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Chapter 1

Motion In Dual-Harmonic Potential
Well

“This book is an attempt to restore the Jacobian functions to the elementary curriculum by ex-
hibiting them as functions constructed on a lattice”, E.H. Neville[17] (1944).

1.1 Prologue

Let t, x and p = ẋ be time, position and momentum; and dots denote time derivatives (dx/dt ≡ ẋ).
This article concerns the motion of a particle having the equation of motion (EOM)
ẍ + ω2[sinx ± sin 2x] = 0. Ensembles of particles that homogeneously populate equi-density
contours of the corresponding Hamiltonian H(x, ẋ), constitute bunches. The negative sign gives
long bunches, while the positive sign produces short bunches. The restoring force in the EOM can
be derived from a dual-harmonic[1, 2, 3, 4] (i.e. periodic) potential well. Motion that is confined
within the well is termed libration, whereas motion that streams over the well is termed rotation.

For the long bunch case, Elena Shaposhnikova1 wrote down a solution for the motion in the
dual-harmonic well and used it as basis for the calculation of the beam transfer function[6] for
amplitude- and phase- modulations of the RF-waveform (that maintains the well), as a precursor
to particle-beam stability analysis.2 No references or details of the derivation are provided, only
the result. It occurred to me that there are similar (or related) results for the short bunch case,
and for motion that escapes the periodic potential well. But it is necessary to either find (in the
literature) the derivation, or to discover the derivation oneself. Further, it transpires that the same
derivation solves the general case of the EOM ẍ+ ω2[sinx+ q sin 2x] = 0 with arbitrary q.

Shaposhnikova’s solution is given in terms of the Jacobi elliptic functions: cn(z,m), sn(z,m),
dn(z,m). So it is natural to look in texts about those functions. Whereas there are many sources
that state the mathematical properties of these functions, there are rather fewer that demonstrate
their application to physical problems. An account of the use of elliptic function in classical
mechanics is given in Sec. 1.9. Thus far the author has not found a text containing a derivation of
Elena’s solution; so we have prepared one, and then applied it to a variety of conditions including
the bunch-shortening regime.

1An alternative transliteration from Russian to English of this name is “Chapochnikova”.
2Shaposhnikova developed these ideas, including the loss of Landau damping, in series of papers[7, 8, 9, 10].
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6 CHAPTER 1. MOTION IN DUAL-HARMONIC POTENTIAL WELL

1.2 Basic properties of Jacobi elliptic functions

The elliptic functions may be defined either by differential equations or as the inverse of incomplete
integrals. Here, in the manner of Meyer[11], we introduce them from a dynamics point of view.
There are four sets of 3 functions, giving a total of twelve. However, the properties of all may be
derived from the principal set: cn, sn, dn. Each function has two arguments (z,m); z is the phase
in radian, and m is the Jacobi parameter. k =

√
m is called the elliptic modulus. The Jacobi

elliptic functions are solutions of the system of equations and initial conditions

Ẋ = Y Z, Ẏ = −Z X, Ż = −mX Y . (1.1)

sn(0,m) = X(0) = 0, cn(0,m) = Y (0) = 1, dn(0,m) = Z(0) = 1 . (1.2)

Alternatively, we may think of them as defined by the following relations:

cn(z,m)2 + sn(z,m)2 = 1 and dn(z,m)2 +m.sn(z,m)2 = 1 (1.3)

dcn(z,m)

dz
= −dn(z,m)sn(z,m) ,

dsn(z,m)

dz
= +dn(z,m)cn(z,m) ,

ddn(z,m)

dz
= −m.cn(z,m)sn(z,m)

(1.4)
Let X = sn(t,m), Y = cn(t,m) and Z = dn(t,m). From the properties above, it follows that:

(Ẋ)2 = (1−X2)(1−mX2) , (Ẏ )2 = (1−Y 2)[(1−m)+mY 2] , (Ż)2 = (1−Z2)[Z2−(1−m)] . (1.5)

It is critical to note that each of the functions cn, sn and dn satisfies a different equation; and
therefore cn and sn do not form a basis (to satisfy initial conditions) in the same way that sine and
cosine are two independent solutions of the harmonic oscillator equation ẍ + ω2x = 0. To find a
second linearly independent solution, we advance the phase by a quarter period K(m). We may
term these quadrature solutions:

cn(z+K,m) = −
√
1−m sd(z,m), sn(z+K,m) = cd(z,m), dn(z+K,m) = nd(z,m) . (1.6)

The period of oscillation (for pure real value of the argument z) is given by z = 4K(m) where K is
the complete elliptic integral of the first kind. The period of repetition (for pure imaginary value
of the argument z) is given by z/

√
−1 = 4K ′(m) ≡ 4K(1−m).

The twelve Jacobi elliptic functions are generally written as pq(z,m) where p and q are any
of the letters c, s, n, d. From the multiplication rule3 it follows that function pq ≡ pr/qr, (with
arguments suppressed). For example cn/dn ≡ cd; and sn/cn ≡ sc. Note that in some older texts
the ratio sn(z,m)/cn(z,m) is written tn(z,m) in analogy to sin(z)/ cos(z) ≡ tan(z) for the circular
trigonometric functions; but this is not recommended.

By convention, the Jacobi functions are defined for the Jacobi parameter 0 ≤ m ≤ 1. When m
is extended into the range m ≥ 1, the functions become other functions. This property is called
the Jacobi real transformation:

sn(z,m) → sn(z
√
m, 1/m)/

√
m, cn(z,m) → dn(z

√
m, 1/m) , dn(z,m) → cn(z

√
m, 1/m) , m ≥ 1 .

(1.7)

The Jacobi elliptic functions provide a basis to find the solutions to the equation
ẍ = (a− x)(b− x)(c− x). We shall not discuss this further, but note that depending on the values
of the constants a, b, c a wide variety of non-linear oscillators may be studied. See Whittaker[24],
or Brizard[25] for the equivalent form (ẋ)2 = a0 + a1x+ a2x

2 + a3x
3 + a4x

4.

