does not consider crossing.
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1.3 Variation of Adiabatic Invariant

Our interest is the deviations from perfect adiabaticity. We begin with the example of a harmonic
oscillator such as a mass and spring. For this simple system, the “particle” is always captured; there
is only libration. The potential energy is U = V (t)x(t)2/2 and kinetic energy T = Ap(t)2/2. For
a harmonic oscillator with constant V , the time average values of U and T are equal. Hamilton’s
equations are:

H(t) = T + U , ẋ = ∂H/∂p = Ap(t) , ṗ = −∂H/∂x = −x(t)V (t) . (1.2)

Leading to ẍ = −AV (t)x and Ḣ =
1

2
x(t)2V̇ (t) . (1.3)

Suppose V (t) varies slowly enough that the natural frequency ω/(2π) is defined for an oscillation.
We denote amplitude a, initial phase ϕ and ω =

√
AV (t). The approximate solution is

x(t) → a sin(ϕ+ ωt) , p(t) → a
√
V/A cos(ϕ+ ωt) , H → V (t)a2/2 . (1.4)

The action is defined to be the area swept out in phase-space during one cycle τ :

J ≡
∫ τ

0
p(t)q̇(t)dt = V (t)

∫ +τ/2

−τ/2
a2 cos2(ϕ+ ωt)dt → a2πV/ω = 2πH/ω . (1.5)

The change in the action is

∆J =

∫ τ

0
J̇dt where

1

2π

dJ

dt
=

Ḣ

ω
− Hω̇

ω2
= [U(t)− T (t)]

ω̇

ω2
. (1.6)

This is a delicate integral to calculate. Let ϵ ≡ ω̇/ω2. Certainly the integral is very small if ϵ is
small; but it is not zero unless ω̇ = 0. If |ϵ| > 0 is removed from the integral, as being slowly varying,
and the unperturbed motion is substituted then the integral is zero: ∆J ≈ ϵ × 0. Customarily, it
is stated that |ϵ| ≪ 1, for all time t, is a sufficient condition for the change in action to be small;
and this is true. But often it is interpreted to mean the change in action is of order ϵ; and that is
false. Let us pursue this further.

The reasoning that if ∆J is small, then U(t) and T (t) can be replaced by their unperturbed
values, in which case the integral is almost zero, is a self consistent argument. But the circular
reasoning does not help us to actually calculate the value of the integral. To quantify “how small?”
is ∆J , we have to work from the perturbed functions x(t) and p(t). We calculate the integral four
times according to differing assumptions or imposed conditions. In all cases, to first order in ϵ the
integral is zero; so we have to calculate up to order ϵ2.

The first case: ϵ is constant over the interval t = [−τ/2,+τ/2], and x(t) is the unpertubed motion.
The integral is identically zero:

∆J = −a2V

2
ϵ

∫ +τ/2

−τ/2
cos 2(ϕ+ ωt)dt = 0 . (1.7)

The second case is to make time-linear expansions of the voltage and the oscillation frequency:
V (s) = V (t) + V̇ (t)× s and ω(s) = ω(t) + ω̇(t)× s; but insert the unperturbed motion for x(t).

∆J ≈ a2(ω̇)2

Aω

∫ +τ/2

−τ/2
cos 2(ϕ+ ωt)tdt =

a2πV

ω
ϵ2 sin 2ϕ = ϵ2J sin 2ϕ . (1.8)

Note, we have omitted terms from the integrand that integrate to zero.



10 CHAPTER 1. NEAR-ADIABATIC CAPTURE OF PENDULUM PHASE SPACE

The third case is to make time-linear expansions of all parameters: V (s) = V (t) + V̇ (t)s and
ω(s) = ω(t) + ω̇(t)s and x(s) = [a(t) + ȧ(t)s] sin[q + sω(t)]. The relation ȧ = −aω̇/ω is found from
the condition ẍ = −AV (t)x. And ω =

√
AV leads to V̇ = 2ωω̇/A. The action integral becomes:

∆J ≈ a2(ω̇)2

Aω

∫ +τ/2

−τ/2
[cos 2(ϕ+ ωt) + ωt sin 2(ϕ+ ωt)] tdt = 2

a2πV

ω
ϵ2 sin 2ϕ . (1.9)

Note, we have omitted terms from the integrand that integrate to zero. This is double the previous
case; so including the effect of V̇ on the motion is important.

The fourth case stems from the intuition that the integral will be smaller if ϵ(t) is actually a
constant. We retain the amplitude variation [a(t) + ȧ(t)s]. The action integral becomes:

∆J ≈ a2(ω̇)2

Aω

∫ +τ/2

−τ/2

[
−1

2
cos 2(ϕ+ ωt) + ωt sin 2(ϕ+ ωt)

]
tdt =

1

2

a2πV

ω
ϵ2 sin 2ϕ . (1.10)

Note, we have omitted terms from the integrand that integrate to zero. This is a quarter the
previous case; so setting ϵ equal to a constant produces a significant improvement. To summarise:
if the adiabaticity parameter |ϵ| ≪ 1, the change in action per oscillation period is of order ϵ2; and
is reduced if ϵ̇ = 0. Variations for which ϵ̇ = 0 are called iso-adiabatic.

1.3.1 Evolution of deviation J(ϕ)

Each of the integrals Eqns. (1.8, 1.9, 1.10) is of the form

∆J(ϕ) = R× J(t)ϵ2(t) sin 2ϕ with scaling factor R = 1, 2, 1/2 . (1.11)

The ensemble average over oscillation phases is

⟨∆J⟩ = 1

2π

∫ +π

−π
∆J(ϕ)dϕ = 0 . (1.12)

Hence the average value ⟨J⟩ does not change; or d⟨J⟩/dt = 0. Now 1
2π ⟨J⟩ = H/ω; this leads to the

relation

H(t+ T )

ω(t+ T )
=

H(t)

ω(t)
or H(t+ T ) = H(t)

√
V (t+ T )

V (t)
. (1.13)

∆J(ϕ) is the phase-dependent deviation during an oscillation period. Hence if ϵ is slowly varying,
there is the approximate time derivative:

d

dt
∆J(ϕ) = J0

ϵ2(t)

τ(t)
R sin 2ϕ . (1.14)

This may be integrated for a known time-variation of ϵ2/τ , and initial action J0. Further, the
formalism lends itself to computing the evolution of n-th moments ⟨∆Jn⟩.

1.3.2 Second adiabaticity parameter

Now let us understand the implication of treating ω̇/ω2 like a constant, and removing it from the
integrand.

ϵ2 ≡ ϵ̇ =
d

dt

(
ω̇

ω2

)
=

ω̈

ω2
− 2

(ω̇)2

ω3
. (1.15)

If ϵ2 is identically zero, second order effects are reduced. Setting Eqn. (1.15) to zero, and then solving
for ω(t) leads to ω(t) = c2/(t+c1) where c1, c2 are constants of integration. The corresponding value
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of ϵ = −1/c2. Introducing the boundary conditions at start ω(t=0) = ω0 and finish ω(t=T ) = ωT ,
yields the iso-adiabatic frequency variation:

ω(t) =
Tω0ωT

TωT + (ω0 − ωT )t
. (1.16)

We may rewrite the same conditions in terms of the parameter that is directly controlled in a
synchrotron, namely the voltage ramp V (t). Let A be the slip-rate constant and ω =

√
AV (t),

then

ϵ1 ≡
ω̇

ω2
=

V̇

2V
√
AV

and ϵ2 ≡
dϵ1
dt

=
−3(V̇ )2 + 2V V̈

4V 2
√
AV

. (1.17)

1.3.3 ∆J(ϕ) versus voltage laws

A variety of voltage ramping laws have been used for capture and bunching of charged particle
beams, with a range of success, but only one of them (the linear ramp) a clear failure. We now
investigate what the two adiabaticity parameters, ϵ1 and ϵ2 can indicate about the relative merits of
these voltage ramps. Strictly speaking, this comparison can address only the post-capture process
of bunching; because the harmonic oscillator has no analog of streaming. We use ω =

√
A× V (t)

and set the slip constant A = 1. Let the initial and final voltage values be V0 and VT , the ramp
duration T , and ∆V = VT − V0.

Linear ramp: V (t) = V0+(t/T )∆V . We find at the start t = 0, the parameters ϵ1 = (∆V/T )/(2V
3/2
0 )

and ϵ2 = −3∆V/(2TV0)ϵ1. At later times, ϵ1 ≈
√
T/∆V /(2t

√
t) and ϵ2 ≈ −3/(2t)ϵ1. The action

deviation at the end of the voltage ramp is ∆J(ϕ)/J0 ≈ R(VT /V0/2) sin 2ϕ with R ≈ 2. The growth
is large, and due to the large value of ϵ1 at early times.

Quadratic ramp: V (t) = V0 + (t/T )2∆V . We find at the start t = 0, the parameters ϵ1 = 0 and

ϵ2 = ∆V/(T 2V
3/2
0 ). At later times, ϵ1 ≈ T/(t2

√
∆V ) and ϵ2 ≈ −(2/t)ϵ1. The growth of deviation

at t = T is ∆J(ϕ)/J0 ≈ R
√

VT /V0 sin 2ϕ with R ≈ 1. This value is significantly smaller than its
predecessor, because ϵ1 is smaller at early times.

Exponential ramp: V (t) = V0 × C(t/T ) where the ratio C ≡ VT /V0 ≫ 1. The adiabaticity param-

eters are ϵ1 = lnC/(2T )/
√
V (t) and ϵ2 = −ϵ1 × (lnC)/(2T ). For long duration, ϵ2 → 0. The

growth of deviation at t = T is ∆J(ϕ)/J0 ≈ (3/2)R(1− 1/
√
C)(lnC) sin 2ϕ with R ≈ 1. This value

is smaller than for the quadratic ramp.

Iso-adiabatic ramp: V (t) = T 2V0VT /[(T − t)
√
VT + t

√
V0]

2. The adiabaticity parameters are con-

stant: ϵ1 ≈ 1/(T
√
V0) and ϵ2 = 0. The action deviation at the end of the voltage ramp is given by

the expression for the exponential ramp, but with R = 1/2.

To conclude, evolution of the adiabatic invariant suggests that the iso-adiabatic ramp will be
superior, and the linear ramp inferior, to all others for the process of bunching.

Our interest is in motion where there is both libration and rotation. Rotation is not possible
for the harmonic oscillator; it has a potential well of infinite height. So, we shall not pursue this
model any further. However, it served to introduce several features of the problem: any growth of
the action is a second order effect, and difficult to calculate; (ii) the time-average over a quickly
varying quantity; (iii) the ensemble average over oscillation phases. We shall encounter all of these
again in the context of the pendulum oscillator.

1.4 Pendulum with rising potential well

To prepare a context, we make a sketch of the pendulum motion. What is termed adiabatic
capture is in fact three processes. (1) Pre-capture: a near-adiabatic transformation of almost
uniform streaming trajectories (i.e. rotation) into ones with strong modulations. During this
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period, the particle Hamiltonian is much greater than that on the separatrix. (2) Capture: a
non-adiabatic transformation of rotation into libration. This is often called separatrix crossing.
During this process, the particle Hamiltonian is approximately equal to that on the separatrix. (3)
Post-capture: a near-adiabatic transformation of oscillating trajectories (i.e. libration) into ones
with smaller amplitude and aspect ratio (x̂/p̂). During this period, the particle Hamiltonian is
typically much smaller than that on the separatrix. For the majority of initial particle coordinates,
the pre- and post-capture periods last much longer than the capture. The exception is coordinate
pairs close to the unstable fixed points (x0, p0) = (±π, 0). For a single particle, the three processes
are sequential. For an ensemble of particles, with a wide range of initial Hamiltonian values, the
processes become concurrent; albeit for different particles.

-100 -50 50 100
x[t]

15

25

30

H[t], I[t]=H/ω, 2m[t]=H/ω2

-15 -10 -5 5 10 15
t

0

5

10

15

20

m, KE, PE

Figure 1.1: Rotation with m0 = 10. Left: Hamiltonian (green), action = H/ω (red), Jacobi
m (blue); all versus position. Right: kinetic energy (red), potential energy (blue), m-parameter
(green); all versus time.

The following series of figures sketch the values of Hamiltonian (H), adiabatic invariant I =
H/ω, Jacobi m-parameter H/ω2/2, and kinetic energy T and potential energy U as a function of
time t or position x(t) for a pendulum with linear increasing natural frequency ω(t) = ω0(1 + βt).
Here the slew constant β = ϵ × ω0. The three quantities H, I,m change most slowly at the
position-extrema of motion (separated by a half-cycle); we may think of these locations as being
where H, I,m are best defined, particularly so for m in Fig. 1.2. The sketches assume particles enter
with positive momenta, streaming rightwards. There are analogous plots for negative momenta,
streaming leftwards; these plots are double mirror symmetric about p = 0 and about x = 0.

The first example, Fig. 1.1, is taken from the pre-capture period, with Jacobi m = 10. During
this time, the K.E. is much greater than P.E.; and the supposed invariant H/ω is not. The
most slowly changing function is H, which evolves as H(t) = H(0) + V (t)⟨U(x)⟩ − V (0) where
H0 − V0 = p20/2 = T0.

The second example, Figs. 1.2 & 1.3, is taken from the capture process, with m ≈ 1. During
this process, there is a time-period where the P.E. is much greater than the almost zero K.E. The
reader will see, Fig. 1.3, that H and I both change noticeably while the trajectory loiters in the
vicinity of the fixed point x = −π. There is an equal effect for negative momenta entering at
x = +π.

The final example, Fig. 1.4, is taken from the post-capture period, with Jacobi m = 1/2. During
this time, the K.E. and P.E. become progressively more equal (while U > T ); and the invariant
H/ω is the most slowly changing function.
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Figure 1.2: Capture. Left: momentum versus position. Right: Jacobi m-parameter versus position.
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Figure 1.3: Capture at m0 = 1. Left: Hamiltonian (green), action = H/ω (red), Jacobi m (blue)
all versus position. Right: kinetic energy (red), potential energy (blue), m-parameter (green) all
versus time.
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1.4.1 Work performed on the pendulum

Later discussions will develop the pre- and post-capture processes, including the transition from
rotation to libration. The mathematical description is complicated, but the physical process is
simple. Suppose the height of the potential well is rising. For rotation, Hamilton’s action (J) is not
a conserved quantity; essentially because there is an excess of kinetic energy. So it is more straight
forward to consider changes of the Hamiltonian. Work W is the product of force multiplied by
distance traveled. In the rising potential, this is W = V (t) − V (0). This work is almost totally
transferred to potential energy. Eventually, the time-average kinetic and potential energy become
equal; and the motion is prepared to make the change from rotation to libration (the maximum
swing of the pendulum becomes horizontal).

Once the pendulum is captured into libration, the action becomes an almost conserved quantity.
The work done by the rising potential continues to be force multiplied by distance traveled, but
the distance shrinks because the amplitude falls; and this results in a square-root dependence of H
on V (t). Moreover, the new work is almost equally shared between kinetic and potential energy.

We may elaborate in terms of energy changes. In the rotation regime, the particle K.E. is
roughly constant but the time-average P.E. slowly rises toward the K.E. When the peak values of
K.E. and P.E. become equal, the particle has reached the separatrix. In the libration regime, the
peak values of P.E. and K.E. are equal, but not the time-averaged values. The particle P.E. and
K.E. both rise; but the time-average K.E. is initially smaller and rising slightly faster. When the
average values become equal, the particle has reached the stable fixed point at the centre of the
phase space.
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Figure 1.4: Libration at m0 =
1
2 . Left: Hamiltonian (green), action = H/ω (red), Jacobi m (blue);

all versus position. Right: kinetic energy (red), potential energy (blue), m-parameter (green); all
versus time.

1.4.2 Unequal PE and KE for pendulum

We now demonstrate the inequality of time-averaged kinetic and potential energy for the pendulum
oscillator. The general form of pendulum Hamiltonian is H = p(t)2/2 + ω2[1 − cosx(t)]. Passing
to dimensionless time z = ωt, this becomes H = p2/2 + [1− cosx(z)] and has the value H = 2m.

Consider first, the unbounded motion (rotation) for which Jacobi m > 1. The peak and time-
averaged K.E. are both much greater than their P.E. counterparts when m ≫ 1. The motion is
given by: x(z) = 2 arcsin[sn(

√
mz, 1/m)] and p(z) = 2

√
m dn(

√
mz, 1/m). T (z) = 2m dn2(z, 1/m)
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Figure 1.5: Time-averaged kinetic energy (blue) and potential energy (gold) versus Jacobi m-
parameter for pendulum oscillator. Left: rotation, m > 1. Right: libration, m < 1.

and U(z) = 2 sn2(z, 1/m). The rotation period is τ = 2K(1/m)/
√
m. The time-average values are

T (m) =
1

τ

∫ +τ/2

−τ/2
T (z)dz = 2m

E(1/m)

K(1/m)
and U(m) =

1

τ

∫ +τ/2

−τ/2
U(z)dz = 2m

[
1− E(1/m)

K(1/m)

]
.

The functions are shown in Fig. 1.5-left. The time-averaged K.E. is ≈ 2m times the P.E.. The
values become equal at m = 1.2105. During (adiabatic) precapture, Jacobi m moves from values
much greater than 1 toward unity. The limiting values are [T/m,U ] = [2, 1] as m → ∞; and
[T,U ] = [0, 2] at m = 1.

Consider now, the bounded motion (libration) for which Jacobi m < 1. The motion is given
by x(z) = 2 arcsin[

√
m sn(z,m) and p(z) = 2

√
m cn(z,m). T (z) = 2m cn2(z,m) and U(z) =

2m sn2(z,m). The libration period is τ = 4K(m). The time-average values are

T (m) =
2

τ

∫ +τ/4

−τ/4
T (z)dz = 2

[
m− 1 +

E(m)

K(m)

]
and U(m) =

2

τ

∫ +τ/4

−τ/4
U(z)dz = 2

[
1− E(m)

K(m)

]
.

The functions are shown in Fig. 1.5-right. During (adiabatic) post-capture, Jacobi m moves 1 → 0.
The time-averaged P.E. is greater than K.E. for m < 1; and does not reach perfect equality until
m = 0. But near-equality is reached rapidly with respect to decreasing m for values m < 0.9. The
limiting values are [T,U ] = [0, 2] at m = 1; and [T,U ] = [0, 0] at m = 0; and are explained as
follows. As m → 1, the particle spends progressively more of its time in the vicinity of the peak of
the potential well. At m = 1, the particle gets stuck at the top of the potential (a fixed point of
motion). Contrastingly, m = 0 is the limit of infinitesimal oscillation amplitude; so the particle is
stuck at the bottom of the well.

1.4.3 Symmetry and the method of averaging

The reader is reminded of Weyl’s observation on the role of symmetry at the head of this article.
For the pendulum oscillator, the time-averaged kinetic and potential energies are generally unequal.
Nevertheless, there is an adiabatic regime because of two properties. (1) There is a separation of
time scales: slow variation of the potential versus the (comparatively) fast oscillation period; and
(2) an underlying symmetry: the motion is periodic. Therefore, whatever work is performed by the
slow external parameter variation during one half-cycle is almost exactly canceled during the next
half-cycle of motion. This leads to slowly evolving changes for the oscillator amplitude and aspect
ratio (and also phase). Further, if the potential well is symmetric about its minimum, then the
motion is symmetric within a half-cycle; and the same conclusion of near-cancellation is made for
the half-cycle. Such is the case of the unbiased pendulum oscillator.
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These observations are collected under the rubrique method of averaging. Averaging has a
long history rooted in celestial mechanics, associated with Gauss, Fate, Delone-Hill and others.
Essentially the idea is to integrate rapidly varying cyclic functions over time, reducing them to
their average effect. Since the 1930’s the term method of averaging has a specific technical meaning:
the method introduced by Krylov and Bogoliubov in 1935 for finding the asymptotic behaviour
of non-linear differential equations with time-varying coefficients. The method is elaborated in
Bogoliubov’s book[13, 14]. The present work does not adopt the Bogoliubov formulation. Instead,
the averaging integral for adiabatic capture arises in a natural and obvious5 way in Hamiltonian
mechanics; see Sec. 1.8.

