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Comparison of Envelope Tracking at cERL

Injection

H. W. Koay
TRIUMF

Abstract: This report discusses the comparison of envelope tracking between
different envelope tracking code: TRANSOPTR and GPT. The beam size is
further compared with real beam data obtained at cERL. Overall the results
from TRANSOPTR agree rather well with GPT and the real data.
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1 Introduction

In order to investigate the space charge effect (SC) in the lower energy section, the
envelope tracking from two different simulations were compared using the injector section
in the cERL beam line. One of simulations is a multi-particle tracking code named General
Particle Tracking (GPT), whereas the other one is a second-order beam transport code
TRANSOPTR.

2 Layout of cERL

Tracking in GPT starts from the GUN up to before the the first bender BMAGO1. The
injector layout at cERL is shown in Fig. 1.
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Figure 1: The layout of the beamline for the cERL injector.

3 Comparison between simulations

3.1 Field map and parameters

The overlay of EM field from the gun, solenoids and RF along the beamline is given in Fig.
2. Note that both RF cavity and solenoid field has axial symmetry effect in TRANSOPTR.
Therefore, only the on-axis 1D field is used in TRANSOPTR.

3.2 Initial distribution

The initial distribution used in GPT assumed a Gaussian distribution with no correlation

among X, v and z:

transverse : o, = 0.84 mm, with 30 cutoff

longitudinal : o, = 3ps, with 30 cutoff (1)

In TRANSOPTR, two tracking were performed using starting from (A) s=0cm, (B)
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Figure 2: The E/M field of the cERL injection beamline. The orange and red curves are the
magnetic field of the first and second solenoid, while the blue curve is the axial potential
across the egun. The green curve is the buncher axial potential, while the purple, brown
and pink curves are the one for the injector cavity 1, 2 and 3 respectively. Note that all the
voltages and magnetic fields are normalized, so that they are unitless. The black vertical
line at z=0.2m indicates the starting point of TRANSOPTR simulation. It has the least
effect from the surrounding E/M field.

s=20 cm. The main difference between (A) and (B) is the inclusion of electron gun (e-gun)
to accelerate beam produced from the cathode at energy < 1eV to 450keV, whereas for

(B), tracking starts right after the e-gun.

(A) Starting point at s=0cm As for tracking starting from s=0cm, the average beam
energy starts at 0.18 eV The initial condition as follow was used (note that the sigma here

indicates the full envelope in sigma matrix instead of standard deviation in 1):

011 = 033 = \/E)ow = 0.259 cm
090 = 044 = 1.0
055 = V50, = 0.000167 cm
066 = V50, = 0.0027
r12= r34=r56 = 0.0

An example of the transverse velocity distribution at s=0cm is shown in Fig. 3b. The
velocity is uniformly distributed in x,y and z from the cathode in the GPT simulation. This
explains why the maximum transverse angle g9s = 044 = 1.0 (092 = &, Oy = p—y) Note

Po

Po
that the maximum o9 = 1.0 as p, < po.

(B) Starting point at s=20cm On the other hand, tracking starting from s=20 cm uses
different Twiss parameters fitted from the GPT calculations at s=20 cm at different bunch
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(a) The transverse phase space distribution (z,z’) .
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Figure 3: The initial distribution used in GPT at s=0cm.
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charges. The phase space distributions are shown in Fig. 4.
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Figure 4: The phase space beam distribution at z=20 cm at different bunch charges. Left:
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3.3 Results

Page 6

(A) Starting point at s=0cm The comparison of results are shown in Fig. 5. Three
different bunch charges were compared: no SC, 60 pC and 110 pC. The injector phases were

fine tuned for max energy gain. The final beam energy after passing through the injector is

about 3 MeV.
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Figure 5: (A) The comparison of transverse beam envelope between TRANSOPTR (solid)
and GPT (dashed) at different bunch charges. This corresponds to TRANSOPTR simu-
lation starting from s=0cm. The initial condition for three different space charges is the

same.
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(B) Starting point at s=20cm The comparison of results are shown in Fig. 5 and (B)
Fig. 6 (from s=20cm).
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Figure 6: (B) The comparison of transverse beam envelope between TRANSOPTR (solid)
and GPT (dashed) at different bunch charges. The TRANSOPTR simulation starting from
s=20cm

Generally, the match of (B) is better than (A): the match between these two codes is
within £10% when (A) and £2%. This is the case even for no SC. This could be due to the
assumption of == << 1 is not valid at the early stage of beam production (% =1 for this
case). Therefore, Hamiltonian up to only second order seems insufficient. More information
can refer to Appendix B. Overall, the match is the best for no SC in both (A) and (B).
However, the discrepancy for 110 pC is slightly larger for (A).
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4 Comparison of TRANSOPTR with real beam

4.1 Calibration of laser intensity and bunch charge

First, calibration of laser intensity at different bunch charges was performed using the

Faraday’s cup located at the gun. The calibration results is shown as follows:

Data 07 . Data
50 {1 — Polyfit: 7.024+0.4547x

l [ —— Polyfit: -0.5776+0.8729x -0.003995x2

Bunch Charge (pC)
Bunch Charge (pC)

’ % P o % 100 ¢ 2% w o @ 100
Laser Intensity (arb unit) Laser Intensity (arb unit)
(a) Linear fit (b) Quadruatic fit

Figure 7: The first and second order fit of the laser intensity to bunch charge. The second
order curve fits better. Hence, it is used in the following work to estimate the bunch charge.