3The multiplication rule follows immediately from the identification of the elliptic functions with the Neville[17]
theta functions.
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1.3 Single Harmonic

The simple case ẍ+ ω2 sinx(t) = 0 describes the motion of a simple pendulum. Here ω is angular
frequency. To illustrate how solutions are found, we shall suppose for a moment that we do not
know the solution is x(t) = 2 arcsin[

√
m sn(ωt,m)]. We multiply the EOM by ẋ and integrate with

respect to time, leading to the Hamiltonian:

(1/2)(ẋ)2 + ω2[1− cosx] = 2Jω2 . (1.8)

Here the potential U = (1− cosx) has been chosen to be zero at the centre of the well, x = 0. The
constant of integration J is chosen to satisfy the initial conditions, and is dimensionless. Employing
the identity cosx = cos2 x/2 − sin2 x/2 leads to:

(1/2)(ẋ)2 + 2ω2(sinx/2)2 = 2Jω2 . (1.9)

We make the key transformation sin[x(t)/2] → X(t). We form the time derivative:

Ẋ = (1/2) cos[x(t)/2] ẋ = (1/2)
√
1−X2 ẋ . (1.10)

Substitute the expressions for sin(x/2) and ẋ in terms of X and Ẋ into Eq. 1.9, and solve for Ẋ:

(Ẋ)2 = ω2(1−X2)(J −X2) . (1.11)

Eq. 1.11 is satisfied by X ∝ sn(ωt,m).
The next step is to substitute a trial function X(t) =

√
r sn(at,m) with adjustable constants

(a, r,m, J) into Eq. 1.11, leading to

(a2r − Jω2) + r[(1 + J)ω2 − a2(1 +m)]sn(z,m)2 + r(a2m− rω2)sn(z,m)4 = 0 . (1.12)

The coefficients of the time-varying functions must all be zero. This condition is sometimes called
harmonic balance.4 This leads to simultaneous non-linear equations for the adjustable constants.
The number of equations is reduced by half when we take X =

√
r sn(z,m) rather than X =

r sn(z,m). These equations are purely algebraic equations, and may produce parameter values
that are incompatible with the solutions X and Ẋ being pure real. Moreover, the values may be
incompatible with the expected arguments of the Jacobi functions; phase z real and parameter
0 ≤ m ≤ 1. Therefore, the simultaneous solutions, and the results of their adoption, must be
carefully inspected.

In this case, the coefficients of sn0, sn2, sn4 all zero leads to three simultaneous non-linear equa-
tions for the adjustable parameters. There are 3 equations and 4 adjustable constants. Therefore,
we may choose one quantity as the control parameter; and find the remainder constants in terms
of that parameter. If we treat r as the parameter, we find the solution [a = ω, J = r, m = r]; or

X =
√
r sn(ωt, r) , Ẋ/ω =

√
rcn(ωt, r)dn(ωt, r) , 0 ≤ r ≤ 1 . (1.13)

and sin[x(t)/2] = X , ẋ/ω = 2
√
rcn(ωt, r) . (1.14)

This (x, ẋ) is a libration, confined within the well. The Hamiltonian value is 2Jω2 = 2rω2. The
period of oscillation τ(r) is given by the condition aτ = 4K[m]. We substitute the solutions for a
and m to find τ(r) = 4K(r)/ω.

If we treat m as the parameter, we find two solutions. The first [a = ω, J = m, r = m] is just
another way of writing the libration solution, with r replaced by m. The second is a new solution:
[a = ω/

√
m, J = 1/m, r = 1], or

sin[x(t)/2] = X = sn(ωt/
√
m,m) , ẋ/ω = 2dn(ωt/

√
m,m)/

√
m, 0 ≤ m ≤ 1 . (1.15)

4The terminology is often reserved for driven systems wherein the harmonic content of the drive and response
must be equated. But the principle holds also for free oscillations.
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This (x, ẋ) is a rotation, traversing the well. The Hamiltonian value is 2Jω2 = 2ω2/m. The period
of oscillation τ(r) is given by the condition aτ = 2K[m]. We substitute the solutions for a and r
to find τ(m) = 2K(m)

√
m/ω.

The fact that there are two solutions for the same value of m is potentially the source of
ambiguity. For that reason, it is customary to write

sin[x(t)/2] = sn(ωt
√
n, 1/n) , ẋ/ω = 2

√
n dn(ωt

√
n, 1/n) with n ≥ 1 and n = 1/m . (1.16)

It may be noted that if we take the libration Eq. 1.14 and extend into the range r ≥ 1 by use of
the Jacobi real transformation, we obtain the rotation Eq. 1.16 with n replaced by r. However, the
behaviour m → 1/m transforms a libration into a rotation, is not a general property of non-linear
oscillations described by combinations of Jacobi elliptic functions.

It may be confirmed that cn(z,m) is not a solution of the pendulum oscillator EOM by substi-
tuting X =

√
r cn(at,m) and repeating the steps above. The conditions for harmonic balance yield

three equations for the adjustable constants, one of which is a2m + rω2 = 0. Imaginary values of
a or ω, and negative values of m or r, are not permitted; therefore cn is not permissible.

An alternative approach to the problem is to work directly with the EOM: a second order
differential equation. To proceed, we substitute the trial function and its second derivative into
the EOM. This leads again to an equation containing powers of the Jacobi elliptic function, and
simultaneous equations for the adjustable constants. Naturally, the outcome is the same. However,
the details of the calculation are more laborious and protracted (because, at the very least, an
additional derivative must be calculated and simplified). Contrastingly, working only with the first
derivative is a simpler route because it appeals to the fact that there is an integral of motion Jω2

that is a conserved quantity. Consequently, the value of the Hamiltonian is given automatically (by
the equations for harmonic balance); and there is no need to substitute explicit expressions for x
and ẋ into Eq. 1.9 to calculate the total energy.

1.4 Dual Harmonic - bunch lengthening

For the long-bunch mode of operation, the second harmonic opposes the fundamental waveform.
The equation of motion (EOM) is ẍ+ω2[sinx− 1

2 sin 2x] = 0. The energy function (or Hamiltonian)
is obtained by multiplying the EOM throughout by ẋ, and integrating with respect to time. The
Hamiltonian is

(1/2)(ẋ)2 + 2ω2 sin(x/2)4 = 2Jω2 . (1.17)

The potential function U = 2 sin4(x/2) is chosen to be zero at the bunch centre x = 0. We begin
the investigation by trying the transformation used for the pendulum oscillator: sin[x(t)/2] → Y (t)
and ẋ = 2Ẏ /

√
1− Y 2. We substitute into Eq. 1.17, yielding

2ω2Y 4 +
2(Ẏ )2

1− Y 2
= 2Jω2 . (1.18)

This may be solved for (Ẏ )2 = ω2(1−Y 2)(J −Y 4). The expression contains powers of Y up to the
sixth; and this is not compatible with differential equations that define cn, sn and dn.