The method of averaging tacitly assumes there is no change in the nature of the mathematical
function describing the underlying oscillatory motion; its parameters may change, but the form
does not. The method fails at the separatrix; because the period of oscillation becomes infinite
as the motion tends to the unstable fixed points, the averaging integral becomes undefined and
possibly very large as its limits tend to infinity. Despite the mathematical difficulty presented by
the capture (i.e. separatrix crossing), it should be noted that the vast majority of the time, particles
are either outside or within the instantaneous separatrix; and so the cumulant effects of the pre-
and post-capture eras compete with (or even dominate over) the separatrix crossing process that
is, comparatively speaking, more like a fleeting moment.

Recently, the neo-adiabatic theory[15, 16, 17, 18, 19, 20, 21] of probabilistic transport6 has been
developed to estimate the change of the adiabatic invariant when separatrix-crossing phenomena
occur in slowly modulated one-degree-of-freedom Hamiltonian systems. The review[18] by Neish-
tadt is a useful introduction to the topic. The theory provides explicit formulas for the trapping
probabilities in a resonance region[16], for the change of the adiabatic invariant due to separatrix
crossing[17], and for the error estimate defining the regions of validity in phase space. However,
the theory is not intuitive; and is limited to linear variation of the external parameter.

We shall use the method of averaging in Hamiltonian form. The present work differs in three
other respects. (1) The voltage law is not limited to linear time variation, thereby facilitating the
comparison of different capture schemes. (2) Our calculation of the integrals that average over the
fast motion are performed in terms of Jacobi elliptic functions, rather than action-angle variables.
(3) The method is extended to separatrix crossing. We shall find the perturbation to the motion
induced by the parameter variation ω(t). This has negligible effect on the form of the averaging
integral; but utterly transforms the limits of integration, leading to finite increments ∆H.

Finally, it must be noted that longitudinal beam dynamics in a synchrotron is founded on
(transverse) averaging. The particles execute both longitudinal (synchrotron) and transverse (be-
tatron) oscillations, but the periods are vastly different: a fraction of a synchrotron oscillation per
turn, but many betatron oscillations per turn. So the transverse oscillations may be averaged.

1.5 Near-Adiabatic Capture in Synchrotron

In accelerator parlance, the separatrix is named the rf-bucket; rotation is called “outside the bucket”
and libration is referred to as “inside the bucket”. The term bucket was coined by the MURA7

group, in reference to “bucket lift”. The bucket is an area in phase space that is confined and
transported in energy. The bucket boundary is simply the instantaneous separatrix. The prefix
rf- denotes radio-frequency. Usually, the accelerator literature reserves the name bunching for the
post-capture process wherein the aspect ratio (ratio of width ∆x to height ∆p) of the phase-space

5Indeed, both the present author[31] in his Ph.D Thesis pgs. 65-66 and Robert Gluckstern (University of Maryland,
personal communication) conceived of it without knowledge of the K.B. formulation.

6The method of averaging is used inside and outside the separatrix, but the treatment of separatrix crossing is
probablistic.

7The Mid-Western Universities Research Association, 1953-1967. An account of the wonderous MURA activities
was given by Frank Cole[22] in 1994.
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orbits decreases and a hill-like line density emerges. Nevertheless, some slight modulation of the
line density also occurs during pre-capture. Oscillations in the periodic potential provided by the
rf-waveform are termed synchrotron oscillations.

In accelerator parlance, the occupied area in phase space is called emittance. By custom,
“Adiabatic Capture” in a synchrotron charged-particle accelerator, is the process wherein a uniform,
coasting, particle beam is captured into a slowly rising-voltage V (t) rf bucket while controlling
emittance growth. But perfect adiabaticity demands infinite duration; so, in practise, the process
inevitably departs from idealized adiabaticity and is “near adiabatic”.

Typically the beam is injected from a linear accelerator, is accumulated in the synchrotron and
then accelerated using RF cavity resonators. The cavity voltage is zero (or very small) during
the beam injection; and then it is ramped to form a bunched beam with all particles oscillating
within an effective potential well. The first mention of this process is that of Saxon at the head of
this article. Almost always, the magnetic bending field and the average beam energy is constant
during the injection and capture. When capture is complete, the magnetic field rises and the beam
is accelerated in synchronism with the bending field. However, in some cases [23, 24, 25, 26] the
electrical power circuits energizing the magnetic field law are not compatible with a long or flat
bottom.8 When the time-duration is constrained, part of the capture may take place on a slowly
rising magnetic field with a varying synchronous beam energy; but we shall not address that case
here.9 Further, in the case of fast-cycling synchrotrons the magnetic field and voltage both ramp
quickly and there is no possibility of adiabatic capture; for example Refs. [30, 31, 32, 33].

Although the magnetic field law can rarely be altered, the voltage ramp is less constrained and
several forms have been attempted. The published literature of comparative experimental studies
is sparse. Mohite[34], Chap. 6, describes ESME[35] simulations and beam measurements made at
the GSI-SIS (heavy-ion synchrotron) wherein linear, quadratic and iso-adiabatic voltage ramps are
compared and for different ramp durations and also the effect of varying the initial voltage step.
Results are reported both for single and dual-harmonic operation. Ng[36] reports a comparative
study (using simulations) of the iso-adiabatic law and the Kang[32] near-linear voltage law: at
constant VT /V0 = 75, the duration of the ramp is extended from the minimum iso-adiabatic value
to twelve times that value. Significantly, when the duration is limited the iso-adiabatic law generates
clearly smaller emittance; but when the duration is extended to the maximum, the two voltage laws
generate indistinguishable final occupied longitudinal phase space. Feng[37] reports a similar study
for iso-adiabatic and Kang-cubic ramps. Koscielniak and Zeno[39] report comparative experiments
and computations for quadratic and iso-adiabatic voltage laws at the BNL-AGS Booster, including
variation of the voltage step. Recently, Kelliher[40] reports a comparison of linear and iso-adiabatic
ramps, and concludes that the phase space area enclosing the final particle ensemble is smaller for
the linear ramp. Kelliher is interested in particle losses, and they come from the periphery of the
occupied phase space. It is probable that if root-mean-square emittances were compared, those
developed by the iso-adiabatic ramp would be found the smaller of the two.

Ideally, a theory of adiabatic capture would predict the final distribution of particles in phase
space, and provide means to optimize the voltage law for given constraints. Until now, this has
only been achieved through particle tracking simulations (i.e. computer experiments); for example
Refs. [23, 24, 37]. In particular, Rasmussen[41, 42, 43] reports sophisticated simulations in which

8Sometimes called an injection porch.
9Except by way of a footnote. In the case of injection near the bottom of a slow sinusoidal magnet ramp, an

approximation to a flat injection porch may be made by deliberative radial steering prior to field minimum. The
radio-frequency is kept constant (not synchronised to the magnetic field law) and the beam moves radially so that its
momentum is constant. In this way the duration of adiabatic capture can be lengthened, but not substantially. Later,
the radial-loop of the LLRF control system will bring the beam back to the central orbit. The efficacy of the scheme
depends on the radial aperture, which may be compromised by an injection orbit bump. Tricks of this type have been
used at the RAL-ISIS and CERN PS-Booster (private communication Ian Gardner & Grahame Rees, Rutherford
Appleton Laboratory circa 1986; and Steven Hancock CERN-PS circa 1996). The most successful implementation
appears to be that of Bhat[27, 28, 29] at Fermilab.
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particles emanate from the final separatrix and are tracked backward in time to find the regions
of phase space that will be captured when time runs forward. Adiabatic capture was first inves-
tigated at MURA[44]. Based on very limited10 computer simulations, and impressive insight and
inspiration, they abandoned linear voltage ramp in favour of their iso-adiabatic voltage law; which
has been championed and employed by various adherents[45, 46, 47]. There is little reported of
other voltage laws in the literature, though anecdotal evidence that quadratic, exponential, etc,
variations have been tried with some success. All sources agree the linear voltage ramp has a poor
outcome. The RF bucket area is proportional to

√
V . The quadratic law results in “acceptance”

rising linear in time; the iso-adiabatic law results in “acceptance” rising linearly each synchrotron
period.

Our overall plan is to find the mapping between the values of the Hamiltonian H(0) at the start,
and at the terminus of capture H(T ). Associated with each H(0) there is an initial oscillation phase
q. We shall find that for each value H(0) there is an average value ⟨H(T )⟩, and a spread generated
by three processes. (1) The sudden voltage turn on at t ≤ 0 generates a spread ∆H0. (2) Slow
cumulative growth before and after capture arising from the rapidity of the rising voltage V (t > 0)
generates an additional spread ∆H(q). (3) One-time increments that occur at the moment of
capture. Process (1) results in instant capture for a small faction of the beam, and has a separate
mathematical treatment. Process (2) is near-adiabatic, while (1) and (3) are non-adiabatic.

Let x and p be RF-phase and momentum deviation, respectively. (x is the analogue of the
deviation angle θ for a true pendulum.) At the start of the process, t = 0, the beam is a rectangle
in (x, p) matched to V = 0; but this corresponds to ω = 0, and therefore adiabaticity cannot be
perfect. And so V (t) must start with a small step, at the cost of a small (but important) mismatch.
Outside the bucket, particles stream in RF phase; and inside they circulate in (x, p). The transition
of a pendulum from rotation to libration is often called “separatrix crossing”. The term correctly
identifies the dynamics occurring at that time as unusual, but is potentially misleading: there is
no impenetrable separatrix in the time-dependent system; no separatrix is crossed.

Nevertheless the switch from rotation to libration (both of which are periodic oscillations) is
not adiabatic because particles move glacially slowly in the immediate vicinity of the astable fixed
points. Moreover, any mathematical formulation that takes an infinite-period motion as its basis
will break down at the separatrix. This is the reason for the failure (at the separatrix) of the
“method of averaging”, and the motivation for the “neo-adiabatic” theory. However, we repeat,
“separatrix crossing” by a single particle receives a disproportionate amount of attention; it is but
a fleeting moment in the capture of a particle beam.

1.6 Voltage ramps

There are several commonly used voltage ramps; we list them along with their corresponding
adiabaticity parameters. In Secs. 1.10, 1.11 it is shown that the increment of Hamiltonian across
the separatrix is proportional to ϵ1 at the time of crossing.

1.6.1 MURA ramp

Lilliequist and Symon[44] (abbreviated to L&S) were the first11 to adddress adiabaticity in lon-
gitudinal capture. Although seminal, this work has two infelicities. Rather than start from the
consequences of |ϵ1| ≪ 1, they write an equation for the instantaneous acceptance (i.e. area S) of
the RF-bucket for a rising voltage. The area S (eV.sec) is proportional to

√
V (t). τ = 2π/

√
AV (t)

is the synchrotron oscillation period. The principle of equal fractional increments in equal fractions

10A consequence of the inadequate computing resources of the time.
11First in the Western world, but there may be similar work in Russian journals.
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of a period, leads to:
1

S

dS

dt
=

α

τ
. (1.18)

α = 2πϵ1 is the L&S dimensionless adiabaticity parameter, which differs from the conventions
above. Integration yields a prescription for the voltage law

V (t) =
(2π)2

A(ατ + πc1)2
. (1.19)

τ is set to be the value either at start or finish. The presence of the slippage factor A implies
that “adiabaticity is built in”. The single adjustable coefficient c1 can satisfy only one boundary
condition. Hence the parameters α, duration T , and voltages V (0) = V0 and V (T ) = VT cannot be
chosen independently. L&S choose α and VT and T , and let V0 be derived. If α is chosen small, and
duration T is severly constrained by the magnet excitation, the initial voltage can become quite
large. But equally, one could set T and V0, VT , and find the resulting parameter α:

αT =
2π

A

[
1√
V0

− 1√
VT

]
. (1.20)

L&S report computer simulations that confirm capture is adiabatic provided that α < 1 [i.e.
ϵ1 < 1/(2π)]. This formulation is equivalent to ϵ1(t) is equal to a constant, in which case ϵ2 = 0.

1.6.2 Linear ramp

We set V (t) = V0 +∆V τ with ∆V = (VT − V0) and the fractional time τ = t/T , and evaluate the
adiabaticity parameters.

ϵ1 =
∆V

2T
√
A[V0 + τ∆V ]3/2

and ϵ2 = −3∆V 2

4T 2

1√
A[V0 + τ∆V ]5/2

. (1.21)

These parameters vary dramatically. The ratios from start to finish ϵ1(0)/ϵ1(T ) = (VT /V0)
3/2 ≫ 1

and ϵ2(0)/ϵ2(T ) = (VT /V0)
5/2 ≫ 1, imply violent changes in the areas swept out by the particles at

the start of capture; therefore considerable initial emittance growth is expected for the beam core.

However, it must be noted that ϵ1 diminishes; and the final value is ϵ1(T ) = ∆V/(2T
√
AV

3/2
T ) ≈

1/(2T
√
AVT ) is significantly smaller than for the iso-adiabatic law where ϵ1 ≈ 1/(T

√
AV0). This

implies that the last particles to be captured by the linear ramp will suffer a smaller emiitance
increase than for the iso-adiabatic ramp. The last particles captured form the boundary of the
occupied phase space, and this will be smaller for the linear ramp.

1.6.3 Quadratic ramp

We set V (t) = V0 +∆V × τ2, and evaluate the adiabaticity parameters:

ϵ1 =
τ∆V

T
√
A[V0 + τ2∆V ]3/2

and ϵ2 =
(V0 − 2τ2∆V )∆V

T 2
√
A[V0 + τ2∆V ]5/2

. (1.22)

Notably, ϵ1(0) = 0 and ϵ1(T ) = ∆V/(TVT

√
AVT ); and ϵ2(0) = ∆V/(T 2V0

√
AV0). So there is no

emittance growth at the start of capture. However ϵ1 quickly rises to a value of 2/(3
√
3)
√
∆V/A/(TV0)

at t = (T/
√
2)
√
V0/∆V before decaying toward ϵ1 ≈ 1/(T

√
AVT ). Some some emittance growth

(greater than for the iso-adiabatic ramp) is anticipated.
The linear voltage ramp begins extremely non-adiabatic; but becomes extremely adiabatic to-

wards the end, after all the damage has been done. It has also the disadvantage of being much
slower than necessary toward the end. The quadratic voltage ramp has the appealing feature that
only first and second derivatives are non-zero; so the chain of evolution equations (see Sec. 1.8)
terminates at k = 2.
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1.6.4 Kang’s cubic ramp

Kang[32] introduced a near-linear ramp that is continuous in value and 1st and 2nd derivatives.
Kang never intended this voltage law for adiabatic capture at constant magnetic field; but he
labelled the ramp as adiabatic, and it propagated as such. We set V (t) = V0 + τ2[3 − 2τ ]∆V and
τ = t/T is the fractional time, and evaluate the adiabaticity parameters:

ϵ1 =
3∆V (1− τ)τ

T
√
A[V0 +∆V (3− 2τ)τ2]3/2

and ϵ2 = −3∆V [V0(2τ − 1) + ∆V τ2(6− 10τ + 5τ2)]

T 2
√
A[V0 +∆V (3− 2τ)τ2]5/2

.

These parameters vary wildly. The values of ϵ at start and finish are ϵ1(0) = ϵ1(T ) = 0; and

ϵ2(0) = 3∆V/[T 2
√
AV

3/2
0 ] and ϵ2(T ) = −3∆V/[T 2

√
AV

3/2
T ]. This looks promising, although ϵ2(0)

is large if VT ≫ V0. However, ϵ1 rises quickly to a peak and then slowly decays as time progresses.
This behaviour is similar to the pure linear ramp, but the outcome may be worse because time is
wasted at the start and end of the ramp. In detail, ϵ1(τ) has extrema at the zeros of ϵ2 which is a
quartic in τ . There are four solutions: two real and two complex. To simplify the appearance of
the roots, we write (1+a) ≡ VT /V0 = C which defines a = C− 1. We are interested in the positive
real root:

τ = −
√
5

10

−√
5 +

√
1 + Z −

√
2− Z +

2
√
5(2 + a)

a
√
1 + Z

 where (1.23)

Z ≡ 21/3Y

(aY )2/3
+

2× 22/3a

(aY )1/3
and Y ≡ 5 + 5a+ 4a2 +

√
5
√

5 + 10a+ 13a2 + 8a3 .

The root is substituted in ϵ1 to yield a complicated expression for the peak value; fortunately, this
is well approximated by the simpler form:

[T
√
AV0] ϵ̂1 ≈ 0.6709 a0.4991 − 0.19806 for 1 ≤ a ≤ 200 . (1.24)

The value on the right is of order
√
VT /V0 ≫ 1 and is comparatively large. Contrastingly, the peak

and average value of ϵ1 for the iso-adiabatic ramp is [T
√
AV0]ϵ1 = 1−

√
V0/VT ≤ 1. Evidently, for

the Kang ramp, there will be significant increase in Hamiltonian (and emittance) for particles that
are captured at early times; and, of course, such particles constitute the core of the particle beam.
Similar remarks apply to the pure linear ramp.

1.6.5 Iso-Adiabatic ramp

This is, essentially, the ramp of L&S; but formulated to be consistent with the other ramps. ω =√
AV and V (t) is the solution of ϵ2 = 0.

V (t) =
c2

(t+ 2c1)2
=

T 2V0VT

[
√
VTT + (

√
V0 −

√
VT )t]2

. (1.25)

This differs from the L&S expression by the absence of slippage-factor A. This has the consequence
that voltages V0, VT and duration T can be freely chosen, but without a “built-in” constraint of
adiabaticity. The degree of adiabaticity is recovered when we form the parameter ϵ1. Of course,
ϵ2 ≡ 0.

ϵ1 =
α

2π
=

√
VT −

√
V0

T
√
AV0VT

. (1.26)
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1.6.6 Exponential ramp

We set V (t) = V0C
τ where C = VT /V0 and the fractional time τ = t/T ; and evaluate the adia-

baticity parameters:

ϵ1 =
ln(C)

2T
√
AV0Cτ

and ϵ2 = −ϵ1
ln(C)

2T
. (1.27)

These parameters vary considerably. ϵ1(t) diminishes provided that VT > V0. At the end points,
ϵ1(0) = lnC/[2T

√
AV0] and ϵ1(T ) = ϵ1(0)/

√
C.

1.6.7 Adiabatic family of ramps

There is a family of voltage laws V (t) that are the solutions of

V (t)V̈ = [1 + 1/N ](V̇ )2 .

N > 0 is the power law index. The case N = 2 gives the so-called iso-adiabatic[44] law. Let the
process start and stop at t = 0 and t = T , respectively. The boundary condition V (T ) = C × V (0)
leads to the solution:

V (t) =

[
T

t+B(T − t)

]N
V (T ) where B ≡ C

1
N . (1.28)

The cases C > 1 gives capture and bunching; C < 1 gives debunching and release; and C = 1
gives a constant voltage V (t) = V (T ). In the limit of index N → ∞, the adiabatic law becomes an
exponential: V (t) = C(t/T )V (0). The adiabaticity parameters are:

ϵ1 =
(B − 1)N

2
√
AVT

√
[t+B(T − t)]N−2

TN
and ϵ2 = −ϵ1 ×

(B − 1)(N − 2)

2[t+B(T − t)]
. (1.29)

When N = 2, the parameter ϵ losses its time dependence and becomes iso-adiabatic. The values
of ϵ at start and finish are of interest:

ϵ1(0) =
(B − 1)N

√
BN

2TB
√
AVT

and ϵ1(T ) = ϵ1(0)
B√
BN

.