4.2 Comparison of beam size

Sigma of the Gaussian fitted beam is measured at CAMO1 using different solenoid cur-

rents. An example of the beam image is shown in Fig. 8.
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Figure 8: The beam seen on CAMO1 using real beam at 50 pC.
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The data taken is then fitted with the TRANSOPTR calculations to determine the best

initial condition (IC) at s=0cm for all bunch charges. A round beam (z = y) is assumed

here. The results of solenoid scans are shown in Fig, 9.
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Figure 9: Solenoid scan comparing real beam and TRANSOPTR at CAMO1 to find the
best-fitted initial conditions for all bunch charges. The best fitted IC in TRANSOPTR
are given as (x,2', z,2") = (0.0654, 1.0,0.00225, 0.0004666) at initial energy of 0.187 eV (the
same as the in the comparison with GPT).
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The best-fitted IC were then used to track the beam until CAMO02 (as shown in Fig
10). The experimental beam size at CAMO02 is then compared with the tracked values from
TRANSOPTR. The results are shown in Fig. 11.
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Figure 10: An example showing the envelope fitted with the IC from Fig. 9. The beam size
obtained at CAMO02 is then compared again with the experimental data.
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Figure 11: Comparison of beam size between TRANSOPTR and real beam at CAMO02 using
the best-fitted IC from Fig. 9. Note that the experimental beam size is just a Gaussian-
fitted sigma; it is NOT the rms of the beam.
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Appendix A Max. sixth coordinate in TRANSOPTR

The sixth coordinate, ogg, in TRANSOPTR is given as:
066 — —(— — (2)

If T, the kinetic energy, is the maximum AE ( AE.x = T) at v = 1 (for instance right
after the cathode),

mv2

Algma»x =T=—
2

mv? 1 1
= Mvogg = —— = =
Po 66 2 muv-v 2

Therefore, when energy is small and v = 1, the maximum og = 0.5.

Appendix B F-matrix of Egun

This section mainly discussed the work from [1], but in a more detailed way for better
understanding. Space charge is omitted here to simplify the formalism. This F-matrix is
similar to the algorithm used in TRANSOPTR, but including SC.

Appendix B.1 Series representation of axisymmetric electric field

Laplace equation of an axisymmetric field potential V (r, z) is given as follows:

2 _ Lo (VY oV _
VV('r,z)frgr T(’?T +822—0 (3)

V(r, z) = Vo(2) + Vi(2)r + Va(2)r? + ...

where Vy(2) = V(r = 0, 2) is the on-axis potential. Due to axisymmetric nature, 4% (r = 0, 2) =

7o dr
E.(r=0,z) =0. Thus,

V(r,z) = Vo(2) + Va(2)r? + Va(z)r* + .. (4)

= Z VQi(Z)T'2i

1=0

Differentiating eq. 4 acording to 3,

V2V (r,2) = 4Va + 16Vyr? + V' (2) + V3 (2)r2 + O(r*) = 0
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When r =0,

4Vy + ‘/H/(Z) =0

V= —%(2) 5)

Substituting 5 into 4,
1
V(r,z) =Vo(z) — ZVO”(z)r2 +O(@r4)... (6)

Appendix B.2 Hamiltonian for axially symmetry electric field

The Hamiltonian H, with the independent variable s, when passing through a DC ac-

celerator column (such as the e-gun) that has zero magnetic field is given by:

2
E*qv(l'ay; 5)> — m2e2 *Pr2 7P5 (7)
C

H(I’,Pf,y,Py,t,E;S) = \/(

where P, and P, are the canonical momentum conjugate to the transverse x and y, m is
the mass, and V is the potential energy as given in eq. 6.
2
Taking P? = 7E7(1‘:§(5)) —m?2c? = Byme:

<EqV(I,y,S)>2 _ (Equ>2+ (=% +y*)gVy’ <E_qvo_qvux2+y2>
- 0

c c 2c2 8
x2 + y2 qV//
= (P*+m?c?) + % (yme® + O(g*)...) (8)

As only the second order terms are included, drop O(g*) and substitute eq. 8 into 7

(22 +y?)qVy'
2c2

2 2 1" 2 2 2
P\/H(SE +y%)gVy yme®  P? By

H(x,Pz,y,Py7t,E;s):—\/P2+ (’ych)—Pf—Pg

2Pc? Byme P2 P?