Evidently, a new trial function is needed. We shall take a combination of Jacobi functions:
sin[x(t)/2] = F (cn, sn, dn). There are some constraints: F must be anti-symmetric about x(t) = 0
and symmetric about x = ±π; the modulus of |F | ≤ 1; and F is chosen to cancel high powers of
the Jacobi functions. Another constraint is that any combinations of the Jacobi functions must be
co-periodic, which implies they all have the same arguments (z,m). The strength of the restoring
force varies during the oscillation, and this provides the hint that the motion is modulated at twice
the fundamental oscillation frequency. One possibility is sin[x(t)/2] = Y

√
1−X2 where X,Y are

a doublet chosen from the triplet cn, sn, dn. It transpires that such a choice leads to an analog of
Eq. 1.18 that contains even higher powers of Y .
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Another possibility is sin[x(t)/2] → Y (t)/
√
1−X2(t). Forming the derivative we find:

1

2
cos[x(t)/2] ẋ ≡ 1

2

√
1− Y 2

1−X2
ẋ =

(1−X2)Ẏ + Y X Ẋ

(1−X2)3/2
. (1.19)

The relationships (Eq. 1.1) between cn sn, dn imply the possibility that Y ×X × Ẋ is proportional
to Ẏ and that the equations may close. The expressions for sin(x/2) and ẋ are substituted in the
Hamiltonian, Eq. 1.17, with the result:

ω2Y 4 +
[(1−X2)Ẏ + Y X Ẋ]2

1− Y 2 −X2
= (1−X2)2Jω2 . (1.20)

The next step is to insert trial functions in the place of X and Y . One such possibility is Y (t) =√
r cn(at,m) and X(t) =

√
p sn(at,m) where a, r, p,m and J are adjustable constants. The result is

an expression in powers of sn(at,m) up to the sixth that is equated to zero. This is generally zero if
the coefficients of all powers sn0, sn2, sn4, sn6 are individually zero. There results four simultaneous
non-linear equations.

sn0 → (1−r)(J−r2)ω2 = 0 , sn2 → a2(1−p)2r− [(2+p−3r)r2+J(−3p+r+2pr)]ω2 = 0

sn4 → −a2m(1−p)2r+[(1+2p−3r)r2+Jp(p(r−3)+2r)]ω2 = 0 , sn6 → (p−r)(Jp2−r2)ω2 . (1.21)

1.4.1 Solution types

In general there are five types of solution: (1) trivial solutions such as r = 0 or p = r = 1; (2) p = r
and r ̸= 1; (3) r = 1 and p ̸= 1; (4) other. The trivial solutions correspond to the particle being
stuck at x = 0 or x = ±π. The second and third types are the libration and rotation solutions,
respectively. The fourth type are accidental duplicates of types (2) and (3) for special conditions
between p and r; typically they are valid only for very restrictive ranges of p or r. The exact form
of the solutions depends on which of the variables we take as the control parameter.
Trivial

p → 1 yields sin[x/2] =
√
r & ẋ = 0; r → 1 & p → 1 yields sin[x/2] = 1 & ẋ = 0 . (1.22)

Libration: p → r and r ̸= 1

sin[x/2] =

√
r cn(at,m)√

1− r sn(at,m)2
ẋ =

2a
√
1− r

√
r dn(at,m) sn(at,m)

−1 + r sn(at,m)2
(1.23)

Rotation: r → 1 and p ̸= 1

sin[x/2] =
cn(at,m)√

1− p sn(at,m)2
ẋ =

2a
√
1− p dn(at,m)

−1 + p sn(at,m)2
(1.24)

Special case: p → m

sin[x/2] =
√
r
cn(at,m)

dn(at,m)
=

√
r cd(at,m) =

√
r sn(at+K[m],m) is not a solution.

1.4.2 Treat r as parameter

We may find the adjustable constants in terms of r. There are two distinct solutions. The first
solution is [a = ω

√
r(1− r), m = (1 + r)/(r − 1), p = −1, J = r2]; but it is incompatible with

0 < m ≤ 1 and is rejected. The second is the libration solution:

[a = ω
√
2r, m = (1 + r)/2, p = r, J = r2] valid for 0 < r ≤ 1 . (1.25)

These values are to be substituted in Eq. 1.23; this is the solution given by Shaposhnikova. The
Hamiltonian value is 2Jω2 = 2r2ω2. The period of oscillation τ(r) is given by the condition
aτ = 4K[m]. We substitute the solutions for a and m to find τ(r) = 4K

[
1
2(1 + r)

]
/[ω

√
2r].
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1.4.3 Treat p as parameter

We may find the adjustable constants in terms of p. There are two distinct solutions. The first is
the rotation solution

[a = (ω/p)
√
1 + p, m = 2p/(1 + p), r = 1, J = 1/p2] valid for 0 < p ≤ 1; . (1.26)

These values are to be substituted in Eq. 1.24. The Hamiltonian value is 2Jω2 = 2(ω/p)2. The
period of oscillation τ(p) is given by the condition aτ = 2K[m]. We substitute the solutions for a
and m to find τ(p) = 2K [2p/(1 + p)] (p/ω)/

√
1 + p.

The second is the libration solution with r substituted by p. We may also treat m as the param-
eter. However, this leads either to duplicate solutions of those above or to solutions incompatible
with the adjustable constants having real values.

1.4.4 Libration & Rotation, q = −1/2

2 4 6 8 10 12 14
ωt

-3

-2

-1

1

2

3

x,p

2 4 6 8
ωt

-1.5

-1.0

-0.5

0.5

1.0

1.5

x,p

Figure 1.1: Libration: Position (blue) and momentum (yellow) trajectories versus phase. Left:
r = 0.999. Right: r = 0.5
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0.5 1.0 1.5 2.0 2.5 3.0
ωt

-4

-3

-2

-1

1
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x,p

Figure 1.2: Rotation: Position and momentum trajectories versus phase. Left: p = 0.999. Right:
p = 0.5 . The x-motion (blue) has been folded modulo π; really it goes π → −π → −3π and so on.
Hence the period is that of the momentum p shown yellow.