If C > 1 and N > 2, then ϵ1(0) > ϵ1(T ) and the process becomes more adiabatic as time progresses.
As a general trend, as N increases the voltage ramps are less adiabatic at early times and more
adiabatic at late times. Note also that at C > 1 is increased, and V (0) falls, the moment of capture
is progressively skewed toward later times. Hence it is possible for voltage ramps with N > 2 to
provide better outcomes (i.e. less emittance growth) than the iso-adiabatic ramp; and particularly
so if the duration T must be decreased by external constraints.

MURA ramp versus adiabatic family

If V0 and VT are freely chosen, then the MURA voltage law implies a minimum ramp duration T . If
the available time is shorter than T , then the initial voltage must be raised to respect adiabaticity;
which results in an emittance increase due to the sudden voltage turn on. The adiabatic family
of ramps provides, in principle, the freedom to choose the ratio VT /V0 for given duration T by
adjusting the power law index N . This opens the opportunity to trade-off the sources of emittance
growth (sudden versus gradual) to achieve a lower over all occupied phase space area by the time
the procedure is completed. The adjustable index also offers, in principle, to manipulate the core
versus the periphery of the ensemble phase space.
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1.6.8 Particle tracking

The default method of investigating capture and evaluating the merits of different voltage laws is
tracking an ensemble of particles with a variety of initial momenta and positions. In the summer of
2022, a systematic study[38] was made of the adiabatic family of voltage ramps and the exponential
ramp. The slip constant was set to A = 1. The power law index N , the ratio C = VT /V0 and
ramp duration T were sampled over the ranges N = [1, 50] and C = [50, 1000] and T = [125, 2000].
Including 20 different exponential ramps, the total number of cases was in excess of 150. The number
of particles was typically a thousand, leading to poor statistics. The particles were initialy uniformly
distributed in x and p. The final data (x, p) were processed with a view to finding, empirically, a
relation between the initial H0 and final HT values of Hamiltonian and their respective distributions
ρ(H). The simulations pointed to several features of a completed capture: (1) that the final density
ρ(H̃T ) ≈

√
H0 with weak dependence on parameters; (2) that there is lift LT ≈

√
V0VT and initial

spread due to the sudden voltage turn on; and (3) that spreads ∆H(H0), about the mean H̃T ,
evolve and are somewhat sensitive to the parameters N,C, T .

1.7 Hamiltonian mechanics

Let q, q̇ be position and velocity. We assume the motion is conservative, and that forces can be
derived from a potential. The Lagrangian is T − U , the difference of kinetic and potential energy.
The conjugate (or canonical) momentum is p(q, q̇) ≡ ∂L/∂q̇. Hamilton’s description of dynamics
uses the energy function H = T + V written in terms of p, q. The conjugate coordinates (q, p)
evolve according to:

p = dq/dt = ∂H/∂p , dp/dt = −∂H/∂q , dH/dt = ∂H/∂t . (1.30)

An example of conjugate coordinates are energy and time. Phase space is the manifold of all
possible configurations of the system. Nolte[48] gives a fascinating account of the history of this
terminology.12 For 2N-dimensional motion, it is the space with coordinates (q,p) where each vector
has N elements. For one-dimensional motion, phase space is simply the graphical plot of all flow
lines x(t), p(t) for all relevant time. In this “picture” we gain global insight into an entire trajectory
or bundle, but discard ”time”. The loss of time has the demerit that we may lose track of how
quickly or slowly the particle moves through different portions of the phase space.

Hamiltonian dynamics has one fundamental property: the convective derivative (or total deriva-
tive) of the particle density in phase space is constant; this is Liouville’s theorem. A consequence
of Liouville’s theorem is that the area occupied in phase space is constant. If Hamiltonian H(q, p)
is time-independent, there are additional properties: (1) flow lines never cross; and (2) the area
swept out in phase space by cycles of periodic motion is constant. The latter is encapsulated in the
statement that the area J enclosed by one cycle of periodic motion J =

∮
pq̇dt =

∮
pdq = 2πH/ω is

an adiabatic invariant. If H and ω are time dependent and slowly changing, nevertheless dJ/dt ≈ 0
provided the motion is cyclic in phase space. J is called the “action of a generalized coordinate”.
If H has the dimension of energy, then the action is an area having units of energy × time. Strictly
linear proportionality between J and H holds only for the harmonic oscillator. For the pendulum,
the proportionality is nonlinear; but is still monotonic increasing in H.

If particles coordinates fill some bounding trajectory (q, p), then the area occupied in phase space
is given the integral

∮
pdq =

∮
qdp. This has the same value as the action J , and is proportional

to the Hamiltonian. Hence changes in the Hamiltonian may be used as a proxy for changes in the
phase space area or emittance, even though J and H have different units.

12The term was intoduced in the late 19th century by Boltzman and Jacobi, but is often attributed (incorrectly) to
Joseph Liouville because B&J profiled his work. However, the phase-space density conservation theorem is Liouville’s,
albeit in a different context. A counterpart to this tale is that Liouville championed the work of Evariste Galois, the
founder of Group Theory.
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If the Hamiltonian is constant, flow lines cannot cross; and one flowline cannot cross itself. If
H is time dependent, flow lines may cross; but only in a restrictive sense. Consider two trajectories
which are initially separate. One trajectory (at a later time) may pass over a phase-space point
occupied by the other trajectory at an earlier time, or it may cross its own historical path. This
type of behaviour is the mainstay of near-adiabatic capture.

During the rotation era, there is little or no crossing of trajectories until capture is approached.
During the capture, and immediately prior, trajectories may cross one another. During the libration
era, trajectories cross themselves, but not one another; so “what is toward the inside, stays inside”.

1.7.1 Synchrotron coordinates

Let ϕ be the phase of the rf-wave responsible for acceleration, Trev be the revolution period around
the synchrotron circumference, and δE be energy deviation from the reference value Es. Let η be
the slip factor such that δT/Trev = ηδp/p. Let the harmonic number h be the ratio of the radio-
frequency to the revolution frequency (= 2π/Trev). e is the particle electric charge, and β = v/c.
Let n be the number of turns made around the circumference of the synchrotron. The longitudinal
motion is approximated by the equations:

d

dn
δE = e.V sinϕ and

d

dn
ϕ =

2πhη

Esβ2
s

δE ≡ AδE (1.31)

ϕ is dimensionless, and A has units of 1/energy [or 1/(e.Volt)]. The square of number of oscillations
per turn is a2s = A.eV . The associated Hamiltonian is H = AδE2/2+ eV (1− cosϕ), and has units
of energy; while A has units of inverse e.Volt. The phase space area has units of rf-phase×energy.
Strictly speaking, rf-phase and energy deviation are not a conjugate pair. The true conjugate
coordinates are arrival time and energy deviation. This distinction becomes important when the
revolution (or orbital) frequency changes in a cyclic accelerator, such as a synchrotron.

The standard form of the penulum Hamiltonian isH = 1
2Ap

2+V ×(1−cosx). x is dimensionless,
and p = ẋ has units of Hz. The oscillation frequency squared is ω2 = AV . The slip-rate constant
A has the units of H/p2 or Volt/Hz2. Comparing the two forms of H, we make the identifications
ϕ → x and δE → p and d/dn → d/dt.

1.7.2 Time-dependent separatrix

When the voltage V is constant, the separatrix is frozen and has an obvious meaning: the two
curves p = ±ω0

√
2(1 + cosx) in phase space (x, p). But there is a subtlety, by discarding time

we lost sight of the fact that the separatrix is an “infinite time object”; to construct the complete
separatrix from a trajectory starting at x = 0 would take infinite time because of the glacially slow
motion in the neighbourhood of the unstable fixed points.

If we think of the separatrix as the trajectory of a certain particle traced until it has just
been captured, then we are faced with tracking it backward in time. This exercise is performed in
Fig. 1.6 for three select points that fall on the curves p = ±ω0

√
2(1 + cosx) at zero time. We could

make a plot of this kind at any time, and it would look similar. Consider the left figure, which
follows trajectories receding into the distant past (very large values of |x|). Particles between the
(red) streamlines at upper left (UL) and lower right (LR) were captured earlier; and previously
gave rise to a similar plot. Particles above and below, respectively, the (green) streamlines at
UL and LR will be captured in the future; and will produce a similar plot later. The long series
of modulations prior to capture are not useful for discussing or visualizing separatrix crossing.
Instead, we need a local-time description that traces out the separatrix trajectory for one or two
synchrotron oscillation periods; and attempts to show what range of particle trajectories were
captured during that time, as shown in the righthand figure. This type of picture was introduced
by Sayasov and Melnikov[49, 50]. The sketch on the right of Fig. 1.6 is a detailed view of a portion
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of the figure to its left for the short timescale around the moment of capture. When the voltage
varies, a tempting picture is that separatrix expands and trajectories in its vicinity slide through.
At any moment, capture of a small range of momenta is inevitable; and as time progresses higher
ranges are captured. We shall elaborate a modified version of this picture that is the ensemble
(or family) of trajectories that are captured during a local time window of one-half synchrotron
oscillation period. The picture has to be constantly refreshed each synchrotron period. However,
apart from a shift of time and a scale change of the momenta, the pictures are essentially identical;
so a generic stands in place of them all. Sayasov assumed that the upper bounding trajectory
(which captures all positive momenta below it) terminates infinitesimally close to the right hand
astable fixed point; but that is incorrect. The final coordinates (at zero time) in Fig. 1.6 are given
by x = 2arcsin[tanhϕ] and p = ±2ω0 sechϕ. The local-time picture suggests that the bounding
trajectories terminate at |ϕ| ≫ 1 (or x → ±π) like the red and blue curves. But the distant-past
picture shows (correctly) that the momenta are bounded in the far past by the green curves that
terminate at ϕ ≈ ±π/3 and sign(p) = sign(ϕ). But we caution the reader: this picture is only
good for short time durations. When V (t) varies, there are no trajectories that terminate on the
hyperbolic fixed points (x = ±π) until after the variation stops and V becomes a constant.
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Figure 1.6: Left: distant-past separatrix. Right: local-time separatrix. Any particles above/below
the light/dark green curve are captured at a later time. Any particles below/above the light/dark
red curve were captured previously. For p > 0 the initial phases are ϕ = −4π & + 4π light red
& blue; ϕ = π/3 light green. For p < 0 the initial phases are ϕ = −4π & + 4π dark blue & red;
ϕ = −π/3 dark green.

1.7.3 Liouvillian processes

The equations of motion do not know anything about the presence or absence of particles. Therefore
they apply equally well to empty phase space as they do to occupied phase space. This is the insight
behind the technique, invented by the MURA group, of acceleration by sweeping empty RF-buckets
from above (in energy) to below. The conservation of density implies the particle beam is displaced
upwards (in energy). It is also the insight that led Simon van der Meer[51, 52] to invent stochastic
cooling. He realized that Liouville’s theorem can be exploited to manipulate phase space: that
clumps of occupied phase space can be aggregated, leaving the voids behind – if one can build
an active system13 sufficiently sensitive to small time scales to detect the clumps and actuators
sufficiently fast to respond to them.

A picture of empty and occupied phase space is to think of two immiscible, incompressible
liquids of equal density and zero viscosity, but of two different colours such as black (filled) and
white (empty). The liquids, like oil and water, must have no molecular affinity. The local density of

13Van der Meer was fortunate to have an outstanding technical team[53] to realize his brilliant idea.
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each liquid is constant as it moves. Although they can be macroscopically mixed, like two colours
of oil paint stirred in a paint can, they cannot be microscopically mixed. The mixing, if continued,
leads to long thin filaments of paint that are interlaced. Likewise, during non-adiabatic processes,
empty and occupied phase space form interlaced loops, whorls and arches like fingerprint patterns.
This is the mechanism behind “emittance growth”.

1.7.4 Required final voltage

Here we derive the final voltage V (t = T ) such that the rf-bucket contains exactly (and no more) the
phase-space area of the unbunched beam. Due to Liouville’s conservation theorem, the derivation is
trivial; as many authors have noted since the time of MURA-106[54]. The Hamiltonians of the initial
un-bunched and final bunched beams are H = 1

2Ap
2 and H = 1

2Ap
2 +V × (1− cosx), respectively.

Let ±p̂ be the largest momenta in the unbunched beam, and the corresponding Hamiltonian value
Ĥ0 =

1
2Ap̂2.

The initial phase space area corresponding to one rf-period is 4πp̂. Particles in the bunched beam
execute synchrotron oscillations. If the maximum oscillation amplitude is x = X, the occupied area
is

Area = 4
√
2V/A

∫ X

0

√
cosx− cosXdx = 8

√
2V/A

√
1− cosXE[X/2, 1/m] (1.32)

where m = (sinX/2)2. If the rf-bucket is filled, then X = π and the area is 16
√
V A. Equating the

initial and final areas yields the final voltage:

VT = (π/4)2Ap̂2 = Ĥ0π
2/8 . (1.33)

At the start (t = 0) the range of Jacobi-m is very large, extending up to Ĥ0/(2V0) ≫ 1. At the end
(t = T ) with ideally all particles inside the bucket, the range of Jacobi parameter is m = [0, 1]. In
practise, VT is taken slighly larger than the theoretical value to allow for emittance growth.

1.7.5 Sudden voltage turn-on

Prior to voltage turn-on, there is a uniform coasting beam; particles have Hamiltonian values
H(0) = 1

2Ap2. We suppose the turn-on is so fast that particles do not have time to move. So
the particle distribution is still uniform immediately after turn-on. However, the sudden voltage
turn-on lifts all values of the Hamiltonian at t = 0, and adds a spread ∆H(0, x) to all values. We
write the value before (H−

0 ) and the value after (H+
0 ) the voltage turn on:

H+
0 (x) = H−

0 + V0(1 + cosx) . (1.34)

The ensemble average is H+
0 ≡ ⟨H+

0 (x)⟩ = H−
0 + V0

∫ +π

−π
(1− cosx)dx = H−

0 + V0 . (1.35)

The average lift increment is V0. If the range of H
−
0 = [0, Ĥ0], then the range of H+

0 = [V0, Ĥ0+V0].
We may write the post-turn-on Hamiltonian H+

0 (x) = H+
0 + ∆H0(x) where ∆H0(x) = −V0 cosx

is the spread (or deviation about the mean) that is common to all H+
0 values. We integrate ∆H2

over x to find the variance. The common r.m.s spread immediately after turn on is V0/
√
2. H(t, x)

can also be written in terms of an oscillation phase H(t, x(q)); this is discussed in Sec. 1.8.5.
Usually the spread is small because V0 is small. Nevertheless, at early times, ∆H0 is the

dominant spread because other sources have not yet accumulated appreciable amounts. Further,
if the duration of the voltage ramp duration is constrained to be short and the initial voltage is
raised to give a small adiabaticity parameter then the effect14 can be noticeable at the end of the
ramp. Such is the case at PIMMS[25, 26, 39].

14There is a slight irony given that the step is introduced to guarantee adiabaticity at the start of the ramp.
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The initial lift and spread will evolve over the course of the entire voltage ramp, as described
below. The details depends on whether the value H0 is inside or outside the initial RF bucket at
t = 0.

1.8 Method of Averaging

Let the potential function be a product: V (x, t) = U(x)V (t) where dimensionless U(x) is the
potential well centred at x = 0. The RF phase-slippage parameter A is a constant, and has the
units of Hz2/volt. The Hamiltonian is

H(x, p, t) = Ap(t)2/2 + U [x(t)]V (t) . (1.36)

The small amplitude synchrotron frequency is ω =
√
AV (t). The Hamilton equations ẋ = ∂H/∂p

and ṗ = −∂H/∂x, lead immediately to the time derivative:

dH/dt = U [x(t)]dV/dt . (1.37)

Here x(t) is itself affected by Ḣ. We assume this effect an be written as the sum of the unperturbed
motion x and the deviation α induced by Ḣ. Thus x(t) → x(t) + α(t).

The motion of the particles is fast compared with the rise of the potential well. Therefore, we
may time average Eq. 1.37 over a sliding window. Because the potential is symmetric, one period of
rotation, or a half-period of libration is all that is needed. Need only up-and-down (or visa versa)
the well. Do not need to-and-fro (one period of libration). Rotation is periodic, but not cyclic;
whereas libration returns to the same point after one cycle. Thus up-and-down the well is a full
period (τrot) of rotation, but a half period (τlib/2) for libration. Near the separatrix τrot ≈ τlib/2.

Let τ be the oscillation period for libration. If V (t) varies slowly enough compared with the
oscillation period, we may replace the instantaneous value Ḣ with its average effect over one 1

2 -
period. This effect depends on the initial oscillation phase q of the particle, so we shall write
H = H(t, q). The average, denoted by a bar, is made by the moving window integration:

Ḣ(t, q) ≡ 1

τ/2

∫ +τ/4

−τ/4
Ḣ(t+ s, q)ds =

1

τ/2

∫ +τ/4

−τ/4
U [x(t+ s) + α(t+ s)]V̇ (t+ s)ds . (1.38)

Essentially this is the nett work done on the particle by the changing potential as it moves (once)
up and down in that potential. [The corresponding integral for rotation has limits ±τrot/2.] The
implementation of averaging is as follows. (1) To drop the term in α as negligible.15 (2) To expand
V̇ (t) as a Taylor series, and retain only low order terms because V (t) changes little during an
oscillation period. (3) To assume there is no change in the integration limits16, because τ is not
affected by α. Thus, the 1

2 -period average becomes:

Ḣ(t, q) = F0(q)V̇ (t) + F1(q)V̈ (t) + 1
2F2(q)

...
V (t) + . . . (1.39)

where the form factor

Fk(q) =
1

τ/2

∫ +τ/4

−τ/4
U [x(s, q)]skds (1.40)

depends on the value of the Hamiltonian and differs significantly for rotation versus libration.
Eq. (1.39) may be ensemble averaged over the oscillation phases q at time t. The ensemble average
operation is denoted by ⟨. . . ⟩;

Ḣ(t) ≡
〈
Ḣ(t, q)

〉
=

1

2π

∫ +π

−π
Ḣ(t, q)dq . (1.41)

15It transpires that α is of order the adiabaticity parameter ϵ.
16This assumption breaks down on the separatrix.
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Notice that Ḣ(t) with a single argument (q is absent) means the ensemble average. We define the
deviation and the M th moment:

∆Ḣ(t, q) = Ḣ(t, q)− Ḣ(t) and

〈(
∆H(t, q)

)M
〉

. (1.42)

We take these phases to be always (i.e. for all time t) uniform distributed, which implies that
the Hamiltonian flow lines are uniformly populated. This seemingly trivial assumption concerning
initial phases has profound consequences and deserves further discussion; see Sec. 1.8.5. Note
that while q ranges over ±π, the argument Q of Jacobi functions ranges over ±2K(m); thus
q = Q× π/(2K). Inserting the initial oscillation phase q, the motion is shifted to x(s+ τ(q/2π));
leading to the double-average integral

⟨Fk(q)⟩ =
1

2π

∫ +π

−π
dq

1

τ/2

∫ +τ/4

−τ/4
U [x(s+ τ(q/2π))]skds .

The properties of a periodic oscillation in a symmetric potential are such that this integral is

⟨Fk(q)⟩ =
F0(0)

τ/2

sk+1

(k + 1)

∣∣∣∣s=+τ/4

s=−τ/4

.