(z> +y>)qVy P2 P;
—_p 1TV ) e Ty
\/ T 9PAe P2 P2 9)

Expanding 9 up to O(¢?), where q is z,y, Py, P,

(@ +y2)aVg P2 B
H(z,Pyy, Py t, Eys)m —P |14 2 7Y )% Ta v
(@, Py, By t, B 5) T 4Pse 9p2 ~ 2p2
2 2 V// PQ P2
%_P_w+i+7y (10)

4Bc 2P ' 2P
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Expanding P = (’5‘672")2 —m2c2 using F = Ey + AE,

— m2c2

(Eo + AFE — qV)2
P= \/ c2

(Ey —qV)? AE?  2AEyymc?
- \/ c? mmie c? T c?

Taking Py = \/(E(’Zifv)z —m2c? = Byyome, expanding P up to second order of AF,

AE?  2AEyym
P =Pyl
0\/ TRE T TR

AE®  2AEyom 1 (2AE%m>2]

~P |1 - =
01t opza t T aps 8 2

AE?  AEyom 1 AE?*y3m?

2Pyc?  Boyome 2 P

~ Pr + AFE N AE? 1
=0 506 2P062 ﬂg

Boc  2Pyc? | 3B
Boc 278’B3mc3

%P()—’—

Substitute this into eq. 10,

AE AFE? (22 + y2)qVy' . P2+ P}

H P’r7 7P7taE; =—-P— - -
($7 z: Y Ly S) 0 BOC + 2'}’8637’7103 460 2P

(11)

Appendix B.3 Generating function to change variables

Changing the canonical conjugate from (¢,—F) to (z,P.) can be done in two stages.
First, it is changed from (¢, —F) to (At, —AFE), then to (z, P,).

Appendix B.3.1 Changing from (¢t,—F) to (At,—AFE)

The generating function of the second type, G(P;g; s) can used:

Gz—(t ds)(AE+EO)

) Boc
G  Ey+AE
ds Boc
oG
5= F
oG

a—ap) A
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The new Hamiltonian Ha; = H; + % is now
Ey AE? (22 + y?)qVy' P2 + Py2

H Pty By B, =85 9) = G = ot o me ~ age o (12

Appendix B.3.2 Changing from (At,—AFE) to (z, P,)
Similarly, generating function of the second type G(P; ¢; s) is used (taking (z, P,) = (—BocAt, AE/fyc)

G = —PcAtP,
|
L
L
L

The new Hamiltonian H, = Ha; + % is now
P2B%e?

o Eq
H Pwa 7P7 7P2; = - Pz s A 2,53 a9
(, y, Py, z s) 52 + Boc o + 273 BIme
@4yl P} +P; (13)
48c 2P

Assuming 8 =~ [y for AE << Ey,
P2 2 2 " Pf +P2

g Ey
H(@, Poyy, Py, 2, Pays) = 2P, + =2 — P, -
(@ oy By 2, Poss) = el b G~ Bt 5, 1Be 2P

Appendix B.4 Hessian matrix of hamiltonian

The first order derivative of Hamiltonian from eq. 14 is zero when (z, P;,y, Py, 2z, P.) =

(0,0,0,0,0,0).
The second order derivative of Hamiltonian (also known as the Hessian Matrix, H),
o’H o°H . 9’H
81% Ox10x2 Ox10xg
9’H o’H . 9’H
H _ 8:122811 Brg 8{1}2615
9%H o%H . *H

8976 811 8:E6(9I2 87‘%

with (.’171,1‘2,1‘3,.’174,.%‘57.'176) = (x7Pw7yaPyaz7PZ)
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Appendix B.5 Infinitesimal matrix of DC accelerating column

The infinitesimal transfer matrix F'(s) is defined as

dx
- F
ds x

T
2

Y

Dy
z

'z

Py
Note that all p,, p, and p, are the normalized momenta in TRANSOPTR, ie. p, = —

P
and so. The corresponding F' matrix can be obtained by taking the product between the
Hessian Matrix #) and S

01 0 0 0 0
10 0 0 0 0
00 0 1 0 0
S = (15)
0 0 10 0 0
00 0 0 0 1
0 0 0 0 -1 0
1
3” = 0 0 0 0
2“0 0 0 0 0
0 0 0 - 0 0
F= vy P (16)
0 0 % 0 0 0
g
o 0o o0 o0 2 L
pz
B Zg/
o 0 0 0 0 -2
B

The F-matrix including SC is not discussed here as this is just to provide an insight for

the derivation of the DC accelerating column. More work integrating SC can be found in
[1].
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