Whereas the phase space portraits Figs. 1.3 & 1.6 could have been constructed from the Hamil-
tonian by solution for ẋ in terms of x and J , the trajectories x(t) and ẋ(t) versus time can only be
graphed if explicit solutions to the EOM have been obtained.
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Figure 1.3: Contours of constant Hamiltonian for libration in bunch-lengthening mode. Blue:
r = 0.999; gold: r = 7/8; green: r = 3/4; coral: r = 1/2; purple: r = 1/4; brown: r = 1/8.
Abscissa: position (radian). Ordinate: momentum (dimensionless).
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Figure 1.4: Contours of constant Hamiltonian for rotation in bnch-lengthening mode. Blue: p =
0.999; gold: p = 0.8; green: p = 0.7; coral: p = 0.6; purple: p = 0.5; brown: p = 0.4. Abscissa:
position (radian). Ordinate: momentum (dimensionless).
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1.5 Dual Harmonic - bunch shortening

For the long bunch mode of operation, the second harmonic reinforces the fundamental waveform.
The equation of motion (EOM) is ẍ+ ω2[sinx+ 1

2 sin 2x] = 0. The energy function is obtained by
multiplying the EOM throughout by ẋ, and integrating with respect to time. The Hamiltonian is

(1/2)(ẋ)2 + 2ω2
[
1− cos(x/2)4

]
= 2Jω2 . (1.27)

The potential function U = 2[1− cos4(x/2)] ≡ 2 sin2(x/2)[2− sin2(x/2)] is chosen to be zero at the
bunch centre x = 0. We begin the investigation by trying the transformation used for the pendulum
oscillator: sin[x(t)/2] → Y (t) and ẋ = 2Ẏ /

√
1− Y 2. We substitute into Eq. 1.27, yielding

2ω2(2Y 2 − Y 4) +
2(Ẏ )2

1− Y 2
= 2Jω2 . (1.28)

This may be solved for (Ẏ )2 = ω2(1− Y 2)(J − 2Y + Y 4). The expression contains powers of Y up
to the sixth; and is not compatible with differential equations that define cn, sn and dn.

We try again the solution sin[x(t)/2] → Y (t)/
√

1−X2(t). The expressions for sin(x/2) and ẋ
are substituted in the Hamiltonian, Eq. 1.27, with the result:

2ω2

[
1− A2

B2

]
+ 2

[BẎ + Y X Ẋ]2

AB2
= 2Jω2 and A = (1− Y 2 −X2) , B = (1−X2) . (1.29)

The next step is to insert trial functions in the place of X and Y . Again, we try Y (t) =
√
r cn(at,m)

and X(t) =
√
p sn(at,m) where a, r, p,m and J are adjustable constants. The result is an expression

in powers of sn(at,m) up to the sixth that is equated to zero. This is generally zero if the coefficients
of all powers sn0, sn2, sn4, sn6 are individually zero. There results four simultaneous non-linear
equations.

sn0 → ω2(r − 1)[J + r(r − 2)] = 0 , sn6 → (p− r)[Jp2 + r(r − 2p)]ω2 = 0 ,

sn2 → a2(1− p)2r − [J(2pr − 3p+ r) + r(2 + 4p− 6r − 3pr + 3r2)]ω2 = 0 ,

sn4 → −a2m(1− p)2r + [Jp(p(r − 3) + 2r) + r(2p2 + p(4− 6r) + 3(r − 1)r)]ω2 = 0 . (1.30)

Because we have used the same trial function, the solutions are of the same form as Eqs. 1.22-1.24
but with different values for the adjustable constants.

1.5.1 Treat r as parameter

We may find the adjustable constants in terms of r. There are three distinct solutions. The first,
p = 1 is a trivial solution (particle stuck at fixed point). The second is the libration solution:

[a = ω
√
2
√
1− r, m = r/2, p = r, J = (2− r)r] valid for 0 < r ≤ 1; . (1.31)

These values are substituted in Eq. 1.23. The Hamiltonian value is 2Jω2 = 2ω2(2−r)r. The period
of oscillation τ(p) is given by the condition aτ = 4K[m]. We substitute the solutions for a and
m to find τ = 4K[r/2]/(ω

√
2
√
1− r). The third solution [a = ω

√
2− 3r + r2, m = r/(r − 2), p =

r(2− r), J = (2− r)] and the conditions a real and 0 < m ≤ 1 leads to the result r < 0; which is
incompatible with the trial function.

1.5.2 Treat p as parameter

We may find the adjustable constants in terms of r. There are three distinct solutions. The first
[a =

√
p− 1 (ω/p), m = 2p, r = 1, (2p − 1)/p2] and third [a = ω

√
2
√
1− p/(1 + p), m = −p, r =

2p/(1 + p), J = 4p/(1 + p)2] solutions are incompatible with a real and 0 < m ≤ 1. The second is
the libration solution with r substituted by p.

We may also treat m as the parameter. There are six trivial solutions; and three distinct viable
solutions. Of these, the first is an r = 1 rotation; the second is a p(m) = r(m) solution; and the
third is incompatible with p > 0 and r > 0.
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1.5.3 Libration, q = +1/2
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Figure 1.5: Libration: Position (blue) and momentum (yellow) trajectories versus phase. Left:
r = 0.999. Right: r = 0.5
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Figure 1.6: Contours of constant Hamiltonian for libration in bunch-shortening mode. Blue: r =
0.999; gold: r = 0.8; green: r = 0.6; coral: r = 0.4; purple: r = 0.2; brown: r = 0.1; light blue:
r = 0.025. Abscissa: position (radian). Ordinate: momentum (dimensionless).

1.5.4 No rotation solution, q = +1/2

For the particular choice of the trial function in this section, there are no values of the adjustable
constants that are compatible with the properties of the elliptic functions and a rotation solution.
One may experiment with other trial functions, but to no avail. We shall come to understand why
this is so in Sec. 1.7.
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1.6 Double RF system

Gram and Morton[1] introduced the dual harmonic system. It is a special case of motion in the
general double RF system which satisfies the equation ẍ+ω2[sinx+ q sin(nx)] = 0. Here amplitude
ratio q and integer n harmonic number are arbitrary. The system can be further generalized by
inserting a phase difference ϕ between the harmonic components. The term dual harmonic is usually
reserved for the case n = 2. The equation of motion may be integrated once to give the energy
equation:

(1/2)(ẋ)2 + ω2U(x) = H where U(x) = [1− cosx] + (q/n)[1− cos(nx)] . (1.32)

For a specific value of the Hamiltonian (H0), this may be solved for the momentum p = ẋ =
2ω

√
H0 − U(x). We suppose p = 0 when x = X and the potential is symmetric. Hence it follows

that the acceptance area A and oscillation period τ are given by

A = 4

∫ X

0
p(x)dx and τ = 4

∫ X

0
dx/p(x) with p(x) = ω

√
2
√
U(X)− U(x) . (1.33)

These formulae were given in Ref.[1] and evaluated as a function of q for n = 2.

Hofmann[2, 3] considers the general case n = 2, 3, 4, . . . and ϕ ̸= 0. It is not possible to find
closed-form large-amplitude solutions to the EOM. In the small amplitude limit5 the force law is
Taylor expanded up to cubic terms (leading to the Duffing equation) and the potential expanded
up to terms in x4. In Ref.[2] the acceptance and period are given in terms of elliptic integrals. In
Ref.[3] the motion is given in terms of Jacobi elliptic functions. Hofmann was motivated by both
the bunch-lengthening and bunch-shortening modes of operation of a Landau6 cavity. The specific
case n = 2 has the distinction that the large-amplitude motion can be found in closed form.