This is zero unless k = 0, 2, 4, . . . is even. Thus for the symmetric potential, V̈ is immaterial to
⟨Ḣ⟩. Hence we may write

Ḣ(t) ≡
〈
Ḣ(t, q)

〉
= F0(0)V̇ (t) + F0(0)

(τ
4

)2 ...
V (t) (1.43)

Time-integration of Eqn. (1.43) enables us to find the average evolution of some particular Hamilto-
nian value that starts from H0 at t = 0. Going forward, we shall assume |V̇ | ≫ (τ/4)2|d3V/dt3| and
that the third derivative may be neglected; this is consistent with α(t) remaining a small quantity.

Time-integration of Eqn. (1.42) allows to find the evolution of the deviation about the aver-
age (for that particular H0); and from that, the progress of the moments about the mean. The

first moment (M = 1) is zero. The second moment (M = 2) is
〈
(H(t, q))2

〉
− (H(t))2, with

the understanding that the expression applies to some specific value H0 chosen from the initial
spectrum.

Jacobi elliptic functions

The Jacobi functions satisfy the pendulum equation of motion, when the confining potential is
constant. The functions are listed in sec. 1.15. They are parametrised by m = H/(2V ) which
is taken to be a constant of motion. During the entire capture process, the value of m changes
from m ≫ 1 to m ≪ 1. But if V (t) varies slowly enough, we may hope that Jacobi functions
with m(t) are still valid solutions for at least one half-period. In Sec. 1.9 it is demonstrated that
if x(t) = 2 arcsin[

√
m sn(ωt,m)] then the change in motion is α ≃ ϵ

√
m × (ωt)2 for |t| ≤ τ/4 or

|α| ≤ ϵ
√
m. The unperturbed motion is of order

√
m. So the Jacobi functions are a valid basis

provided that |ϵ| ≪ 1.

1.8.1 Pendulum form factors

Thus far, U has been a general, symmetric potential. We turn now to the specific case of the
pendulum. The form factors are derived in detail in Sec. 1.16. Here we excerpt a few results that
enable us to continue the derivation of the evolution equations. Let m be the Jacobi amplitude
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parameter. Let a primed quantity F ′ denote rotation, and the absence of the prime denote libration.
For libration Fk(q) = 2m Ik(m, q); and for rotation F ′

k(q) = 2Ik(1/m, q)/
√
mk; where

Ik(m, q) =

∫ +K

−K

[u
ω

]k
sn2(u+Q,m)du

/∫ +K

−K
du . (1.44)

The quantity ⟨F0(q)⟩ = F0(0) = ⟨U⟩ has a simple intepretation as the double average of motion in
the potential.

1 2 3 4 5
m

0.5

1.0

1.5

〈U〉

Figure 1.7: Form factor ⟨U⟩ = 2mI0(m) for m ≤ 1 and ⟨U⟩ = 2I0(1/m) for m ≥ 1.

The function I0(m) is given explictly in Eq. (1.45), and the corresponding form factors plotted in
Fig. 1.7.

I0(m) =
1

m

[
1− E(m)

K(m)

]
=

[
1 +

m

8
+

m2

16
+ . . .

]
(1.45)

The form factors are well approximated by simple expressions: ⟨Ū⟩ ≈ 1 for m ≥ 2, and ⟨Ū⟩ ≈ m
for m ≤ 1

2 . The form factor is undefined and extremely large at m = 1. However, the immediate
vicinity of m = 1 is excluded because this is the domain of separatrix crossing, and this process
restores finite values to the change of Hamiltonian.

1.8.2 Evolution of H̃(t)

The double-average17 evolution of some particular Hamiltonian value that starts from H0 is given
by integration of Eq. (1.46) with conditions (1.45& 1.47):

Ḣ(t) = ⟨U⟩V̇ (t) (1.46)

For rotation : ⟨U⟩ = 2I0(1/m) For libration : ⟨U⟩ = 2mI0(m) (1.47)

Here, in keeping with the method of time-averaging, m is shorthand for m = H(t)/V (t)/2. For
most of the pre-capture era m ≫ 1 (outside the bucket); and for most of the post-capture era
m ≪ 1 (inside the bucket); and this suggests it is legitimate to truncate I0 to low order in Jacobi
parameter m. If the series is truncated to I0 = 1, there are exact differentials:

For rotation : Ḣ = V̇ , H(t < tc) = H0 − V0 + V (t) (1.48)

For libration : d/dt[ln(H)] =
1

2
d/dt[ln(V )], H(t > tc) = H(tc)

√
V (t)/V (tc) . (1.49)

17Time-averaged over the sliding window and ensemble-averaged over oscillation phases.
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To be precise, H0 appearing in Eq. 1.48 is H+
0 , the value immediately after t = 0. Expression (1.48)

has a simple interpretation: that the kinetic energy averaged over a cycle, T , is a constant of
motion during the rotation era. This notion is at odds with Ehrenfest who reports T/ω to be the
invariant, but is confirmed in Fig. 1.6 where the cycle-average momentum p̄ is (almost) constant.
Expression (1.49) is identical with that derived from the adiabatic invariant Eq. (1.13). But the
combination of Eqs. (1.48, 1.49) leads to a very different result.

Let us make a rudimentary check that the evolution equations yield expected results. Equal
initial and final phase-space areas impy that Ĥ0 ≈ VT . This value of H0 is captured at tc = T ,
at which time the Hamiltonian has increased to ĤT = 2VT . A smaller value of H0 is captured
at an earlier time; and then rises to H∗

T = H(tc)
√
VT /Vc where Hc = 2Vc. In the limit tc → T ,

H∗
T → 2VT = ĤT . So the pre- and post-capture evolution equations make consistent predictions for

ĤT . The area of the original beam rectangle is 4πp̂0 = 4π
√
Ĥ0 ≈ 4π

√
VT . The beam final almond-

shape area is roughly (4π/
√
2)p̂T = (4π/

√
2)
√
ĤT = 4π

√
VT . So the calculation is consistent.

Captured at sudden turn on

Particles that are captured by the initial voltage step V0 at t = 0, satisfy H+
0 (x) ≤ 2V0, that

is m0 ≤ 1. They immediately enter the libration era. Accordingly we set tc = 0, t = T and
H(tc) = H0 in Eq.1.49; to find the double-average H̃T = H+

0

√
VT /V0 = (H−

0 + V0)
√
VT /V0. Here

the captured range is H+
0 = [V0, 2V0], or H

−
0 = [0, V0].

The effect of the sudden turn on is to produce both a spread and a lift. The lift effect is already
included in H̃T . The smallest value H−

0 = 0 is lifted to V0 at t = 0; and that lift evolves to
LT = V0

√
VT /V0 =

√
V0VT . Above and below the average value, H̃T (H

−
0 = 0), there is a spread at

t = 0 extending to ∆H = ±V0 which evolves (as per libration) to ±LT at t = T .

Captured later

Particles that satisfy H+
0 (x) > 2V0, that is m0 ≥ 1, become captured after t = 0. Let us suppose

that the pre-capture (rotation) era and the post-capture (libration) era are both much longer than
the capture process (separatrix crossing), and that they dominate changes of the Hamiltonian. The
capture condition is H(t) ≤ 2V (t). Almost all particles start their careers outside the nascent
RF bucket with H0 ≫ V0, and evolve according to Eq. 1.48. Contrastingly, the value of the
Hamiltonian on the instantaneous separatrix (m = 1) rises at the rate Hsep(t) = 2V (t), and so
capture is inevitable. At the moment of capture tc, H(tc) = 2V (tc). Hence V (tc) = H+

0 − V0 is the
difference of initial values. The precise time of capture depends on the inital Hamiltonian value H0

of each particle. Post-capture (inside the bucket) the particle Hamiltonian evolves as Eqn. 1.49.
Substituting H(tc) = 2V (tc) yields H(t ≥ tc) = 2

√
V (tc)V (t). Further, substituting the rotation

outcome V (tc) = H+
0 − V0, we find H(t ≥ tc) = 2

√
(H+

0 − V0)
√
V (t). Taking into account the

lift, due to sudden turn on, H+
0 = H−

0 +V0, the energy value at the end of the libration process is:

H̃(T ) = 2
√

H−
0 V (T ).

Universal function

H̃(T ) is a universal function of H(t < 0) independent of the shape of the voltage ramp, provided
that the ramp obeys the adiabaticity condition ϵ ≪ 1.

H̃T =

{
(H−

0 + V0)
√

VT /V0 for 0 ≤ H−
0 < V0

2
√
H−

0 VT for V0 ≤ H−
0 ≤ Ĥ0

(1.50)

The piecewise defnition is continuous at H−
0 = V0.
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To summarise, there is a two-step process for an individual particle. Step (1), almost linear in
V (t) growth of Hamiltonian (from t = 0) until capture at t = tc. Step (2), square root in V (t)
growth of the Hamiltonian from capture until the voltage ramp is complete at t = T . For an
ensemble with a range of energies and capture times, the processes are concurrent.

Each of the integrals (1.48, 1.49) H(0≤ t ≤ tc) outside, and H(tc ≤ t ≤ T ) inside the bucket,
is independent of the details of the voltage law between its end points. The exact moment of
capture tc depends on the shape of the ramp, but not the value H(tc) = 2V (tc). Cascading the
functions, to give the nett effect from t=0 to t=T , is also independent of the voltage law. Those
properties reflects that truncating I0(m) to unity has eliminated some of the non-linear effects that
compromise adiabaticity.

Effect of capture

We can extend this simple argument leading to Eq. (1.50) to include the ensemble-average effect of
the capture derived in Secs. 1.10 & 1.11. Let Γ(ϵ) ≡ [−4 + 2 ln(8/ϵ)]. The increase in Hamiltonian
at separatrix crossing is given by ∆H/H(tc) = ϵ(tc)Γ(ϵ). Now H(tc) = 2V (tc) = 2H(0)−; and thus

H̃(T ) = H(tc) [1 + ϵ(tc)Γ(ϵ)]
√

V (T )/V (tc) = 2 [1 + ϵ(tc)Γ(ϵ)]
√
V (T )V (tc)

= 2 [1 + ϵ(tc)Γ(ϵ)]
√
V (T )H(0)− (1.51)

Here tc depends on the value H(0) and the details of the voltage law. In Sec. 1.6, we derive formulae
for ϵ(t) for a variety of common voltage laws. Eq. (1.51) gives some insight as to why the linear ramp
generates large emittance growth. For the linear ramp, captures occur earlier than for the quadratic
ramp; and at those times the adiabaticity parameter ϵ is larger. For the iso-adiabatic ramp, ϵ(tc) is
in fact a constant independent of the exact time of capture, leading to an un-complicated formula
for HT .

Influence of voltage law on capture time

We have glossed over the details of the time of capture tc of a particular initial value H0. This
time depends on the form of the voltage law. For the linear ramp, the times tc rise linearly
with H0; if the density ρ(H0) was uniform, then the tc would be spread uniformly over the ramp
duration. Contrastingly, for the iso-adiabatic ramp the moments of capture are initially sparse
and become progressively more concentrated toward the end of the ramp. For the linear ramp,
the adiabaticity parameter varies from very large to very small. For the iso-adiabatic ramp, the
adiabaticity parameter is constant and small. If the duration of the ramps is so much curtailed
that adiabaticity is generally compromised, then the linear ramp will fare less well; because more
of the captures occur at early times when ϵ is comparatively larger.

Our argument has ignored the collective effects, such as the longitudinal space-charge force. The
Coulomb-Faraday electro-magnetic force between moving charged-particles is always repulsive. In
synchrotrons for which the slip factor A is positive, this force opposes bunching and is proportional
to the spatial derivative of the bunch shape. The emergence of the bunch shape, from the initial
uniform line density, will arise differently for dissimilar voltage ramps. The bunching starts earlier
for the linear ramp, and this may imply that there is a longer period available for the internal
motions inside the bunch to equilibriate in response to the growing space-charge forces. This
reasoning is speculative, but suggests the linear ramp may have some merit when longitudinal
space-charge effects are significant.

1.8.3 Nonlinear evolution of H̃(t)

Retention of terms mk In Eq. (1.45) leads to a nonlinear equation linking the path V (t) to the
resulting H(t); the mathematical model gains realism, and adiabaticity becomes imperfect. To
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first order in m̄ the evolution equations are

d

dt
H(t) = V̇ (t) +

V (t)V̇ (t)

4H(t)
for rotation (1.52)

d

dt
H(t) =

H(t)

2V (t)

[
1 +

H(t)

16V (t)

]
V̇ (t) for libration . (1.53)

Rotation

Outside the bucket, the integral H(t≤ tc) is defined by the implicit equation:

4 ln

[
V [t]

V0

]
+

c1√
2
ln

[
c1 − 4H[t]/V [t]

c1 − 4H0/V0

]
+

c2√
2
ln

[
c2 + 4H[t]/V [t]

c2 + 4H0/V0

]
= 0 . (1.54)

c1 = 2(
√
2 + 1) and c2 = 2(

√
2 − 1). Evidently, Eq. 1.54 can be re-written in terms of the

ratios m(t) = 1
2H(t)/V (t) and m0 = 1

2H(0)/V (0). The range of initial values is 2V0 ≤ H0 ≤
Ĥ0 = (8/π2)VT . The quantity H[t] is the ensemble average over oscillation phases, and satisfies
H[t]/V [t] ≤ H0/V0; the equality occurs at t = 0. Eq. (1.54) is of the form a lnA+b lnB+c lnC = 0,
and could be written BbCc = 1/Aa where A = V (t)/V0 and a = 4; but the powers b and c are
irrational numbers, and so the alternate form is not useful. However, Eq. (1.54) can be reduced
to a simpler form for V (t)/V0. The logarithms are expanded as infinite series, and the terms are
reordered and resummed; we do this below for the special case m(tc) = 1.

We want the voltage at time of capture, V (tc), in terms of the initial Hamiltonian value H0.
Despite the formidable form of Eqn. 1.54, we may find this relationship; and, moreover, it is almost
linear. V (tc) is a monotonic increasing function of H0, so the stratification of Hamiltonian flow
lines is unchanged. To start, we substitute the capture condition H(tc) = 2V (tc). For brevity,
replace H0 by m0 = H0/(2V0) where m0 ≥ 1 is the initial value of Jacobi parameter. Eqn. 1.54
becomes:

(2 +
√
2) ln

[
−4m0 + x

−3 +
√
2

]
+ (−2 +

√
2) ln

[
3 +

√
2

4m0 + y

]
+ 4 ln

[
V (0)

V (tc)

]
= 0 . (1.55)

where x =
√
2 + 1 and y =

√
2 − 1. Typically m0 ≫ 1; thus x and y can be considered small

quantities. Making an expansion in x, y to fourth order, we find the approximate form:

ln
[
256× 7(−2−

√
2)(3 +

√
2)2

√
2
]
+ 4 ln[m0] + 4 ln

[
V (0)

V (tc)

]
− 2

m0
− 5

8m2
0

− 1

4m3
0

− 29

256m4
0

+ . . .

(1.56)
Eqn. 1.56 is set to zero and solved for V (tc). Truncating the expansion leads to an error. To restore
the trivial condition V (tc = 0) = V (0), we shall need to add a constant.

To zeroth order in m0, we have the approximate condition

ln

[
AvH0

V (tc)

]
= 0 = ln(1) where Av = 2× 7

(− 1
2
− 1

2
√
2
)
(3 +

√
2)

1√
2 ≈ 1.08561

which has the solution V (tc) = AvH0. Eqn. 1.55 has the property that if m0 = 1, then V (tc) = V (0)
and tc = 0. To recover that property, we need an additive constant.
Thus V (tc) = AvH0 + (1− 2Av)V0 ≈ 1.08561H0 − 1.17122V0.

To first order in m0, we have the approximate condition:

V (tc) = Av exp

[
−1

2m0

]
H0 + [1− 2Av exp(−1/2)]V0 ≈ 1.08561 exp

[
−1

2m0

]
H0 − 0.316912V0 .
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To second order in m0, we have the approximate condition:

V (tc) = Av exp

[
−5 + 16m0

32m2
0

]
H0 + [1− 2Av exp(−21/32)]V0

≈ 1.08561 exp

[
−5 + 16m0

32m2
0

]
H0 − 0.126414V0 .

The series expansion in m0 appearing in Eq. 1.56 can be summed to infinity:

∞∑
n=1

1

n(4m)n
[(1−

√
2)n(−2+

√
2)−(1+

√
2)n(2+

√
2)] = 2 ln

[
1− 1

2m
− 1

16m2

]
+
√
2 ln

[
4m− 1−

√
2

4m− 1 +
√
2

]

to give an exact and explict (but unwieldy) form for the capture voltage:

V (tc) = 2Av

√
1− 1

2m0
− 1

16m2
0

[
4m0 − 1−

√
2

4m0 − 1 +
√
2

] 1
2
√
2

m0V0 . (1.57)

In practise, the linear form V (tc) = AvH0 + (1 − 2Av)V0 is an excellent approximation; and we
shall adopt it going forward. In either case, the effect of separatrix crossing may be incorporated
following the manner of Eq. 1.51.

Libration

Inside the instantaneous bucket, H(t) is the integral of Eq. 1.53; namely

H(t > tc) = [16V (t)
√

Vc]/[7
√

V (t) +
√

Vc] . (1.58)

The explicit function V (tc), Eqn. 1.57, can be cascaded with H(t > tc) to yield a single function
that links H(T ) to H0. Alternatively, the linear form V (tc) = AvH0+(1− 2Av)V0 can be cascaded
with H(t>tc) to give the approximate nett effect.

Captured at sudden turn on

Particles that are captured by the initial voltage step V0 at t = 0, satisfy H+
0 (x) ≤ 2V0, that is

m0 ≤ 1. They immediately enter the libration era. We integrate Eq. 1.53 starting from H+
0 at

t = 0 to t = T . The result is

H̃T =
16H+

0 VT

√
V0

H+
0

√
V0 − (H+

0 − 16V0)
√
VT

(1.59)

We may replace H+
0 by H−

0 + V0.

Captured later

Particles that satisfy H+
0 (x) > 2V0, that is m0 ≥ 1, become captured after t = 0. To find the final

energy, we set t = T and V (tc) = AvH
+
0 (1− 2Av)V0 into Eq. 1.53; leading to

H̃T =
16VT

√
Av(H

+
0 − 2V0) + V0

7
√
VT +

√
Av(H

+
0 − 2V0) + V0

(1.60)

We may replace H+
0 by H−

0 + V0.
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Universal function

Eqs. 1.59 & 1.60 imply that the final value of Hamiltonian depends only on the final value VT and
the initial values H0 and V0. Thus H̃(T ) is almost a universal function of H(0) independent of the
shape of the voltage ramp, provided that the ramp obeys the adiabaticity condition ϵ1 ≪ 1. The
piecewise definition of H̃T , provided by Eqs. 1.59 & 1.60, is continuous at H−

0 = V0.

The evolution Eqns. 1.52 and 1.53 were truncated to first order in m̄; and so are in error. The
saving grace is that most of the time m ≪ 1 inside and m ≫ 1 outside the bucket. So the error,
from discarding second and higher order terms, arises only when m → 1, during the transition from
rotation to libration.

1.8.4 Evolution of deviation ∆H(t, q)

Time-integration of Eqn. (1.42) allows to find the evolution of the deviation. Again we shall appeal
to the property that for most of the time during pre-capture 1/m ≪ 1 and during post-capture18

m ≪ 1, respectively; and therefore we may employ low order expansions in Jacobi parameter.