Subsequent to the original version of this article, Shaposhnikova recommended to me Chap.3
Sec V.5 Double rf Systems of the accelerator physics book[12] by S.Y. Lee. Lee considers the
dual-harmonic bunch-lengthening mode and arbitrary ratio of amplitudes q < 0; and he evaluates
analytically the acceptance and period (Eq.1.33) which are related to elliptic integrals. The present
author was momentarily confused by Lee’s choice to call the amplitude ratio r ≡ −q. Nevertheless,
Lee’s treatment inspires us to believe that the dynamics may be solved explicitly for arbitrary q.

1.7 Arbitrary Ratio of Amplitudes

We now consider the case of (almost) arbitrary ratio q of fundamental and 2nd harmonic compo-
nents. The force law F (x) and potential function U(x), respectively, are

F (x) = sinx + q sin 2x and U(x) = [1− cosx] + (q/2)[1− cos 2x] . (1.34)

Positive ratio q > 0 increases the restoring force yielding the bunch shortening mode. Negative
ratio q < 0 reduces the restoring force, providing the bunch lengthening mode.

Lee’s analysis teaches us three things: (i) the nature of the fixed points changes abruptly at
|q| = 1/2; (ii) we may expect to find analytic solutions [x(t), ẋ] for a broad range of q; and (iii)
the mathematical form of the Hamiltonian and of the solutions is (mostly) the same in all cases
(although the details depend on q). Fig. 1.7 shows the potential function for several q values.

For |q| < 1/2, there is a single well with stable fixed point (SFP) at x = 0 and unstable fixed
points (UFP) at x = ±π. For |q| > 1/2, a second, local well emerges; and the nature of the FPs

5Some authors call this the “short bunch limit”. This terminology should be avoided, because small amplitudes
occur both in bunch lengthening and shortening modes of operation of the harmonic cavity.

6A Landau cavity is any RF cavity operated with the purpose of increasing the synchrotron frequency spread so
as to stabilize a particle beam against collective instability.
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Figure 1.7: Potential U(x) versus position x. Left: |q| = 1/2. Right: |q| = 3/4. Negative and
positive q shown blue and yellow, respectively.

change. For q > +1/2, there are SFPs at x = 0 and x = ±π, and local UFPs at x = ±π ∓ Φ
where tanΦ =

√
−1 + (2q)2. For q < −1/2, there are UFPs at x = 0 and x = ±π, and local

SFPs at x = ±Φ. For q = +1/2, there is a SFP at x = 0 and astable fixed points (AFP) at
x = ±π. For q = −1/2, there is an AFP at x = 0 and UFPs at x = ±π. It is the emergence
of the secondary potential wells, that prevented us from finding a rotation-type solution when
q = +1/2. Adapting the method introduced in Sec. 1.4 and 1.5, we can find solutions [x(t), ẋ] for
all of these circumstances except the motions trapped in the asymmetric wells centred at x = ±Φ
when q < −1/2.

As before, we write the potential function in terms of x/2; leading to the Hamiltonian:

ω2U(x) + (1/2)(ẋ)2 = 2Jω2 where U(x) = 2[sin(x/2)]2
{
1 + 2q − 2q[sin(x/2)]2

}
. (1.35)

We substitute the same trial function as above: sin[x(t)/2] → Y (t)/
√

1−X2(t). The trial function
may also be written:

tan[x/2] =
Y√

1− Y 2 −X2
=

√
r cn(at,m)√

1− r cn(at,m)2 − p sn(at,m)2
.

It follows that 0 < r ≤ 1 and 0 < p ≤ 1. Although the tan(x/2) form is more concise, the sin(x/2)
version is better suited for substitution in the Hamiltonian; and yields:

2ω2Y 2

[
(1 + 2q)

B
− 2q

Y 2

B2

]
+ 2

[BẎ + Y X Ẋ]2

AB2
= 2Jω2 . (1.36)

We substitute the explicit functions Y =
√
r cn(at,m) and X =

√
p sn(at,m) where a, r, p,m, J are

adjustable constants; leading to a cubic equation in powers of [sn(at,m)]2. As above, the coefficients
of all powers must be zero; and this leads to a set of simultaneous equations to be solved for the
adjustable constants.

sn0 → (1− r)[J − r−2qr(1− r)]ω2 = 0, sn6 → (p− r)[Jp2+ r(2qr−p(1+2q))]ω2 = 0 (1.37)

sn2 → a2(1− p)2r − [−3Jp+ (1 + 2p)(1 + J + 2q)r − (2 + p)(1 + 4q)r2 + 6qr3]ω2 = 0

sn4 → −a2m(1− p)2r + [−3Jp2 + p(2 + p)(1 + J + 2q)r − (1 + 2p)(1 + 4q)r2 + 6qr3]ω2 = 0

The Mathematica symbolic manipulation software finds solutions of these equations; and we may
choose which of the triplet m, p, r is the independent parameter. The number of solutions is
reduced by imposing the constraints 0 < m ≤, 0 < r ≤ 1, 0 < p ≤ 1, J > 0 and a > 0. As above,
there are four types of solution: (i) libration with p = r; (ii) rotation with r = 1 and p ̸= 1; (iii)
solutions with p = p(r) or r = r(p); and (iv) trivial solutions corresponding to the particle being
stuck at a fixed point.
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1.7.1 Treat r as parameter

There are two distinct libration solutions. The most useful and least constrained is[
a =

√
1 + 2q(1− 2r)ω, m = [r(1− 2qr)]/[1 + 2q(1− 2r)], p → r, J = r + 2qr(1− r)

]
. (1.38)

This solution is valid over all q, provided r is chosen appropriately:

q ≤ −1

2
& 0 < r < 1 +

1

2q
or − 1

2
< q ≤ +

1

2
& 0 < r < 1 or q >

1

2
& 0 < r <

1

2q
.

The Hamiltonian is H = 2Jω2 and rotation period given by τ = 4K(m)/a. The second libration
solution is:[
a =

√
1 + 2q(1− r−)

√
1− r ω, m =

r(2qr − 1)

[1 + 2q(1− r)](1− r)
, p =

2qr

1 + 2q(1− r)
, J = r + 2qr(1− r)

]
.

This solution duplicates (partially) the first; but is valid only over a very restricted range: q > 1/2
and 1/(2q) < r < [1 + 1/(2q)]/2.