Rotation era

Outside the bucket form factors are denoted with a prime, F ′. The phase-dependent deviation
evolves as:

d

dt
∆H(t, q) ≈ [F0(m, q)− F0(m)]′ V̇ (t) + [F1(m, q)− F1(m)]′ V̈ +

1

2
[F2(m, q)− F2(m)]′

...
V (1.61)

We expand the form factors in powers of 1/m, where typically m ≫ 1. To first order, the expression
is

d

dt
∆H ≈ sin 2q√

m

V̈

2ω
+

cos 2q

4m

[
−V̇ +

...
V

ω2

]
.

For consistency with the previous section, we drop the third time-derivative as being small compared
to the first. What remains is a delicate competition between second order effects: V̇ /m versus
(V̈ /ω)/

√
m. We substitute ω =

√
AV and m = H/V/2.

d

dt
∆H ≈ sin 2q

V̈√
2AH(t)

− cos 2q
V (t)V̇

2H(t)
.

Now for the double average motion H̃(t) ≈ H0+V (t); this substitution results in an evolution equa-
tion for ∆H(t, q) in terms of the V (t) and the slip constant A. Further progress, and determining
which terms dominate, cannot be made without inserting a specific voltage law. The main features
of the behaviour of ∆H are displayed under the quadratic voltage law V (t) = V (0) + ∆V τ2, with
fractional time τ = t/T and t ≤ tc and ∆V = [V (T )− V (0)]. The integral becomes:

∆H(t, q) ≈ sin 2q

√
2∆V

T
√
A

arctanh

√
∆V τ2

H0 +∆V τ2
− 1

2
cos 2q

[
∆V τ2 + (H0 − V0) ln

[
H0

H0 +∆V τ2

]]
This is to be evaluated at the respective capture time tc for each value of H0 ≡ H+

0 . For short
time-scale, Taylor expansion gives the further approximation:

∆H(t, q) ≈ ∆V τ

√
2 sin 2q

T
√
AH0

[
1− ∆V τ2

6H0

]
−∆V V0τ

2 cos 2q

2H0

[
1 +

∆V (H0 − V0)τ
2

2H0V0

]
(1.62)

18It is unfortunate that the condition applies better to the end rather than beginning of post-capture.
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This is dimensionally correct, because A has dimensions of Hz2/volt. It becomes clear from Eq. 1.62
that this contribution to ∆H falls as 1/

√
H0 or faster. For most of the particles during their pre-

capture era, H0 ≫ V0 and ∆V/H0 ≥ 1. Evidently the quantity AT 2 is a control parameter; if it is
large, then the terms in sin 2q are reduced. In contrast, the terms in cos 2q depend solely on V0/H0

and VT /H0 and cannot easily be altered. Hence the duration of the complete capture must satisfy
the adiabaticity condition AT 2 ≫ 1 per volt.

Libration era

Inside the bucket, the phase-dependent deviation evolves as:

d

dt
∆H(t, q) ≈ [F0(m, q)− F0(m)]V̇ (t) + [F1(m, q)− F1(m)]V̈ +

1

2
[F2(m, q)− F2(m)]

...
V (1.63)

To first order in Jacobi m, Eqn. (1.63) becomes:

d

dt
∆H =

m

2ω

[
V̈ sin 2q +

1

2

...
V

ω
cos 2q

]
. (1.64)

Notably, at this order, there is no term in V̇ . We drop the third time derivative in comparison to
the second (i.e. |V̈ | ≫ |

...
V |/ω). Continuing the expansion to second order in m, and retaining only

the leading (i.e. largest) terms yields:

d

dt
∆H(t, q) ≈ m

2ω
V̈ sin 2q − m2

4
V̇ cos 2q . (1.65)

The expression contains competing second order effects. We substitute ω =
√
AV and m = H/V/2.

tc is the time of capture of a particular particle with individual Hamiltonian value H0. For the
post-capture double-average motion we may substitute H̃(t > tc) = 2

√
V (tc)V (t), yielding:

d

dt
∆H(t, q) ≈ sin 2q

√
V (tc)

2
√
AV (t)

V̈ − cos 2q
V (tc)

4V (t)
V̇ . (1.66)

To understand the main features of the evolution ∆H(t, q) after tc, we substitute the quadratic
voltage law, and integrate over time. For brevity, let ∆V/V0 ≡ a ≫ 1 and τ = t/T and τc = tc/T .

∆H(t > tc, q) ≈ ∆H(tc, q) − 1

4
cos 2q ln

[
1 + a τ2

1 + a τ2c

]
V (tc)

+ sin 2q

√
a V (tc)

T
√
A

{
arctan

[
τ
√
a
]
− arctan

[
τc
√
a
]}

.

∆H(tc) is the deviation that accrues before tc. Our interest lies with the final value, at the end of
capture, so insert t → T . There is no way to reduce the term in cos 2q; but the term in sin 2q can
be reduced by the increasing the control parameter AT 2. Both terms tend to zero as the moment
of capture tc → T ; but this is different for every particle and is not under our control19.

It might be surprising to see the trigonometric terms sin 2q , cos 2q, etc, appearing in both
expressions for ∆H(q) in the very different regimes of rotation and libration; in one case particles
are streaming and in the other they are oscillating to-and-fro. However, changes in the Hamiltonian
are effected only by motions in the potential well where work can be performed on the particles.
Thus the trigonometric terms arise from the nett work performed by the rising well, and that
depends on the arrival time (which is related to phase q).

19Except by adjusting the voltage law so that capture occurs later; which is suggestive of the iso-adiabtic law.
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1.8.5 Assumption of “all oscillation phases”

We have introduced two equations that were not sufficiently precise concerning the particle distri-
bution that is ensemble averaged. Eq. 1.41 is more correctly written:〈

Ḣ(t, q)
〉
=

1

2π

∫ +π

−π
ρ(q)Ḣ(t, q)dq ,

where ρ(q) is the phase distribution. The lift Eq. 1.35 could have been written:

∆H0 = V0

∫ +π

−π
ρ(x)(1− cosx)dx = V0

∫ +π

−π
ρ(q)[1− cosx(q)]dq

and must produce the same result, V0, whether the average is over position x or phase q. We
glossed over the step of setting ρ(q) ≡ 1.

In performing the ensemble average, we assume that at any time (i.e. at all times) the oscillation
phases are uniformly distributed (or at least symmetric in q) and all values present. This deserves
some thought, particularly so because a weakness of the theory presented here is that we do not
have an evolution equation for the oscillation phases q.

Pre-capture, m > 1

It is straight forward to reason that the initial oscillation phases are almost uniformly distributed
at each value of m = H/(2V ); and that the departure from uniformity is greater for smaller values
of Jacobi m. At the outset, the particle distribution is uniform in position x = [−π,+π]. Hence the
line density ρ(x) = 1/(2π) is constant. For the streaming motion (i.e. rotation era), the relation
between position and oscillation phase is x(q) = 2 arcsin[sn(

√
mq, 1/m)]. The transformation of

densities is ρ(q,m) = ρ(x(q))|dx/dq| = (
√
m/π) dn(

√
mq, 1/m) with the range of q equal to ±q̂ ≡

±K(1/m)/
√
m. The density in phase ρ(q,m) is that which will make the line density ρ(x) constant

when integrated over ρ(m). The density ρ(q) is itself almost constant: the minimum value is
ρ(q̂) =

√
(1 − 1/m)

√
m/π, and the maximum is ρ(0) =

√
m/π where typically m ≫ 1.

We may think of these densities as arising from the underlying kinematics of the particles. Now
q = ωt, and for compactness we set ω = 1. p(q) = ẋ = dx/dq is the instantaneous speed of a particle
with phase q. p(t) and p(q) are synonymous. Let X be the particular position of the particle with
phase q. Thus q(X) = arcsn[sin(X/2), 1/m]/

√
m where arcsn is the inverse of the Jacobi function.

The dwell function quantifies where, during its motion, the particle spends more of its time. The
dwell function D(x) is proportional to the inverse of speed 1/p(q(X)), or explicitly

D(X) ∝
√
m dn [arcsn[sin(X/2), 1/m], 1/m]

−1 + 2m+ cosX
. (1.67)

The dwell function is almost constant. The minimum value is D(0) ∝ 1/(2
√
m). The maximum

value is D(±π) ∝ 1/(2
√
m− 1). This slight modulation of D exactly cancels the deviation of ρ(q)

from precise uniformity, to yield the constant line density ρ(x) = 1/(2π).

Adiabatic transformation of ρ(q)

Consider now that the height of the potential well slowly increases. Then, as the initial distribution
of oscillation phases evolves we propose it does so adiabatically; so that it stays approximately
uniform after the streaming motion has been converted to to-and-fro motion confined inside the
potential well (i.e. the libration era). Adiabatic evolution of the Hamiltonian, implies adiabatic
evolution of the particle trajectories; and because the particle trajectories are intimately connected
to their individual oscillation phases, so it follows that the distributions of q at each value of m(t)
also evolve in an adiabatic or near-adiabatic manner.
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Post-capture, m < 1

Let us take up now the theme of density distributions in the post-capture (or libration) era. And
let us assume that the distribution of initial oscillation phase has adiabatically transformed such
that this new distribution is uniform in q for each value of m < 1. This means the trajectory
in phase space, which is approximately an ellipse, is uniformly populated with particles along its
annular length. The half-period of oscillation is τ/2 = 2K[m], and the density ρ(q) = 2/τ . Each
initial q value maps to a position value x = 2arcsin[

√
m sn(q,m)]. The density in position space is

ρ(x) = ρ(q)|dq/dx| = 1/(2K(m))/|dx/dq|, or explicitly

ρ(x) =
1

4K(m)
√
m cn[q(x),m]

=
1

4K(m)
√
m cn [arcsn[sin(x/2)/

√
m,m]]

.

For a particular value of m, the range of x = [−X,+X] where X = 2arcsin
√
m. The shape

of ρ(x,m) is like a steep-sided bowl, with infinite cusps at the extrema of motion: ρ(x = 0) =
1/(4

√
mK(m) while ρ(X) → ∞. The vast majority of phases q contribute to the line density at the

extrema of motion, generating infinite cusps. Nevertheless, summing over a continuum of m values
gives a hill-shaped line density with the maximum centred at x = 0. In other words, summing over
m yields a particle bunch.

Capture or separatrix crossing

But there is an exception to these assumptions of initial uniformity in q and adiabatic evolution:
the separatrix where at the outset, ρ(q) is not uniform; and nor does it evolve appreciably toward
uniformity. At the very start and early on, the line density ρ(x) = 1/(2π) is uniform. Immediately
that the voltage is established, x = 2arcsin[tanh(q)] at the instantaneous separatrix; and the
corresponding density of phase is given by ρ(q) = ρ(x)|dx/dq| = (1/π) sech(q). The range of
±q → ∞. The infinite range is a mathematical artefact that corresponds to there being particles
at (x, p) = (±π, 0). The phase density varies from ρ(0) = 1/π to ρ(±∞) = 0. This variation
exactly cancels, the kinematic dwell time to yield a line density ρ(x) that is uniform. The speed
ẋ = p(t) is synonymous with dx/dq. The dwell function is D = 1/p which we may write as a
function of t or q or x;

√
2D(x) = 1/

√
1 + cosx. ρ(q = 0) and D(0) = 1

2 are both finite. Although
D(±π) → ∞, there are no particles present at ρ(q = ±∞) and so the divergence of D cannot be
manifested. If ρ(q) at the separatrix were to evolve toward a uniform distribution, these precise
cancellations (resulting in finite values for ρ(x)) would not operate. Indeed it is probable that
the reverse may occur, that during the evolution of the separatrix its corresponding distribution
of initial phase becomes more deeply modulated. On a static separatrix, the range of q = ±∞.
Mechanistically, particles have to advance to these extreme phases. It is difficult to imagine that
in a dynamical process occurring in a finite time duration T , that an infnite range of oscillation
phases is established. Heuristically, the largest value is limited to order

∫ T
0 ω(t)dt. So it might

be that the phase distribution becomes further depopulated at large |q|. This has implications
for ensemble-averaging (over q) the separatrix crossing process, possibly canceling divergences and
leading to finite results.

1.8.6 Density function ρ(∆H)

The moments introduced in Eqn. (1.42) are much less useful than the density function ρ(∆H) that
tells us how often some particular deviation occus [about some particular double-average value
H̃(t)]. So we need to find the relation between ρ(∆H) and the distribution of oscillation phases
R(q) = 1/(2π) ∀ |q| ≤ π. The transformation of densities obeys:

ρ(∆H) = R(q(∆H))

∣∣∣∣ d

d∆H
q(∆H)

∣∣∣∣
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In the preceding section, we found deviation to be of the form ∆H = a cos(2q) + b sin(2q) where

a2 + b2 = (∆̂H)2 ≡ c2 is the square of the maximum deviation. In this case,

2q = arctan[a∆H ± b
√
c2 −∆H2, b∆H ∓ a

√
c2 −∆H2]

and ∆H in this context has become a simple parameter running over the range −c ≤ ∆H ≤ +c.
The normalisation integral is π2/4; and the density:

ρ(∆H) =
1

π
√
c2 −∆H2

. (1.68)

The transformations simplify if a single term dominates; if either a or b can be set to zero. For
example, if a = 0 then q = (1/2)ArcSin[∆H/b] and ρ(∆H) = 1/(π

√
b2 −∆H2).

Eqn. (1.68) is analogous to the dwell function of a harmonic oscillator. The dwell function is
largest at the extremeties of motion, and the density is greatest at the extreme values of ∆H = ±c.
a, b both depend on the initial value of Hamiltonian; and other parameters such as A and T , etc. The
shape of ρ does not change as the process time T is increased, but the maximum deviation falls as
1/T ; and so the distribution becomes narrower. In reality, the situation is more complicated: there
are additional trigonometric terms with arguments 4q, 6q, etc.; and their super-position will change
the shape of the density function. The function (1.68) is the antithesis of commonly encountered
point-spread functions, such as the Gaussian. This has the consequence that the third and fourth
moments, the normalized skewness and kurtosis, may be large compared with the second moment
(the variance).

1.9 Perturbed motion

Thus far, we have not attempted to find how the form of motion [x(t), p(t)] is changed in response
to the parameter variation ω(t); we simply assumed that the change is small. We now rectify this
failing, find the change; and verify that it is small. The method will enable us to find the perturbed
time-dependent separatrix (which is actually a family curves, depending on initial conditions).

The time-dependent Hamiltonian is H(t, x, p) = p(t)2/2 + ω2(t)[1 − cosx(t)] where p = ẋ.
The pendulum equation of motion ẋ[ẍ + ω2(t) sinx(t)] = 0, where dx/dt is generally non-zero, is
generated by the setting derivative dH/dt = [1 − cosx(t)]dω2/dt. It follows that the first integral
is:

∆H = H(t, x, p)−H(0) ≡ 2

∫ t

0
[1− cosx(s)]ω(s)ω̇(s)ds . (1.69)

Suppose that the parameter variation ω(t) neither changes the motion x nor the period τ of one
cycle; and substitute x = 2arcsin[

√
m sn(ω0t,m)]. For compactness we shall write ω(0) = ω0 and

ω̇(0) = ω̇0, and z = ω0t. H(0) = 2mω2
0. The H increment is:

∆H = 4m

∫ t

0
sn2(ω0s,m)ω(s)ω̇(s)ds ≈ 4ω̇0 [z − E[A(z,m),m]] ≈ 4

3
ω̇0mz3

[
1− (1 +m)z2 + . . .

]
.

(1.70)
This confirms that H increases if ω̇ > 0. Time-averaging Ḣ over a half period leads to

Ḣ = ∆H/(τ/2) = 4ω0ω̇0[1 − E(m)/K(m)], which diverges as m → 1. The adiabatic invariant
is I ≡ [H0 + ∆H(t)]/(ω0 + ω̇0t)]. Let ω̇ = ϵ ω2. To low order in elapsed oscillation phase z, the
invariant evolves as:

I(z) = 2mω0

[
1− ϵz + (ϵz)2 + ϵ(2/3− ϵ2)z3 + . . .

]
.

Expression (1.69) can be viewed as an equality between two different ways of writing ∆H. We
may use this equality to discover the effect of ω̇ on the unperturbed motion; and also the change in
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cycle limits, and a revised estimate of ∆H. For the former, we shall have to insert a trial solution
and demonstrate self-consistency. For the latter, we need the integration limits t. For motion
sufficiently far from the separatrix, these are trivial: ±τ/4. But on the separatrix, the cycle limits
depart vastly from unperturbed values. To find the correct x(t), we insert into (1.69) the trial
solution:

x(t) = 2 arcsin
[√

m sn(Z)
]
+α(ω0t) & p(t) = ω(t)2

√
m cn(Z)+ω0α

′(ω0t) & Z =

∫ t

0
ω(u)du (1.71)

where α is a function to be determined, and α′ = dα(z)/dz. The introduction of phase Z implies
that the trial function has some character of the perturbation even in the absence of α and α′. Here
we are not interested in computing ∆H. Rather we are interested in what the equality between
H(t, x, p)−H(0) and the integral have to tell us about α(t). We expand the trigonometric functions
to first order in α and its derivative. (It will be shown that α is small, of order ϵ.) We suppose
ω̇0τ ≪ ω0, and replace ω(t) by ω0 + ω̇0t.
The equality (1.69) becomes:

2
√
mω0

[
dn(ω0t)sn(ω0t)α× (ω0 + 2ω̇0t) + cn(ω0t)α

′ × (ω0 + ω̇0t)
]

≡ 4ω0ω̇0

√
m

∫ t

0
sn(ω0t)

[√
msn(ω0s) + dn(ω0s)α(ω0s)

]
ds − 4mω0ω̇0t . (1.72)

α is of order ϵ = ω̇/ω2
0 smaller than other terms on the right, and is dropped from the integral.

The righthand side is:

4mω0ω̇0

[∫ t

0
sn2(ω0s)ds − t

]
= −4ω̇0 {E[A(ω0t,m),m] + (m− 1)ω0t}

≈ −4mω̇0

[
z − z3/3 + (1 +m)z5/5 + . . .

]
In a final (but not essential) step we drop terms ω̇0t in comparison to ω0. (This implies ω̇0τ ≪ ω0,
which might not be justified for trajectories emanating from coordinates near the unstable fixed
points.) The equality (1.69) has been manipulated into a first order differential equation for α:

√
mω2

0

[
dn(z,m)sn(z,m)α(z) + cn(z,m)α′(z)

]
= −2ω̇0 [E[A(z,m),m] + (m− 1)z] . (1.73)

Now, dn(z)sn(z) is the derivative of −cn(z); and so this equation is of the form:
−f ′(z)y(z) + f(z)y′(z) = g(z) which has the formal solution: y(z) = f(z)

∫ z
0 g(s)/f(s)2ds.

The explicit form of the solution for α(z) is unwieldy, but is amenable to Taylor series expansion:

α(z) ≈ −ϵ
√
mz2

[
1 − z2/6 + (3 + 28m)z4/360 − (1 + 108m− 64m2)z6/5040 + . . .

]
. (1.74)

If the terms ω̇0t are not dropped, the expansion becomes α(z) ≈

−ϵ
√
mz2

[
1 − (2/3)ϵz − (1− 3ϵ2)z2/6 + (1− 6ϵ2)ϵz3/15 + (3 + 28m− 10ϵ2 + 120ϵ4)z4/360 + . . .

]
1.9.1 Separatrix Family

In Sec. 1.7.2 we introduced two ideas: (1) the time-dependent separatrix is useful only for a few (or
less) oscillations; and (2) that each snapshot lasting a couple of oscillations looks similar except for
a change of the vertical scale proportional to

√
V (t). Thus we are led to visualizing the separatrix

in a sliding window of time [t− τ, t+ τ ] centred on t. In what follows, we present formulae as if the
window were centred at t = 0; but t is a dummy variable, it is not the start of the entire capture
process.

When ω̇ = 0, the separatrix (that divides the libration and rotation domains) is a single tra-
jectory that connects the fixed points at x = ±π. When ω̇ ̸= 0, the separatrix decomposes into a
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family of trajectories. If the frequency ω(t) is rising, every point on the instantaneous separatrix
(x0, p0 = ±

√
1 + cosx0) at time t = 0 will captured - with the exception of the fixed points. The

family constitutes all the trajectories emanating from those points at t = 0. It is possible that the
family is bounded by one of it trajectories (to give a capture manifold), but this is not guaranteed.
Coordinate pairs on this same curve at a different initial time will behave differently because there
are additional “forces” arising from the differing values of ω.

We may use the analogues of Eqns. (1.69, 1.72) to construct this family; as in Secs. 1.10 & 1.11.
Because the effect of the perturbation (due to ω̇) is most prominent in the vicinity of the astable
fixed points, it is sometimes inferred that particles enter the separatrix only at those locations.
This notion is incorrect; particles may enter at any value of (x0, p0), except (±π, 0).

A more profound viewpoint is that the notion of separatrix in a time-dependent system should
be abandoned. There is no definite curve that is crossed; and attempting to define such a curve and
relying upon crossing of it to determine capture is probably doomed to inconsistency and failure.
The only real criterion for capture is H(t)/V (t) < 2.
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Figure 1.8: Left: Three trajectories [x(z), p(z)]: emanating from x0 = 0 (green), x0 = −π/2 (blue)
and x0 = +π/2 (red). The brown curve is the instantaneous separatrix. Right: the corresponding
trajectories [Ax,Ap] ≡ [α(z), α′(z)]. The tone, darker or lighter, indicates before or after t = 0.

1.10 Symmetric trajectory

The trajectory emanating from (x0, p0) = (0, 2) is particularly easy to find. It is both the sim-
plest and least important trajectory; unimportant because it is atypical: the absolute majority
of trajectories are asymmetric. Suppose for a moment that we substitute unperturbed separatrix
trajectory x(t) = 2 arcsin[tanh(w0s)] into expression Eqn. (1.69). The change in Hamiltonian is the
integral ∆H(z) = 4[z − tanh(z)]ω̇0 with z = ω0t; for large z values this becomes ∆H = 4zω̇0. The
unperturbed period τ → ∞ because the motion becomes frozen as the particle approaches the fixed
point. This would imply that ∆H is unbounded. This is incorrect; and implies we must introduce
the perturbation α(z).

The starting point is the expression for ∆H, Eq. (1.69). We substitute the trial motion

x(t) = 2 arcsin [tanh(Z)] + α(ω0t) & p(t) = 2 sech(Z) + ω0α
′(ω0t) (1.75)

where α is an unknown function to be determined by the equivalence Eq. (1.69) betweenH(t)−H(0)
and an integral. Z is the cumulant phase, as above. On the separatrix H0 = 2ω2

0 at t = 0. We
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expand the trigonometric functions, and expand ω(t) ≈ ω0 + ω̇0t, and retain only first order terms
in α and α′ and ω̇0. The change in Hamiltonian is:

H(t)−H(0) = 2
[
2zω̇0 + sechz tanh z α(z)(ω2

0 + 2zω̇0) + sechz α′(z)(ω2
0 + zω̇0)

]
. (1.76)

The integral form for the change is:

∆H = 4ω0ω̇0

∫ t

0
sech(ω0s) tanh(ω0s)[sinh(ω0s) + α(ω0s)]ds . (1.77)

α can be neglected because it is of order ϵ = ω̇0/ω
2
0 (as we find below). Equating the two forms for

∆H yields a differential equation for α.

sinh(z)α(z)× (1 + 2ϵz) + cosh(z)α′(z)× (1 + ϵz) = −ϵ sinh(2z) . (1.78)

In a final (but not essential) step we discard the terms ϵz, which are assumed to be small quantities.
Now d cosh z/dz = sinh z, and so the equation is of the form d/dt[f(t)y(t)] = g(t) which has the
formal solution y(t) =

∫ t
0 g(s)ds/f(t). Thus the response to the perturbation is the known function:

α(z) = −ϵ sinh z tanh z and α′(z) = −ϵ[sinh z + sechz tanh z] . (1.79)

Technically, this function diverges for large |z| values; but the range of z needed to describe a
half-cycle excludes such values.

1.10.1 ∆H crossing separatrix

Our overall objective is to find the average rate of change of Hamiltonian over the half-cycle of
motion as the particles crosses the separatrix. The first step is to find the moments in time when
the particle is at the position-extrema of its motion. These values are then inserted into the limits
of the integral. We suppose the particle to have positive momentum, and to be moving from left
to right. The leftward extrema is the solution of x(t) = −π or the equivalent sin[x(t)] = 0. We
substitute x(z) = 2 arcsin[tanh z] + α(z). To first order in ϵ, there results the equation

tanh z[ϵ sinh z + 2 sechz(1− ϵ tanh z)] = 0 . (1.80)

We are interested in the solution for z ≃ −π. Now for |z| > 2, sinh z → sign(z)× cosh z, and there-
fore we may make the substitution tanh z → −1. The resulting equation, 2(1+ϵ)+ϵ cosh z sinh z = 0,
has an exact solution. The steps are: set y = exp(z) and cosh z = (y + 1/y)/2 and sinh z =
(y − 1/y)/2; and set X = y2 and solve a quadratic equation for X. Then invert the process:
z = ln y = ln[

√
X] = (1/2) lnX. We shall asume ϵ > 0. The instant in time of the left extrema is:

ž =
1

2
loge

[
−4− 4ϵ+

√
16 + 32ϵ+ 17ϵ2

ϵ

]
≈ 1

2
ln
[ ϵ
8

]
− ϵ

2
+

31ϵ2

128
+ . . . (1.81)

So the first approximation is ž = (1/2) ln(ϵ/8) < 0. We may find the momentum value at the time
ž.

The rightward extrema is the solution of p(t) = 0. We substitute p(z) = ω0[2sechz+α′(z)]. We
are interested in the solution for z ≃ +π. Again we set sinh z → sign(z) cosh z, and therefore we
may make the substitution tanh z → +1. The resulting equation, (2− ϵ)− ϵ cosh z sinh z = 0, has
an exact solution; found by the steps above. The instant in time of the right extrema is:

ẑ =
1

2
loge

[
4− 2ϵ+

√
16− 16ϵ+ 5ϵ2

ϵ

]
≈ 1

2
ln

[
8

ϵ

]
− ϵ

4
− 7ϵ2

128
+ . . . (1.82)
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So the first approximation is ẑ = (1/2) ln(8/ϵ) > 0. We may find the position value at the time ẑ.
For brevity, we define

ξ(ϵ) ≡ 4− 2ϵ+
√
16− 16ϵ+ 5ϵ2

−4− 4ϵ+
√
16 + 32ϵ+ 17ϵ2

, (1.83)

such that (ẑ − ž) = 1
2 ln(ξ). ξ is positive for ϵ ̸= 0.

The half period is the duration between the two position extrema of motion, namely:

ω0 ×
τ

2
=

1

2
loge [ξ(ϵ)] ≈ ln

[
8

ϵ

]
+

ϵ

4
− 19ϵ2

64
+ . . . (1.84)

This half period is actually the separatrix crossing duration (for a trajectory starting from
x(0) = 0). Note, when ω̇ = 0 the half period on the separatrix is τ/2 → ∞ because the motion gets
stuck at the fixed points. So the logarithmic divergence when ω̇ ̸= 0 is both a vast improvement
and realistic.

We remind the reader that the previous and following results are specifically for a particle
emanating from x(0) = 0, and the attending symmetry of motion that results from that condition.
We find the change in Hamiltonian, by substituting the values of z = ω0t at the position extrema
into the integration limits of ∆H(z) = 4ω̇[z − tanh z]. Now, we consider |z| ≃ π and so replace
tanh z by sign(z). The individual increments entering and leaving the separatrix are

∆H(ž → 0) = −∆H(0 → ž) = 2ω̇
[
−2 + ln(8/ϵ) + ϵ − (31/64)ϵ2 + . . .

]
(1.85)

∆H(0 → ẑ) = 2ω̇
[
−2 + ln(8/ϵ) − ϵ/2 − (7/64)ϵ2 + . . .

]
(1.86)

Here we used the identity ln(1/a) = − ln(a). The two increments are almost equal, as reflects
the symmetry of the initial condition x0 = 0. The total change of Hamiltonian is ∆H(ž → ẑ) =
−4ω̇0[2 + ž − ẑ], or explicitly

∆H = 2ω̇0 (−4 + loge [ξ(ϵ)]) ≈ ω̇0

[
−8 + 4 ln

[
8

ϵ

]
+ ϵ − 19

16
ϵ2 + . . .

]
Now on the separatrix H = 2ω2

0; and thus ∆H/H ≈ ϵ[−4 + 2 ln(8/ϵ)].
The time-averaged rate of separatrix crossing is

Ḣ =
∆H

τ/2
=

∆H(ẑ)−∆H(ž)

ẑ − ž
= 4ω0ω̇0

[
1− 2

ẑ − ž

]
= 4ω0ω̇0

[
1− 4

ln[ξ(ϵ)]

]
≈ 4ω0ω̇0

[
1− 2

ln[8/ϵ]
+

ϵ

2× (ln[8/ϵ])2
+ . . .

]
The limit of ϵ → 0 (i.e. infinitely slow) yields Ḣ = 4ω0ω̇0 which has a simple interpretation.
H = 2m(t)ω2(t) and Ḣ = 4mωω̇ + 2ω2ṁ. So the limit is the derivative of H at constant m = 1.

The functions ∆H/H and Ḣ/(Hω0) are shown in Fig. 1.9 versus ϵ = ω̇0/ω
2
0. The plots tell us that

fractional changes are approximately linear in ϵ.
It is possible that the reader may have expected the increment ∆H to be negative, signalling

that the particle has “dropped into the well”. However, all increments ∆H(q) are positive if
ϵ > 0. It must be recalled that all trajectories (and their Hamiltonian) are inflated as the voltage
rises. Capture occurs because the Hamiltonian of particles trajectories rises less quickly than the
Hamiltonian on the separatrix H = 2V (t).

1.11 Asymmetric trajectories

Thus far, we have explored a single member of the separatrix family of trajectories. We now consider
the asymmetric case where particles emanate from x(0) = tanh(q) when ω(t) = ω(0) = ω0. q is the



42 CHAPTER 1. NEAR-ADIABATIC CAPTURE OF PENDULUM PHASE SPACE

0.002 0.004 0.006 0.008 0.010
ϵ

0.02

0.04

0.06

0.08

ΔH/H

0.02 0.04 0.06 0.08 0.10
ϵ

0.02

0.04

0.06

0.08

0.10

H
-1ω-1

H
′

Figure 1.9: Plot of ∆H/H (left) and Ḣ/(Hω) (right) versus adiabaticity parameter ϵ.

initial phase of the oscillation. The starting point is the equality (1.69). We substitute the trial
motion

x(t) = 2 arcsin [tanh(q + Z)] + α(ω0t) & p(t) = 2 sech(q + Z) + ω0α
′(ω0t) & Z=

∫ t

0
ω(u)du (1.87)

The working is similar to above, but complicated by the initial oscillation phase q. Retaining small
quantities only to first order, the differential equation for α(z) is

d/dz[cosh(q + z)α(z)] + 2ϵ cosh(q + z)sechq sinh z = 0 . (1.88)

The solution is the perturbation

α(z) = ϵ [− cosh z sechq + sech(q + z)[1 + z tanh q]]

α′(z) = ϵω0 {−sechq sinh z − sech(q + z)[tanh(q + z) + tanh q[−1 + z tanh(q + z)]]} .

The next step is to find the moments in time corresponding to the position-extrema, and construct
the change in Hamiltonian and the duration of the half cycle.

The intercept with the momentum axis occurs at x(z) = −π or sinx = sin(−π) = 0. We
substitute x(z) = 2 arcsin[tanh(q + z)] + α(z) into sinx. Expanding the trigonometric function to
first order in ϵ generates the equation

2sech(q+z) tanh(q+z)+ϵ [− cosh z sechq + sech(q + z)[1 + z tanh q]] [1−2 tanh2(q+z)] = 0 (1.89)

There is no hope of solving this analytically, unless a simplification strategy is introduced. We
anticipate solutions |z| ≃ π or much larger. Therefore, as above, we may set sinh z → sign(z) cosh z;
in which case tanh(q+z) → sign(z). At the leftward extrema z < 0, so we substitute tanh(q+z) →
−1. The simplified equation is

ϵ cosh z sechq = sech(q + z)[2 + ϵ× (1 + z tanh q)] . (1.90)

We contend, and shall show, that ϵ(1+z tanh q) can be neglected in comparison to 2. The resulting
equation can be solved using the steps outlined above. The leftward extrema of motion occur at
the time:

ž =
1

2
loge

[
4− ϵ−

√
16− 8ϵ+ ϵ2 tanh2 q

ϵ(1 + tanh q)

]
≈ 1

2
ln

[
1

8
ϵ(1− tanh q)

]
+

ϵ

8
+

[
3

128
− tanh2 q

128

]
ϵ2 + . . .

(1.91)



1.11. ASYMMETRIC TRAJECTORIES 43

The intercept with the position axis occurs when the momentum is zero,
p(z) = 2ω0 sech(q + z) + α′(z) = 0. We anticipate solutions |z| ≃ π or much larger. At the
rightward extrema z > 0, so following the simplification strategy we substitute tanh(q + z) → +1.
The condition p(z) = 0 simplifies to

−sechq sinh z = sech(q + z)[−2 + ϵ + ϵ(−1 + z) tanh q] . (1.92)

We contend that the term in ϵ can be neglected in comparison to −2. The resulting equation can
be solved using the substitution steps noted above. The rightward extrema of motion occurs at the
time:

ẑ =
1

2
loge

[
4 + ϵ tanh q +

√
16 + 8ϵ tanh q + ϵ2

ϵ(1 + tanh q)

]

≈ 1

2
ln

[
8

ϵ(1 + tanh q)

]
+

1

8
ϵ tanh q +

1

128
[1− 3 tanh2 q]ϵ2 + . . .

For brevity, we define

ξ(ϵ, q) ≡

[
4 + ϵ tanh q +

√
16 + 8ϵ tanh q + ϵ2

4− ϵ−
√

16− 8ϵ+ ϵ2 tanh2 q

]
(1.93)

such that (ẑ − ž) = 1
2 ln(ξ). ξ is positive for ϵ ≤ 1. The half-cycle, or separatrix crossing time, is

ω0τ/2 = (ẑ − ž) given by:

ω0
τ

2
=

1

2
loge ξ(ϵ, q) ≈ ln

[
8 cosh q

ϵ

]
+

ϵ

8
[−1 + tanh q]− ϵ2

64
cosh 2q sech2q + . . . (1.94)

We now indicate the changes to ž and ẑ if we had retained terms in ϵ that we anticipated to be
small compared with ±2. We insert the known first order values of ž and ẑ into Eqs. (1.90) and
(1.92), respectively, and then solve for their new values. At the left and right extrema:

δz

ž
= − ϵ

4

[
1

ž
+ tanh q

]
and

δz

ẑ
= − ϵ

4

[
1

ẑ
+ tanh q − tanh q

ẑ

]
. (1.95)

Thus, the (modulus of) relative fractional changes are smaller than ϵ.

1.11.1 ∆H crossing separatrix

We are now in a position to compute the changes in Hamiltonian, and the time-averaged value ⟨Ḣ⟩ =
∆H/(τ/2). From the integral in (1.69), it follows that ∆H(0 → z) = 4ω̇0[z+tanh q− tanh(q+ z)].
The simplification strategy implies tanh(q + z) → sign(z). The individual increments entering and
leaving the separatrix are

∆H(ž → 0) = −∆H(0 → ž) = −4ω̇[1 + ž + tanh q]

≈ −2ω̇0

[
2 + ln

[ ϵ
8
(1− tanh q)

]
+ 2 tanh q +

1

4
ϵ+ . . .

]
∆H(0 → ẑ) = 4ω̇[−1 + ẑ + tanh q]

≈ −2ω̇0

[
2 + ln

[ ϵ
8
(1 + tanh q)

]
− 2 tanh q − 1

4
ϵ tanh q + . . .

]
There is an asymmetry introduced by the initial phase q of the oscillation. If q is positive then a
larger fraction of the total change ∆H(ž → ẑ) occurs before t = 0; and for q < 0 the larger part of
∆H occurs after t = 0. The complete change of Hamiltonian is

∆H/ω̇0 = −8 + 4 ln

[
8 cosh(q)

ϵ

]
+

ϵ

2
(−1 + tanh q) + . . . (1.96)



44 CHAPTER 1. NEAR-ADIABATIC CAPTURE OF PENDULUM PHASE SPACE

We may form the ensemble average over the distribution of oscillation phases ρ(q) = (1/π) sech q.

⟨∆H⟩ =
∫ +∞

−∞
∆H × ρ(q)dq = ω̇0

[
−8 + 4 ln(16/ϵ)− ϵ

2

]
= ∆H(q = 0) + ω̇0 ln(16) (1.97)

Finally, we compute the time-averaged rate of change of Hamiltonian:

Ḣ =
∆H(ẑ)−∆H(ž)

τ/2
= 4ω0ω̇0

[
1− 2

ẑ − ž

]
= 4ω0ω̇0

[
1− 4

ln[ξ(ϵ, q)]

]
≈ 4ω0ω̇0

[
1− 2

ln[(8 cosh q)/ϵ]
+

ϵ

4

(−1 + tanh q)

(ln[(8 cosh q)/ϵ])2
+ . . .

]

1.12 Construction of the phase-space distribution

Our ultimate objective has been to construct the final distribution of Hamiltonian ρ(HT ) when
the voltage ramp is complete, from the initial distribution of Hamiltonian values ρ(H0) of the
unbunched particle beam prior to initiating the ramp. Ideally, one value H0 maps uniquely to a
single HT . However, there is a spread function such that each H0 maps to a band H̃T + ∆H(q).
This implies that the density ρ at each value of HT is contributed to by a range of H0 values.
Unfortunately, this complicates greatly the construction of ρ.

This mapping for the double-average H̃T is given in Sec. 1.8.2 to first and second order in
m = H/(2V ). H−

0 is independent of x or q, and t; and so does not possess a time or ensemble
average. Four steps must be cascaded: (1) H−

0 → H+
0 ; (2) H0 → Hc; (3) the increment at capture

given in Sec. 1.11; and (4) Hc → HT . Remarkably, provided the voltage ramp is sufficiently slow,
the result of the cascade is mostly independent of the details of the voltage ramp.

The spread function ∆H(q) represents phase mixing due to imperfect adiabaticity. The width
of ∆H scales approximately as 1/T . The final spread ∆H(q) is the sum of four sequential contri-
butions: sudden voltage turn-on, the pre-capture rotation, the capture, and post-capture libration.
The pre- and post-capture increments are given in Sec. 1.8.4, while the capture increment is given
in Sec. 1.11.1.

Fig. 1.10 is a cartoon of the construction of ρ(HT ) from the relationship between the average
value H̃(T ) and H(0) and from the knowledge of the distribution of the deviations ρ(∆H) which
is derived in Sec. 1.8.6. The figure depicts a case which is unrealistic, constant ∆H, but that is so
mathematically simple that all steps in the construction can be achieved analytically. But it must
be emphasised: numerical methods must be adopted for realistic examples.

There are some conceptual and notational challenges. We reiterate the notation.

� HT is a general value of Hamiltonian at time t = T ; it could correspond to any value of q.

� H̃T = ⟨H(T, q)⟩ is the double average.

� H0 is a general value of Hamiltonian at time t = 0; it could correspond to any q value.