1.7.2 Treat p as parameter

There are three distinct solutions. The first has a imaginary when q = +1/2 and the third has
a = 0 whe q = −1/2, signaling issues with the behaviour at the SFPs. The first is the rotation
solution:[

a =
√

p− 2q ω/p, m = p(p− 4q + 2pq)/(p− 2q), r = 1, J = (p− 2q + 2pq)/p2
]
. (1.39)

This solution is valid over the ranges:

q < 0 & 0 < p < 1 or 0 < q < 1/2 & 4q/(1 + 2q) < p < 1 .

The Hamiltonian is H = 2Jω2 and rotation period given by τ = 2K(m)/a. The second solution
duplicates the libration solution above with the roles of p and r exchanged. The third solution is
an accidental solution valid for q > +1/2 and 1/(2q) < p ≤ 1. It is a libration in the main potential
well, and the analogue of the second libration solution found when r was the free parameter.

1.7.3 Treat m as parameter

When we attempt to find the adjustable constants a, p, r, J in terms of m, there are around 14
distinct solutions. The first 8 are trivial solutions. There are six remainder solutions. Of these the
2nd duplicates the rotation solution with r = 1 and is valid for q < 1/2. The 1st, 3rd and 4th are
inconsistent with the constraints. The 5th and 6th duplicate the p = r libration solution.

1.7.4 Fundamental solutions

The underlying properties of cn, sn, dn imply that there are two fundamental solutions: p → r
(libration) and r → 1 (rotation). Other solutions are accidental duplicates for special conditions
between p and r. This implies that we could have short-cut the whole procedure by introducing
p = r or r = 1 at an early stage of the calculation. In this way, we dispose of the irrelevant
solutions; and work with simper algebraic equations. When p = r, the sextic reduces to a quadratic
in powers of sn2; and when r = 1 the sextic reduces to a cubic in powers of sn.
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1.7.5 Amplitude ratio q > /2

When the amplitude ratio satisfies q > 1/2, a hanging valley appears above the main valley floor.
We move the centre of the coordinate system to x = ±π in order to symmetrize the potential with
respect to the local SFP within the hanging valley. In the new coordinates, the fixed points move
and the mathematical structure of the energy equation is modified. Therefore, we cannot assume
to find all the relevant solutions merely by the substitutions p = r or r = 1. (Such a manoeuvre
fails to find the libration in the hanging valley.) So we must perform the complete analysis.

The potential takes on the form: U(x) = 2 − 2(1 + 2q)[sin(x/2)]2 + 4q[sin(x/2)]4. We insert
U into the Hamiltonian and make the substitution sin(x/2) → Y/

√
1−X2 to find

2ω2A

[
1

B
+ 2q

Y 2

B2

]
+ 2

[BẎ + Y X Ẋ]2

AB2
= 2Jω2 . (1.40)

We multiply throughout by AB2 and insert explicit forms for Y (t) and X(t). There results an
equation in powers of sn(at,m); and their coefficients must all be zero, leading to the simultaneous
equations:

sn0 → 2(1−r)[J+(r−1)(1+2qr)]ω2 = 0, sn6 → 2(p−r)[(J−1)p2+2qr2+p(r−2qr)]ω2 = 0 (1.41)

sn2 → −2a2(1− p)2r + 2[3(1− J)p+ (1 + 2p)(J + 2q − 2)r − (2 + p)(4q − 1)r2 + 6qr3]ω2 = 0

sn4 → 2a2m(1− p)2r − 2[3(1− J)p2 + p(2 + p)(J + 2q − 2)r − (1 + 2p)(4q − 1)r2 + 6qr3]ω2 = 0

We may solve for the adjustable constants in terms of r or p or m. Note, thus far, q may take on
any value.

Treat r as parameter

There are three distinct solutions. The first is a trivial solution. The second is inconsistent with
constraints. The third is the libration solution for oscillations inside the secondary potential well:[
a =

√
1 + 2q(r − 1)

√
r − 1ω, m =

r(1 + 2qr)

[1 + 2q(r − 1)](r − 1)
, p =

−2qr

1 + 2q(r − 1)
, J = (1− r)(1 + 2qr)

]
.

(1.42)
This solution is valid for the range q > +1/2 and 0 < r < (2q − 1)/(4q).

Treat p as parameter

There are three distinct solutions. The first is a re-write of the q < 0 rotation solution (with respect
to the shifted coordinate) for bunch lengthening:[

a =

√
−(p+ 2q)

p
ω, m =

p(p+ 4q − 2pq)

(p+ 2q)
, r = 1, J =

(p− 1)(p+ 2q)

p2

]
. (1.43)

This solution is valid for bunch-lengthening q < 0 and 0 < p < 2q/(2q − 1). The second solution is
inconsistent with constraints. The third is an accidental r(p) solution that duplicates the libration
in the hanging valley.

Treat m as parameter

There are seven trivial solutions (such as r = 0) for the adjustable constants; these are discarded.
There are six more distinct solutions; none of them are valid for q > 0. Moreover, only the second
is valid for q < 0 (i.e. bunch lengthening). This duplicates the r = 1 condition, and is a rotation
solution (across the main potential well) written in terms of the shifted origin.
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1.7.6 Bunch lengthening mode

Libration

We provide two numerical examples for the case q < 0. The first has q = −1/4 and a potential well
with a single minimum. The second has q = −3/4 and a potential well with two local minima; the
motion escapes the local minima but is trapped by the encompassing well.
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Figure 1.8: Contours of constant Hamiltonian for libration in bunch-lengthening mode. Left:
q = −1/4. Right q = −3/4.

Rotation

We show the untrapped motion that streams over the periodic well for the cases q = −1/4 and
q = −3/4.
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Figure 1.9: Contours of constant Hamiltonian for rotation in bunch-lengthening mode. Left: q =
−1/4. Right q = −3/4.
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1.7.7 Bunch shortening mode

We provide two numerical examples of libration for the case q > 0. The first has q = +1/4 and a
potential well with a single minimum. The second has q = +3/4 and a main potential well with
two local minima above; there are separate librations in the lower and upper wells. Concerning
rotation, we show the motion corresponding to q = 1/4.
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Figure 1.10: Contours of constant Hamiltonian for bunch shortening mode q = 1/4. Left =
Libration. Right = Rotation.

-3 -2 -1 1 2 3
x

-2

-1

1

2

p

-0.5 0.5
x

-0.4

-0.2

0.2

0.4

p

Figure 1.11: Contours of constant Hamiltonian in bunch shortening mode q = 3/4. Left: libration
in the main valley. Right: libration in the hanging valley. The momenta are measured with respect
to the local minimum of the potential.

No rotation solution, q > 1/2

Concerning rotation, we have not found formulae for the rotary motion when the amplitude ratio
exceeds q = 1/2. A challenge to the reader is to find a valid trial function for motion that traverses
the bunch-shortening potential well for q > +1/2.
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1.8 Acceptance Area

The phase space (combinations of position and momenta) that is confined within the potential well
is called the longitudinal acceptance, also known as the RF-bucket area. In all cases, this area
may be computed numerically from the formulae in Eq. 1.33 for all harmonics n and amplitude
ratio q. For particular cases the integrals may be obtained analytically. We adopt the notation
Y = sin(x/2) and

√
m = sin(X/2) where 0 < X ≤ π is the extreme of motion. It follows that

dx/dY = 2/
√
1− Y 2.

1.8.1 First harmonic

In the case q = 0, the particle motion is governed only by the fundamental component of the
waveform. The potential is U = 1 − cosx which may be re-written in terms of the half angle
x/2. The Hamiltonian is (1/2)p2 + 2ω2[sin(x/2)]2 = 2ω2[sin(X/2)]2. The momentum may be

written p = 2ω
√
m− Y 2. The area is 4

∫ X
0 p(x)dx = 4

∫ √
m

0 p(Y )(dx/dY )dY . The case m = 1 is
trivial. The integrand becomes 4ω and the area A = 16ω. In the general case, the integrand is
4ω

√
m− Y 2/

√
1− Y 2 and the area A(m) = 16ω[E(m) + (m− 1)K(m)]. Note that E(1) = 1. The

period is 4
∫ X
0 dx/p(x) = 4

∫ √
m

0 (dx/dY )dY/p(Y ) equal to 4K(m)/ω.

1.8.2 Second harmonic

In the case n = 2, we recover the dual harmonic system. The potential is U = (1−cosx)+(q/2)(1−
cos 2x) which may be written U = 2Y 2[1 + 2q(1 − Y 2)]. The Hamiltonian value 2Jω is found by
substituting x = X and p = 0, leading to (1/2)p2 − 2ω2(m− Y 2)[1− 2mq+2q(1− Y 2)] = 0, which
may solved for the momentum p(Y ).

The case m = 1 is straight forward. The integrand becomes p(Y )(dx/dY ) = 4ω
√

1− 2qY 2.
For the bunch shortening mode, q > 0. The range of integration is Y = [0, 1] for q ≤ 1/2, and
Y = [0, 1/

√
2q] for q ≥ 1/2. The acceptance area is

A(q ≤ 1/2) = 4ω
[
2
√
1− 2q +

√
2 arcsin[

√
2q]/

√
q
]

and A(q ≥ 1/2) = 2π
√
2ω/

√
q . (1.44)

This area falls as q rises, because the well becomes progressively narrower. In particular q = 1/2
gives A = 4πω, which is smaller than for the fundamental alone.

For the bunch lengthening mode, q < 0, and m = 1, the range of integration is Y = [0, 1]. The
acceptance area is

A(q < 0) = 4ω
[
2
√

1− 2q +
√
2 arcsinh[

√
−2q]/

√
−q

]
(1.45)

This area increases as |q| rises. In the specific case q = −1/2, gives A = 8ω[
√
2 + arcsinh(1)] ≈

18.3647ω, which is larger than for the fundamental alone. For this case, q = −1/2, the period
may also be found as function of m; thus τ = 2

√
2K[(1 + m)/2]/(

√
mω). Wolfram Mathematica

also finds the area A(m); it is composed of hypergeometric functions, but well approximated by a
quadratic A(m) ≈ 16ω×[0.218537m + 0.89138m2].

1.8.3 Third harmonic

In the case n = 3, the potential well is U = (1 − cosx) + (q/3)(1 − cos 3x). Starting from the
equivalence cos 3z = (cos z)3 − 3 cos z(sin z)2 and repeated use of the half-angle formulae, the well
is re-written U(Y ) = (2/3)Y 2(3 + 9q − 24Y 2 + 16qY 4) with Y = sin(x/2). The Hamiltonian value
is found by setting p = 0 and x = X, leading to (1/2)p2 + ω2U(Y ) = ω2U(

√
m); and which is

solved for p(Y ). The general case is intractable, but we may set m = 1 leading to simplification:
p(Y ) = 2ω

√
1− Y 2

√
1 + (q/3)(1− 4Y 2)2. The integrand for the area integration with respect to
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Y is p(Y )(dx/dY ) = 4ω
√
1 + (q/3)(1− 4Y 2)2. For bunch lengthening with zero restoring force at

the centre x = 0, q = −1/3 and the integral is

A = (16/19)
√
2ω [E(−2) + 3K(−2)] ≈ 14.3274ω where K(−2) = K(2/3)/

√
3, E(−2) = E(2/3)

√
3 .

K(−m) = K[m/(m+ 1)]/
√
m+ 1 and E(−m) = E[m/(m+ 1)

√
m+ 1 .

The corresponding integral for bunch shortening with q = +1/3 is computed numerically equal to
A ≈ 17.2357ω.

1.8.4 Fourth harmonic

In the case n = 4, the potential well is U = (1 − cosx) + (q/4)(1 − cos 4x). Starting from the
equivalence cos 4z = (cos z)4 − 6(cos z)2(sin z)2 + (sin z)4 and repeated use of the half-angle for-
mulae, the well is re-written U(Y ) = 2Y 2[1 + 4q(1 − 5Y 2 + 8Y 4 − 4Y 6)] with Y = sin(x/2).
The Hamiltonian is (1/2)p2 + ω2U(Y ) = ω2U(

√
m). We set m = 1 and solve for the momentum

p = 2ω
√
1− Y 2

√
1− 4qY 2(1− 2Y 2)2. The integrand for the area integration is p(Y )(dx/dY ). For

q < 0 and 0 < q ≤ 1/4 the integration range is Y = [0, 1]. For bunch shortening with q = 1/4
the acceptance is A ≈ 14.9937ω; and for bunch lengthening with q = −1/4, the acceptance is
A ≈ 16.7683ω.

1.9 Sources for elliptic functions and their applications

1.9.1 Historical

Many of the great names in mathematics have worked on the elliptic functions and integrals; for
example Wallis (1655), Newton, Euler and Gauss[13] (1797). However, the fundamental investi-
gations are credited (in historical sequence) to A.M. Legendre[14] (before 1825), N.H. Abel[15]
(1823) and C.G. Jacobi[16] (1829 and onwards). Kovacic[26] presents a thumbnail history of the
naissance of Jacobi elliptic functions; but does not place adequate credit with Abel. It was Abel
7 who introduced the idea to define elliptic functions as the inversion of elliptic integrals; and it
was Abel that showed they are doubly periodic functions. Kovacic also lists a number of modern
applications in physics and engineering. The extension of the function argument to complex values
was already known to Jacobi, but the consequences for the function definition as the inverse of a
contour integral in the complex plane was not sorted out until the work of Neville[17] (circa 1943).
The functions, properties and applications are still an active area of research; see Prasolov and
Solovyev[31].