� ∆H ≡ a2+b2 where a, b are the coefficients of cos 2q and sin 2q respectively. ∆H is introduced
in section 1.8.6. It is the function at t = T , and its value depends (in principle) on H0.

To understand the need for two similar symbols, HT , H̃T , it may help to remember that the time
evolution of a particle having Hamiltonian HT may differ depending on its oscillation phase q,
because its response to the perturbation V̇ differs. We found the Hamiltonian at the end of the
capture process, H̃T , to depend on the value before the sudden voltage turn on (H−

0 ):

H̃T = (H−
0 + V0)

√
VT /V0 for H−

0 < V0; and H̃T = 2
√
H−

0 VT for H−
0 ≥ V0. (1.98)
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Figure 1.10: Construction the relationship between the final particle density ρ(HT ) and the initial
particle density ρ(H0). The plots show the dwell function [∆H2 − (HT − H̃T )

2](−1/2). The red

curve is the double average H̃. Left Fig: H̃T = (H−
0 + V0)

√
VT /V0. Right Fig: H̃T = 2

√
H−

0 VT .

The numerical values are V0 = 5, VT = 100, ∆H =
√
V0VT . The abscissa and ordinate are the

initial and final Hamiltonian values HT and H0, respectively. ρ(HT ) is found by summing over all
values ρ(H0) that fall on the line HT = constant.

The lower range of H−
0 gives the effect of the sudden voltage turn on. We suppose that every H−

0

contributes a density to the final form of the total particle density. Each of these contributions is
of the form

ρ(HT , H0) = ρ(H0)/
[
∆H2 − (HT − H̃T )

2
]1/2

/π . (1.99)

We substitute either of the expressions Eq. (1.98) into Eq. (1.99) to eliminate H̃T in favour of H0.
Here the active free variable is HT , and H0 is a parameter. We shall sum over all values H−

0 that
can contribute density to ρ(HT ). Let I(HT , H0) be the indefinite integral of ρ(HT , H0) with respect
to H0. Let the lower and upper values of the range of H0 be notated Ha and Hb, respectively. The
density contributed by that range is

ρ(HT ) = I(HT , Hb)− I(HT , Ha) .

The ranges of integration H0 = [Ha, Hb] are complicated and must be formed systematically, as
below. The ranges become further complicated if ∆H is a function of H0; which is actually the
case. But, for simplicity, we shall take ∆H as constant.

In principle, the variance ∆H may depend on H0. It is simple to find ∆H corresponding to
H0 = 0. Using the condition HT > 0 for H0 implies that ∆H(H0 = 0) ≤

√
V0VT . In fact, we know

the equality to apply; because this is the spread from sudden turn-on. For compactness, we write
C = VT /V0 be the ratio of final to initial voltage; and LT ≡

√
V0VT = V0

√
C be the lift at t = T .

Lower integration range H0 ≤ V0

We sum over all values 0 ≤ H−
0 ≤ V0 that can contribute density to ρ(HT ). We substitute

H̃T = (H−
0 +V0)

√
C. The density Eq. 1.99 is singular at the zeros of its denominator; the argument

of the square root can be written

∆H2 − (HT − H̃T )
2 ≡ (∆H +HT − H̃T )(∆H −HT + H̃T ) .
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From this it follows that the indefinite integral has two possible forms, depending on the range of
HT . We want the integral relevant20 to (∆H +HT − H̃T ) ≥ 0 and ρ(HT ) a real quanity (i.e. not
complex). Suppose for example that the initial particle density ρ(p) is constant. The corresponding
density ρ(H0) ∝ 1/

√
H0.

Let B = ∆H +HT − LT . The indefinite integral is

I(HT , H0) =
1

π
√
B
√
C
F

− arcsin

√
B −H0

√
C

2∆H
,
2∆H

B

 . (1.100)

Here F(ϕ,m) is the (incomplete) elliptic integral of the first kind; and F(π/2,m) = K(m). The
upper and lower limits of H0 depend on the range of HT ; there are three such ranges.

LT −∆H ≤ HT ≤ 2LT −∆H

Substitute into Eq. 1.100 the lower and upper limits H0 = 0 and H0 = B/
√
C, respectively.

2LT −∆H ≤ HT ≤ LT +∆H
Substitute into Eq. 1.100 the lower and upper limits H0 = 0 and H0 = V0, respectively.

LT +∆H ≤ HT ≤ 2LT +∆H

Substitute the lower and upper limits H0 = (−∆H +HT − LT )/
√
C and H0 = V0, respectively.

Figure 1.11 blue curve shows the function ρ(T ) across the lower range of HT for the case that
∆H = LT =

√
V0VT . In the case that ĤT = (H−

0 + V0)
√
C the dwell function is singular when H0

equals 0 or V0. And when ∆H is constant, the singular behaviour survives integration of H0 to
give a peak at HT = ∆H + V0

√
C. However, in practice ∆H is a falling function of H0 over the

lower range, because other non-adiabatic processes have not yet contributed to the spread. Thus
a bump rather than peak is seen in realistic cases. Depending on the details of the deviation ∆H
there may be a small dimple for values HT → 0. The falling density for HT > ∆H + V0

√
C is

compensated by rising density contributed by the integral for the upper range H0 ≥ V0.

0 50 100 150 200
HT

0.02

0.04

0.06

0.08

ρ(HT )

Figure 1.11: Final density ρ(HT ) for ρ(p) =constant and ρ(H0) = 1/
√
H0. Blue/gold curves:

density contributed by lower and upper integration ranges of H0. Olive-green curve: sum of con-
tributions over the overlapping range of H0.

20Wolfram Mathematica-11 finds the other form of the integral, relevant to ∆H −HT + H̃T > 0.
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Upper integration range H0 ≥ V0

We sum over all values V0 ≤ H−
0 ≤ Ĥ0 that can contribute density to ρ(HT ). For compactness, let

the maximum ĤT ≡ 2
√

Ĥ0VT . We substitute the average H̃T = 2
√
H0VT . The integration range

is the solution of ∆H2 − (HT − 2
√
H0VT )

2 = 0, namely H0 = (HT ±∆H)2/(4VT ).
Suppose for example that the initial particle density ρ(p) is constant. The corresponding density

ρ(H0) ∝ 1/
√
H0. For brevity, let B = HT − 2

√
H0VT . The indefinite integral is

I(HT , H0) =

∫ H0 1√
H0

ρ(HT , H0)dH0 =
−1

2π
√
VT

arctan

[
B√

∆H2 −B2

]
. (1.101)

The integral is simplified by a change of variable to u =
√
H0. The upper and lower limits of H0

depend on the range of HT ; there are three such ranges.

2LT −∆H ≤ HT ≤ 2LT +∆H
Substitute the lower and upper limits H0 = V0 and H0 = (∆H +HT )

2/(4VT ), respectively. At the
upper limit, the arc tangent tends to −π/2.

2LT +∆H ≤ HT ≤ ĤT −∆H
Substitute the lower and upper limits H0 = (−∆H +HT )

2/(4VT ) and H0 = (∆H +HT )
2/(4VT ),

respectively. At the integration limits, the argument of the arc-tangent becomes ±1/0 → ∞, and
therefore the angle becomes ±π/2. Hence the integral is ρ(HT ) = 1/(2

√
VT ); and the final density

is constant (over this range of HT ) when ρ(p) is constant.

ĤT −∆H ≤ HT ≤ ĤT +∆H
Substitute the lower and upper limits H0 = (−∆H +HT )

2/(4VT ) and H0 = VT , respectively. At
the lower limit, the arc tangent tends to +π/2.

Figure 1.11 gold-curve shows the function ρ(T ) across the upper range of HT for the case that
∆H = LT =

√
V0VT . The rising density at lower HT compensates the falling density contributed

by the integral for the lower range H0 ≤ V0. At the upper end of HT , the density ρ(HT , H0) is
truncated because the maximum value of H0 is limited to Ĥ0. This adjustment has the effect of
introducing a tail at the largest HT values.

Note, we have assumed 2LT +∆H < ĤT −∆H. In extreme cases, V0 or ∆H or both may be
sufficiently large that the inequality is reversed. When this occurs, the three integration ranges are
re-ordered; and the outcome ρ(HT ) is markedly different.

Falling density ρ(p)

We can consider a more realistic form for the density prior to voltage turn-on: ρ(p) = [1− (p/p̂)2].
The corresponding density immediately before voltage turn on is ρ(H0) = [1 − H0/Ĥ0]/

√
H0.

We sum over all H−
0 values that can contribute density to ρ(HT ). We suppose that V0/VT is

vanishingly small, and that the lower integration range H−
0 < V0 can be neglected. We suppose

again that the spread ∆H is constant. The integration limits are Ha = (−∆H +HT )
2/(4VT ) and

Hb = (∆H +HT )
2/(4VT ). The final density is

ρ(HT ) =

∫ Hb

Ha

(1−H0/Ĥ0)√
H0

ρ(HT , H0)dH0 =
8Ĥ0VT − 2H2

T −∆H2

16Ĥ0V
3/2
T

. (1.102)

Below we show the intermediate result before the integration limits are inserted.{√
∆H2 −B2[3HT + 2

√
H0VT ] + [∆H2 + 2H2

T − 8Ĥ0VT ] arctan

[
B√

∆H2 −B2

]}∣∣∣∣Hb

Ha

At the limits Ha, Hb, ∆H2 − B2 = 0 and the arc-tangent contributes ±π/2. In the case that

the spreads ∆H are negligible, the density tends to ρ(HT ) = (4Ĥ0VT − H2
T )/(8Ĥ0V

3/2
T ); this is
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identical in form to the initial distribution as a function of momentum ρ(p) = [1 − (p/p̂)2]. The
spread ∆H is small if the adiabaticity condition is satisfied throughout the entire process, and the
sudden turn-on voltage V0 is very small compared to the final value VT .

Varying spread ∆H

Above we took the spread to be constant, leading to fairly simple expressions for the density ρ(HT ).
The general case of variation ∆H(H0) is intractable, except by numerical methods. However, the
case where ∆H = ∆Hn

√
1 + anH0 can be pursued to analytic results for ρ(HT ). The constants

∆Hn and an can be chosen piecewise subject to the continuity of the pieces. The index n numbers
the segments.

Complication

There is a complication in performing the sum of the three sequential spreads to find the nett effect:
the ranges of phase q are different. The pre- and post-capture increments are given accurately for
m > 2 and m < 1/2, respectively, and have range q ≈ [−π,+π]; whereas the separatrix crossing
increment is valid for m = 1, and has range q → ±∞. However, if ∆H(q) is weighted by the
distribution of phase on the separatrix ρ(q) = (1/π) sech q the range may be reduced to ±π because
a very small fraction (5%) of particles lies beyond q = π. This complication is in fact an artefact,
caused by using simple approximate functions in place of the real ones. We replaced the initial
modulated distribution of phase q (which is depopulated at the extrema of q) by a uniform one.
Later, when calculating form factors, we replaced Jacobi functions by trigonometric ones. We
replaced the actual range of phase Q = [−2K(m,+2K(m)] by the range q = [−π,+π]. There is
a continuum of values m, and a corresponding continuum of ranges of Q. In that context, the
distribution of oscillation phase on the separatrix is part of a natural progression, not an exception.

1.12.1 Transformation of particle density functions

The general transformation of density functions is ρ(X) = ρ(Y )(dY/dX) evaluated at Y (X). We
shall make three conversions of this form, and use suffixes to distinguish between them.

� ρ0(p) = density as function of momentum (prior to voltage turn-on)

� ρ1(H0) = density as function of initial hamiltonian value; where H0 ∝ p2

� ρ2(HT ) = density as function of final hamiltonian value; where HT ∝
√
H0

� ρ1(H0) = (dp/dH0)ρ0(p(H0))

� ρ2(HT ) = (dH0/dHT )ρ1(H0(HT )) = (dH0/dHT )(dp/dH0)ρ0(p(H0(HT )))

� H0 =
1
2Ap

2; so dH0/dp = Ap and p =
√
2H0/A

� HT = 2
√
H0VT ; so dHT /dH0 =

√
VT /H0 and H0 = H2

TVT /4.

� p = HT

√
VT /

√
2A

�

ρ2(HT ) =
1

Ap

√
H0

VT
× ρ0(p(H0(HT ))) =

1√
2AVT

× ρ0

[
HT

√
VT√

2A

]
Thus the initial and final particle densities ρ0(p) and ρ2(HT ), respectively, of an adiabatic capture
have the same functional form. For example if ρ(p) ∝ [1− (p/p̂)2] then ρ(HT ) ∝ [1− (HT /ĤT )

2].
Here the circumflex X̂ denotes maximum value of X.



1.13. SEPARATRIX CROSSING POINTS 49

1.13 Separatrix crossing points

We defined the separatrix family (abbreviated SF) at the instant t0 to be the entirety of trajectories
that touch the curve (x0, p0 = ±ω0

√
1 + cosx0) at t0 = 0; where ω0 =

√
A× V (t0). We call this

curve (x0, p0) the instantaneous separatrix (abbreviated IS). The moment t0 could be at any time
during the voltage ramp. If t0 = T is the terminus of the ramp, such that the voltage becomes
frozen at the value V (T ), then all these trajectories will eventually (at t > T ) terminate on the
fixed points x = ±π. If t0 < T , then all these trajectories will be swept into the interior of the
growing IS. We may trace (in x, p space) the trajectories backward and forward in time from t0,
and superpose the instantaneous curve (x0, p0). Examples are shown in Fig. 1.8. It is observed that
each member of the SF touches the IS twice. Cursory inspection of such a graph may lead to the
identification of (x0, p0) as a grazing point, and ≈ (−x0, p0) as a crossing point. However, this is an
illusion: (x0, p0) is the crossing point, and ≈ (−x0, p0) has little or no significance. Explaining that
statement provides an opportunity to expound upon several points: (1) the nature of phase space,
and the peculiarities of trajetcories when the Hamiltonian is time dependent; and (2) demonstrate
an alternative way to genereate the separatrix family - by Taylor series.

But first a simple observation. What appears to be the grazing point, is actually the crossing
point - because the IS is moving! It is easy to make the mistake of thinking the IS is frozen; but
it is, in fact, expanding. If at t = 0 the SF of trajectories each touch the IS, then at t < 0 they
move toward the IS; and at t > 0 they all move away from the IS. At the apparent left crossing
point, when x0 > 0, the time is earlier (t < 0) and the IS would have been smaller, and the family
member definitely outside (so actually no crossing). At the apparent right crossing point, when
x0 < 0, the time is later (t > 0) and the IS will have been larger, and the family member definitely
inside (so, actually, not crossing). On the apparent grazing point, H(t0) = 2V (t0); shortly before
H(t0−δt) > 2V (t−δt0); and shortly after H(t0+δt) < 2V (t0+δt) where δt > 0 is a small quantity;
and so it truly is a crossing point.

In the most restrictive sense, the phase space is the entire configuration of points (x, p) accessible
to the dynamical system; if we stop at that interpretation there is no problem. But we may also
think of the phase space as being occupied by trajectories, or flow lines. If that view is adopted,
then we must not forget that different trajectories progress/advance (in phase space) at different
rates. The interpretation of trajectories in the phase space becomes even more perilous when the
Hamiltonian varies. If trajectories cross, there is no physical inference to be made about a shared or
coincident time; because the traversal of a given graphical crossing point (x, p) occurs at different
times for each the two trajectories. The apparent crossing points are illusory and irrelevant because
they occur at times ( ̸= t0) when the IS would have been or will be at a different location.

1.13.1 Bounding curves

For convenience we shall move the origin of time such that t0 = 0. The separatrix family is the
manifold of trajectories that are captured at t = 0. To visualize this family, locally in time, one
may trace backward in time all the trajectories terminating on the IS at t = 0. By “locally” we
mean the interval t = [−τ, 0] where τ is the libration period of small amplitude motion. The tracing
may be accomplished either by numerical integration or by the methods introduced in Sec. 1.11.
Fig 1.12-left shows the result for positive momenta moving rightward. Trajectories are bounded in
the near past by a single composite curve: the IS and the SF member terminating on x0 → +π,
whichever is the larger value of p. This boundary is slighly larger than the one introduced by
Sayasov, who omits the contribution of the IS, and reflects that all trajectories on the IS at t0 = 0
are captured. There are similar findings for the negative momenta travelling left toward x0 = −π.
The methods of Sec. 1.11 cannot be extrapolated beyond ±τ . To access earlier (or later) times
we must rely on numerical integration of the motion equations. If the trajectories are traced into
the distant past, we find that the SF trajectory terminating on x0 → π is nolonger a bounding
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trajectory. This is because there are additional trajectory crossings (one by another) during the
rotation era that modify the stratification of the flowlines.

One may also visualize the SF, locally, going forward in time for the interval t = [0,+τ ]. Fig 1.12-
right shows the result for positive momenta moving rightward. All trajectories are bounded in the
near future by a single composite curve: the IS and the SF member eminating from x0 → −π,
whichever is the larger value of p. There are similar findings for negative momenta travelling left.
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Figure 1.12: Left: trajectories terminating on instantaneous separatrix (IS) traced backward in
the interval t = [−τ, 0]. Right: trajectories eminating from the IS traced forward in the interval
t = [0,+τ ]. Darker and lighter shades of the same colour denote the same trajectory at eralier and
later times, respectively. Frequency slew rate β = ϵ× ω = 0.05.

1.13.2 Vector methods

Vector methods simplify the task of determining the separation or angle between two arc segments
(in terms of vector scalar or cross products). Accordingly, we introduce locus vectors (in phase
space) for the unperturbed motion X = [x(z), x′(z)] and perturbation A = [α(z), α′(z)]. These
dimensionless quantities can be manipulated just like geometrical vectors. As time flows on, the
vector X moves along the IS. The tangent vector is X′ ≡ dX/dz = [x′(z), x′′(z)]. The unit tangent
is X′/|X′|. The unit normal is n = [−x′′(z), x′(z)]/|X′|. Likewise the tangent vector to A is
A′ = dA/dz = [α′(z), α′′(z)]. Specifically, the instantaneous separatrix is the locus generated by
X = [2 arcsin[tanh(q+ z)], 2 sech(q+ z)], where z = ω0t and q is the initial phase. The unit normal
is n = [sinh(q + z), cosh(q + z)]/

√
cosh[2(q + z)].

1.13.3 Crossing point

If ω(t) is held constant, the IS becomes frozen. A trajectory on the IS is of the form X. A real
trajectory is of the form r = X+A where A is the perturbative motion induced by ω̇. The tangent
vectors to these locii are the derivatives X′ and r′. The cross product of the two tangent vectors
is X′ ∧ r′ = X′ ∧A′. At the crossing point A′ = [0, 0], and so the product is zero; and the vectors
are locally parallel. This property follows from two causes: (1) the motion starts precisely at t = 0
when ω(t) = ω0; and (2) the imposed initial conditions α(0) = α′(0) = 0. The former implies there
has been no time for additional forces to develop and thus α′′(0) = 0. From these causes it follows
that α′′ ∝ ϵz and α ∝ ϵz3 locally in the vicinity of the touching point. If there had been a ∆ω
at t = 0 to drive the perturbation, things would have turned out differently. If ω(t) is allowed to
vary, the IS expands. There is no real trajectory of that form, but it is a useful fiction. Under this
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condition, the tangent vector to the IS becomes X′ + ϵX; the product of tangent vectors gains an
additional term, and is no longer zero at the crossing point; thus a crossing of the locii emerges.

1.13.4 Taylor expansion

We define the separatrix family at the instant t0 to be the entirety of trajectories that touch the
curve (x0, p0 = ±ω0

√
1 + cosx0) at t0 = 0. We now demonstrate how to find family members using

Taylor series. Let z = ω0t be dimensionless time. We introduce the trial function x(z) =
∑N

k=0 xkz
k.