Ultimately, although interesting and rewarding in their own right, none of the historical sources
consider motion in multi-harmonic potential wells; perhaps because at the end of the 19th century
such a problem may have appeared as contrived as a “rotating catenary” seems to the modern-day
reader. Instead, one must look to treatises on the properties of elliptic functions and integrals.

1.9.2 Mathematical properties

The standard mathematical sources for concise properties of elliptic functions and integrals are
Abramowitz and Stegun[18] or the NIST-DLMF[19], Gradshetyn and Rhyzik[20], and other works
such as Whittaker and Watson[21]. However, for a deeper exposition (told with clarity), I rec-
ommend the treatise by Neville[17]. A large variety of elliptic and related integrals is given in
the handbook by Byrd and Friedmann[22]. The properties of elliptic functions as encoded in the
Wolfram Mathematica program are listed exhaustively in

https://functions.wolfram.com/EllipticFunctions/JacobiAmplitude/introductions/JacobiPQs/ShowAll.html

7Niels Henrik Abel died prematurely in 1829 at the age of 26.
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1.9.3 Applications in dynamics

We mention, in historical order, some texts on the application of elliptic functions and integrals.
None of these were known to the author until after the derivation in Secs. 1.3-1.5 was formulated.

Greenhill

Published in 1892, Greenhill’s book[23] was intended to extend the introduction of elliptic func-
tions and integrals into the curriculum of the Cambridge Mathematical Tripos by exhibiting their
practical importance in Applied Mathematics.

Chap. 1, The Elliptic Functions, uses the pendulum to introduce the Jacobi elliptic functions.

Chap. 3, Geometrical and mechanical illustrations of the elliptic functions, covers the following:
shape of revolving chain (under gravity), catenary curves, internal stresses of a swinging body,
motion of Watt’s Governor8 with Ẍ ∝ (a2−X2)(X2−b2), shape of elastic9 beams under compression
of their end points, ellipse rolling over a periodic curved surface.

Chap. 4, Addition theorems for the elliptic functions, gives an example in spherical trigonometry.

Chap. 6 Elliptic integrals of the 2nd and 3rd kind, gives two examples: confocal ellipses and
hyperbolae, and Euler’s pendulum (like a rocking cradle).

Chap. 7: Elliptic integrals in general and their applications, covers the following: shape of
revolving chain, shape of elastic wire, spherical pendulum, spinning top, gyrostat10, trajectory of
projectile with cubic resistance law.

Chap. 8: The double periodicity of the elliptic functions, covers confocal orthogonal Cartesian
ovals, confocal quadratic surfaces, and the electric potential between confocal ellipsoids.

Whittaker

Initially published in 1904, Whittaker’s encyclopaedic book[24] is a thorough treatment of analytical
dynamics, covering topics in Newtonian and Hamiltonian mechanics and celestial mechanics and in
particular the three-body problem. Whittaker enumerates the complete class of one-body classical
mechanical problems that are solvable in terms of elliptic functions and integrals.

Chap. 4, The soluble problems of particle dynamics, covers the following: simple pendulum,
problem of motion under central forces, motion governed by (Ẏ )2 = 4(Y − e1)(Y − e2)(Y − e3),
spherical pendulum (motion on the surface of a sphere), motion under two centres of force (e.g.
gravitational).

Chap. 6, The soluble problems of rigid bodies covers the following: pendulum with a moment of
inertia, motion of a rod on a rotating frame, motion of a disc with various constraints, motion of
systems with two degrees of freedom, one cylinder rotating on another, hoop and ring, motion of a
body about a fixed point under no forces, motion of a top, motion of gyrostat.

Nonlinear waves

In recent times, there is a resurgence of interest in Jacobian elliptic functions - for a particular ap-
plication: the solution of non-linear wave equations. Kovacic[26] provides an enticing review that
represents the “tip of the iceberg”. An earlier and more lengthy review is given by Kivshar[27].
Other applications include the nonlinear Schrodinger and Klein-Gordon and Korteweg-de Vries
equations. Entering the phrase “Jacobi elliptic function method for finding periodic wave solu-
tions” into the search engine of Academia.edu yields over three hundred (relevant) results. The
introduction of the paper by Mustafa[28] sets the stage quite well.

8This rotating mechanical device regulates the motion of a stationary steam engine, and is based on the counter-
balance of centripetal and gravitational forces.

9This problem known as the Elastica is also that of the shape of a capillary surface and Bernoulli’s Lintearia.
10A modified gyroscope consisting of a rotating wheel pivoted within a rigid case.
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In recent years, the exact solutions of nonlinear PDEs have been investigated by
many workers who are interested in nonlinear physical phenomena. Many powerful
methods have been presented, such as the homogeneous balance method [1], the hy-
perbolic tan-gent expansion method [2], the trial function method [3], the tanh method
[4], the non-linear transformation method [5], inverse scattering transformation [6],
Bäcklund trans-formation [7], Hirota’s bilinear method [8], the generalized Riccati equa-
tion method [9],the Weierstrass elliptic function method [10], the theta function method
[11], sine-cosine method [12] and the Jacobi elliptic function expansion method [13, 14]
and so on.

The citations are to references in their paper, not to the bibliography of this work. The three
references I have chosen, are simply those publications[28, 29, 30] I have actually read; they happen
(mostly by chance) to have some relation to the method I have formulated in this note.

1.9.4 Applications to curves

Greenhill provides examples of catenary curves and lemniscates11. But there exists a more expansive
landscape. The introduction12 to the 1992 book by Prasolov and Soloviev[31] sets the scene:

The theory of elliptic function and its geometric twin - the theory of elliptic curves -
occupies one of the central places in mathematics having unified several of its branches.
In spite of its senior age, the theory . . . remains an alive and rapidly developing domain of
mathematics . . . In the past decade, elliptic functions and curves became the subject of
close attention by experts in such nonclassical fields as algebraic topology and quantum
field theory; quite recently, with the help of the elliptic curve theory, Fermat’s Last
Theorem was finally proved13.

Requiring less mathematical stamina is the small compendium of historical results assembled by
Snape[32].

11In algebraic geometry, a lemniscate is any of several figure-eight shaped curves.
12The introduction was updated for the 1997 English translation published by the American Mathematical Society.
13Andrew John Wiles’ proof of Fermat’s Last Theorem is a special case of the modularity theorem for elliptic

curves. The proof was delivered in final form in 1995.
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