The initial conditions at t = 0 imply x0 = x(0) and x1 = x′(0) = ẋ(0)/ω = p(0)/ω. The equation
of motion is z′′ + (ω(z)/ω0)

2 sin[x(z)]. The secret to simplicity is to avoid expanding the sine in a
power series. Instead, take derivatives and insert z = 0.

(n+ 2)!xn+2 +
1

ω2
0

(
d

dz

)n [
ω2(z)× sinx(z)

]∣∣
z=0

= 0 , (1.103)

allows us to read off the coefficients xk (in tems of lower coefficients in the series). We are invoking
super-determinism: the entire future of x(z) is predictable form the infinite set of derivatives at
t = 0. It is a matter of choice at what order we truncate the Taylor series for ω(z). If we expect
that ω changes little over the time scale appropriate to x(z), then we may truncate to second order:
ω′′′ and higher order terms are discarded. Let ω′ = ϵω0 and ω′′ = δω0 where ϵ, δ are dimensionless.
For example, the first three coefficients are:

2x2 = − sinx0 , 6x3 = −[2ϵ sinx0 + x1 cosx0]

24x4 = [−2(δ + ϵ2) + cosx0] sinx0 − 4ϵ x1 cosx0 + x21 sinx0

x(z) ≡ x[z, ϵ, δ] is the complete solution including the effect of the perturbation ω(t). To find the
perturbation, we form the difference α(z) = x[z, ϵ, δ]− x[z, 0, 0], and likewise for α′(z). For brevity
and simplicity, we shall assume that the terms in ϵ2 and δ may be discarded. Truncated to order
z5 the perturbation is:

α = −1

3
z3ϵ sinx0 − 1

6
z4ϵ x1 cosx0 +

1

60
z5ϵ[2 sin(2x0) + 3x21 sinx0] . (1.104)

As x0 → 0, the coefficients of odd powers (z3, z5, etc) tend to zero, and we must take higher even
powers such as z6.

Tracing the trajectory A = [α(z), α′(z)] about z = 0 for the time interval t = [−τ,+τ ] leads to
distinctive cusp and21 lobed trajectories. If x0 < 0 thus cusp appears for α′ > 0; and if x0 > 0 the
cusp appears at α′0. As x0 → 0, the lobes shrink to zero. Examples are given in Fig. 1.8 for the
cases x0 = ±π/2. Additional examples are provided in Fig. 1.13.

1.13.5 Other crossing point

As noted above, the apparent crossing point ≈ (−x0, p0) is bogus and (in itself) of no interest.
However, it does betray an interesting property of the perturbative motion: that it returns momen-
tarily to zero. We look for solutions z ̸= 0 of α(z) = 0 and α′(z) = 0; and denote these instances
by zx and zp, respectively. The equation α(z) = 0 has two distinct solutions (in addition to three
repeated roots at z = 0). The relevant solution tends to zero as x0 → 0. The perturbation touches
the separatrix, so we substitute x1 =

√
2
√
1 + cosx0 = 2 cos(x0/2), yielding

zx =
10 cosx0 −

√
10
√
(9 + 16 cosx0 − 15 cos 2x0)

4(3 + 5 cosx0) sin(x0/2)
≈ −x0 +

41x30
120

+ . . . (1.105)

21Cusp (coloquial): a pointed end where two curves meet. Lobe (coloquial): a curved or rounded projection.
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Figure 1.13: Perturbative trajectories [Ap, Ax] ≡ [α, α′] for the interval t = [−τ,+τ ]. Left: trajec-
tories such that x0 ≤ 0 at t0 = 0. Right: trajectories such that x0 ≥ 0 at t0 = 0. Within a single
plot, darker and lighter versions of the same colour denote the same trajectory at earlier and later
times, respectively. Frequency slew rate β = ϵ× ω = 0.05.

The roots of α′(z) = 0 have properties similar to those of α; the relevant solution tends to zero as
x0 → 0, namely

zp =
4 cosx0 −

√
(14 + 24 cosx0 − 22 cos 2x0)

2(3 + 5 cosx0) sin(x0/2)
≈ −3x0

4
+

7x30
32

+ . . . (1.106)

Because we are dealing with Taylor series expansions, the domain of validity is |zx| < 1 and |zp| < 1
and |x0| < 1. The roots zx, zp are unequal (unless x0 = 0) and they display different symmetries
depending on the sign of the initial position coordinate x0. If x0 = 0 the apparent grazing point
and bogus crossing point coalesce into a single crossing point.

It is not entirely clear what is the implication of zx ̸= zp. Nevertheless, we may insert the
solution zx into the motion X +A to find (an approximation for ) the other crossing point. Now
at t = 0, x0 = 2arcsin[tanh(q + z)] implies x0 ≈ 2q. Additionally A(zx=−x0) ≈ [0, 0]; and so the
other crossing point is ≈ X(zx=−2q) = [2 arcsin[tanh(−q)], 2 sech(−q)] = [−x0, p0].

1.13.6 Separation of locii

We make another estimate of the bogus crossing based on the separation between the perturbed
and unperturbed trajectories. Because α(z) and x[z, 0, 0] are in motion away from the common
initial point x0, p0, the separation has to be measured in the co-moving frame, and is measured
along the unit-normal vector, n. The separation is S = n ·A = α sin θ + α′ cos θ where cos θ is the
direction cosine between n and (0, 1). The sign of θ derives from the sign of x0. Fig. 1.14 shows
examples of S(z). We develop an approximation for S for short timescale |z| < 1 and small angle
|x0| < π/4. To first order in z, the unit normal is

n(z) ≈ 1√
1 + sin2(x0/2)

[sin(x0/2) + z C, 1− z C sin(x0/2)] , C ≡ cos2(x0/2)

1 + sin2(x0/2)
. (1.107)

We truncate A to order z4, that is

A ≈ −ϵ z2
[
1

3
z sinx0 +

1

6
z2 x1 cosx0, sinx0 +

2

3
z x1 cosx0

]
. (1.108)
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The perturbation emanates from the separatrix, so x1 =
√
2
√
1 + cosx0 = 2 cos(x0/2). The equa-

tion S = n ·A = 0 is the product of a cubic and quadratic in z. There are three distinct roots (in
addition to z = 0), one real and two complex. The real root is the location in time zb of the other
IS crossing:

zb ≈ −3x0
4

− 91x30
256

. (1.109)

The sign of zb is opposite to that of x0. So if x0 > 0, the crossing occurs before t = 0; and if x0 < 0,
the crossing occurs after t = 0. We have demonstrated this property for small values of x0, but it
is a general property of the separatrix family of curves. The time ordering of zb with respect to the
zeros of α, α′ is zx < zb < zp for x0 > 0; and zp < zb < zx for x0 < 0.
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Figure 1.14: Three separation curves S(z): emanating from x0 = 0 (green), x0 = −π/2 (blue) and
x0 = +π/2 (red). The tone, darker or lighter, indicates before or after t = 0.

1.13.7 Different form for the perturbation α

In this section we made a strict division between the induced perturbation α and pure unperturbed
basis; such that the function α has the property α′′(0) = 0 at the moment when ω(t) = ω0.
In preceding articles, in Secs. 1.10 and 1.11, we found certain expressions for α, α′ in terms of
expansions in y = ez These particular functions do not have the precise property that α′′ = 0
at z = 0; and so A′ is not precisely parallel to X′ at z = 0. There is a subtle mathematical
reason for this discrepancy: we took for our basis function Eq. (1.87) wherein the argument of the
hyperbolic functions was not z = ω0t but Z =

∫ t
0 ω(u)du. This gives the basis functions a flavour

of the perturbation ω(t); the chosen basis was not pure un-perturbed functions. There are three
consequences. First, that α′′(0) = −2ϵ sech q at z = 0. Second, that the mathematical expressions
for α, α′ are much simpler, facilitating simple expressions for the extrema of motion. Third, provided
that we retain those forms for α, α′ it is legitimate to write x(t) = 2 arcsin[tanh(q + ω0t+ ω̇0t

2/2)]
for |ω̇0t| ≪ ω0.

1.14 Conclusion

We have started from the premise that dilution of the density of particles in phase-space is equivalent
to and a surrogate for emittance increase. Equivalent because the areas contained within contours
of constant density (knowns as percentage emittance) expand during a non-adiabatic process. In
this article we presented all the ingredients for a calculation of the final (t = T ) phase-space density
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ρ, as a function of initial Hamiltonian values, resulting from a near-adiabatic transformation of the
time-dependent Hamiltonian from H(0) = 1

2Ap
2 to H(T ) = H(0)+V (T )[1−cosx]. Analytic forms

are given for all the ingredients, including the ∆H increments arising at the time of capture known
as separatrix crossing. Unfortunately, the cascading of four processes leads to complexity; and so
combination of the ingredients requires numerical computation. Consequently, the goal of a single
formula that exactly describes ρ[H(T )] in terms of the voltage ramp V (t) has eluded us; and we
cannot definitively point to one ramp as being better than another. However, in the limit that all
processes are near-adiabatic and the initial voltage is vanishingly small we have found H̃T to be a
universal function of H−

0 independent of the form of the ramp. In such cases, ρ[H(T )] is an image
of the original momentum distribution ρ(p). Deviations from these forms, notably the spreads
arising from poor adiabaticity, are shown to depend on the choice of the voltage ramp. Further, the
analysis has generated detailed insight into the mechanisms at play and the factors that influence
emittance increase. And the analysis provides a framework for numerical calculation that could be
expected to require less computer resources than demanded by particle tracking simulations.
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1.15 Jacobi elliptic functions

Some functions are defined by a differential equation or as the inverse of an indefinite integral; and
such are the Jacobi elliptic functions. The Hamiltonian, Eqn. (1.36), does not change the nature of
the stable (x, p) = (0, 0) and unstable (x, p) = (π, 0) Fixed Points (FP); and so the Jacobi elliptic
functions can be used as approximate solutions to the dynamical equations provided the Jacobi
parameter m = H(t)/V (t)/2 satisfies |δm/m| per oscillation period τ is very small. This leads to
the condition |ṁτ/m| ≪ 1 or |Ḣ/H − V̇ /V |τ ≪ 1. The m-definition means that m is calculated
from known H,V . H(t) is calculated by integrating Eqn. (1.37). These functions are defined both
inside (m < 1) and outside the bucket (m > 1); and on the instantaneous separatrix m = 1. Let
K(m) and E(m) be the complete elliptic integral of the first and second kinds, respectively.

Libration, m < 1

There are bounded motions inside the bucket with period τ = 4K(m)/ω. The two independent
solutions are

x(t) = 2 arcsin[
√
m sn(ωt,m)]

p(t) = 2
√
mω cn(ωt,m)

x(t) = 2 arcsin[
√
m cd(ωt,m)]

p(t) = −2
√
(1−m)mω sd(ωt,m)
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Rotation, m > 1

There are unbounded motions outside the bucket with two periods equal τ = 4K(1/m)/(ω
√
m).

The two independent solutions are

x(t) = 2 arcsin[sn(
√
mωt, 1/m)]

p(t) = 2
√
mω dn(ωt, 1/m)

x(t) = 2 arcsin[cd(
√
mωt, 1/m)]

p(t) = −2
√
m− 1ω nd(ωt, 1/m)

Transition, m = 1

The two independent solutions are

x(t) = 2 arcsin[tanh(ωt)]

p(t) = 2ω sech(ωt)

x(t) = π

p(t) = 0

Notice that the FPs are built into the Jacobi functions, and that for each sign (±) of momentum
there is only one astable FP in the range x = [−π, π]. Although it might seem that each RF bucket
has a share in two astable FPs, a perturbation of the synchronous phase reveals there is really only
one per bucket.

1.16 Form Factor Integrals

Now we turn to the particular case of the periodic potential U(x) = [1 − cosx] and evaluation
of the form-factor integrals Eqn. (1.40). In this section, a primed quantity X ′ does not denote a
derivative. The prime denotes rotation, and its absence libration.

1.16.1 Integrals

The potential [1− cosx] = 2 sin2(x/2) is traced out by a motion x(s). Inside the bucket, substitute
x(s) = 2 arcsin[

√
m sn(ωs,m)], leading to [1− cosx(s)] = 2m sn2(ωs,m). Let K = K(m) and ωτ =

4K. Including the oscillation initial phase, the integrand of Fk(q) is 2m sn2[ωs + q(2K/π),m]sk.
Let u = ωs and Q = q(2K/π) and Fk ≡ 2mIk where

Ik(m, q) =

∫ +τ/4

−τ/4
sn2(ωs+Q,m)skds

/∫ +τ/4

−τ/4
ds =

∫ +K

−K

[u
ω

]k
sn2(u+Q,m)du

/∫ +K

−K
du

Outside the bucket, substitute x = 2arcsin[sn(
√
mωs, 1/m)], leading to [1−cosx(s)] = 2 sn2(

√
mωs, 1/m).

Let F ′
k(q) be the form factor for motion outside the bucket. Let K ′ = K(1/m) and τ = 4K ′/(ω

√
m)

be two periods. Including the initial phase, the integrand of F ′
k(q) is 2 sn2[

√
mωs + Q,m]. Let

u =
√
mωs and Q = q(2K ′/π) and F ′

k ≡ 2I ′
k where

I ′
k(m, q) =

∫ +τ/4

−τ/4
sn2(

√
mωs+Q, 1/m)skds

/∫ +τ/4

−τ/4
ds

=

∫ +K′

−K′

[
u√
mω

]k
sn2(u+Q, 1/m)du

/∫ +K′

−K′
du =

[
1√
m

]k
Ik(1/m, q)
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To summarise:

inside Fk(q) = 2m Ik(m, q) and outside F ′
k(q) = 2Ik(1/m, q)/

√
mk .

When k = 0 the integral is unchanged when the origin is shifted, so I0 can be found in closed form:

I0(m, q) = I0(m, 0) =
1

2K

∫ +K

−K
sn2(u)du = C0(m) ≡ 1

m

[
1− E(m)

K(m)

]
and I ′

0(m, 0) = I0(1/m, 0)

In order to compute Ik(m, q) for k > 0, we have to resort to replacing sn2(u,m) by its Fourier
series, which are given in Ref.[55] [Chap.10, Art. 22.735, Ex. 5, p.520]

sn2(u,m) = C0(m)− 2π2

mK2

∞∑
n=1

Cn cos[u× (nπ/K)] and Cn =
nqn

1− q2n
(1.110)

Here 0 ≤ q < 1 is the nome q = exp[−πK(1−m)/K(m)]. Substituting the expression for sn2(. . . )
into the integral Ik(m, q) we obtain

Ik(m, q) =

(
2K

ωπ

)k ∫ +π/2

−π/2
vk

{
C0 −

∞∑
n=1

Cn cos 2n(v + q)

}
dv

/∫ +π/2

−π/2
dv (1.111)

1.16.2 Approximate forms

In principle, the integrals may be computed exactly from Eqn. (1.111). However, strong progress
can be made with much simpler approximate expressions that are valid for m ≪ 1 inside (and
m ≫ 1 outside) the RF bucket. The starting point is the first-order Taylor expansion:

sn2(u) ≈ (m/8) sin 2u(sin 2u− 2u) .

This is accurate to a few percent or less for m ≤ 1
2 .

Inside the bucket

I0(m, q) ≈ (1/2) +m(1− 2 cos 2q)/16 I0(m, 0) ≈ 1/2 −m/16

I1(m, q) ≈ [8(2 +m) sin 2q − 2m cos 2q(4q + sin 2q)]/64 I1(m, 0) = 0

I2(m, q) ≈ [2(8 +m)π2 + 12(8−m(π2 − 6)) cos 2q − 3m cos 4q + 48mq sin 2q]/384

I2(m, 0) ≈ [m(69− 10π2) + 16(6 + π2)]/384

F0(m, q) = m[1 +m(1− 2 cos 2q)/8]

F1(m, q) = m/(32ω)[8(2 +m) sin 2q − 2m cos 2q(4q + sin 2q)]

F2(m, q) = m/(192ω2)[2π2(8 +m) + 12(8−m(π2 − 6)) cos 2q − 3m cos 4q + 48mq sin 2q]

F0(m) = ⟨F0(m, q)⟩ = m(1 +m/8)

F1(m) = ⟨F1(m, q)⟩ = 0

F2(m) = ⟨F2(m, q)⟩ = m/(96ω2)[8π2 −m(12− π2)]

Outside the bucket

(
√
m)k I ′

k(m, q) = Ik(1/m, q) . (1.112)
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F ′
0(m, q) = 1 + (1− 2 cos 2q) /(8m)

F ′
1(m, q) =

1

32m
√
mω

[8(2m+ 1) sin 2q − 2 cos 2q (4q + sin 2q)]

F ′
2(m, q) =

1

192m2ω2

[
2π2(1 + 8m) + 12(8m+ 6− π2) cos 2q − 3 cos 4q + 48q sin 2q

]
F ′
0(m) = ⟨F ′

0(m, q)⟩ = 1 + 1/(8m)

F ′
1(m) = ⟨F ′

1(m, q)⟩ = 0

F ′
2(m) = ⟨F ′

2(m, q)⟩ = 1/(96m2ω2)[−12 + (1 + 8m)π2]

1.17 Whence kinetic energy T and potential energy U?

Gottfried Liebniz (circa 1680) was the first to introduce the idea of Kinetic Energy, calling it vis
viva (living force). Thomas Young (1807) just called it energy. William Thomson, Lord Kelvin
(1824–1907) added the adjective “kinetic” to separate it from “potential energy”. The symbol
T was introduced by Lagrange (1788) in Mécanique Analytique and subsequently adopted W.R.
Hamilton (1834). It is sometimes suggested that T originates from “travail mécanique” (mechanical
work) or “quantitié de travail” (quantity of work). However, there is no mention of the words “vis
viva” or “travail” in Mécanique Analytique. The terms mechanical work and quantity of work were
introduced by Poncelet and Coriolis (circa 1829) to distinguish between two formulae with different
calibration factors, namely T = m× v2 and T = 1

2m× v2.
The origin of the symbol U for potential energy is equally unclear. Lagrange (1788) used

the symbol V . William Rowan Hamilton (1834) called the potential energy the “force function”
but introduced the symbol U in “On a General Method in Dynamics”22; and this was adopted by
William Rankine (1858). It has been suggested that U derives from, in Hamilton’s words, its “great
utility in theoretical mechanics”. However, the root may be more pedestrian. Mathematicians often
group symbols alphabetically, such as x, y, z. And, likewise, Hamilton introduced the triplet T,U, V :
mẍ = dU/dx and mẋ = dV/dx. The quantity V is the path integral of the kinetic energy T .

22Philosophical Transactions of the Royal Society, part II for 1834, pp. 247–308.
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Wärmestrahlung eine wesentliche Rolle?” Annalen der Physik Vol. 341, Issue 11 (1911), p.91-
118.

[8] P. Ehrenfest: “Adiabatic Invariants and the Theory of Quanta” Verslagen Kon. Akad. Ams-
terdam Vol. 25 (1916) p.412-433; Ann. Physik Vol. 365 Issue 19 (1916) p.327-352; Phil. Mag.
33 p.500-513.

[9] P. Ehrenfest: “A mechanical theorem of Boltzmann and its relation to the theory of energy
quanta”, KNAW, Proceedings, 16 II, 1913-1914, Amsterdam, 1914, pp. 591-597. KNAW =
Koninklijke Nederlandse Akademie van Wetenschap.

[10] R. Clausius: “Reduction of the Second Law of Thermodynamics to General Mechanical Prin-
ciples”, Pogg. Ann. Phys. Chem. 142 p.433. (1871); Philos. Mag. 42 p.161 (1871).
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