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Abstract: This report discusses the comparison of envelope tracking between
different envelope tracking code: TRANSOPTR and GPT. The beam size is
further compared with real beam data obtained at cERL. Overall the results
from TRANSOPTR agree rather well with GPT and the real data.
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1 Introduction

In order to investigate the space charge effect (SC) in the lower energy section, the

envelope tracking from two different simulations were compared using the injector section

in the cERL beam line. One of simulations is a multi-particle tracking code named General

Particle Tracking (GPT), whereas the other one is a second-order beam transport code

TRANSOPTR.

2 Layout of cERL

Tracking in GPT starts from the GUN up to before the the first bender BMAG01. The

injector layout at cERL is shown in Fig. 1.

Figure 1: The layout of the beamline for the cERL injector.

3 Comparison between simulations

3.1 Field map and parameters

The overlay of EM field from the gun, solenoids and RF along the beamline is given in Fig.

2. Note that both RF cavity and solenoid field has axial symmetry effect in TRANSOPTR.

Therefore, only the on-axis 1D field is used in TRANSOPTR.

3.2 Initial distribution

The initial distribution used in GPT assumed a Gaussian distribution with no correlation

among x, y and z:

transverse : σx = 0.84 mm, with 3σ cutoff

longitudinal : σz = 3ps, with 3σ cutoff (1)

In TRANSOPTR, two tracking were performed using starting from (A) s=0 cm, (B)
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Figure 2: The E/M field of the cERL injection beamline. The orange and red curves are the
magnetic field of the first and second solenoid, while the blue curve is the axial potential
across the egun. The green curve is the buncher axial potential, while the purple, brown
and pink curves are the one for the injector cavity 1, 2 and 3 respectively. Note that all the
voltages and magnetic fields are normalized, so that they are unitless. The black vertical
line at z=0.2 m indicates the starting point of TRANSOPTR simulation. It has the least
effect from the surrounding E/M field.

s=20 cm. The main difference between (A) and (B) is the inclusion of electron gun (e-gun)

to accelerate beam produced from the cathode at energy < 1 eV to 450 keV, whereas for

(B), tracking starts right after the e-gun.

(A) Starting point at s=0 cm As for tracking starting from s=0 cm, the average beam

energy starts at 0.18 eV The initial condition as follow was used (note that the sigma here

indicates the full envelope in sigma matrix instead of standard deviation in 1):

σ11 = σ33 =
√

5σx = 0.259 cm

σ22 = σ44 = 1.0

σ55 =
√

5σz = 0.000167 cm

σ66 =
√

5σpz = 0.0027

r12= r34=r56 = 0.0

An example of the transverse velocity distribution at s=0 cm is shown in Fig. 3b. The

velocity is uniformly distributed in x,y and z from the cathode in the GPT simulation. This

explains why the maximum transverse angle σ22 = σ44 = 1.0 (σ22 =
px
p0

, σ44 =
py
p0

). Note

that the maximum σ22 = 1.0 as px ≤ p0.

(B) Starting point at s=20 cm On the other hand, tracking starting from s=20 cm uses

different Twiss parameters fitted from the GPT calculations at s=20 cm at different bunch
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(a) The transverse phase space distribution (x, x′) .

(b) The normalized velocity distribution.

Figure 3: The initial distribution used in GPT at s=0 cm.
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charges. The phase space distributions are shown in Fig. 4.

(a) No space charge

(b) 60 pC

(c) 110 pC

Figure 4: The phase space beam distribution at z=20 cm at different bunch charges. Left:

Transverse plot of x VS
px
P0

or y VS
py
P0

(assuming round beam). Right: Longitudinal plot

of z = ∆tβc VS −∆γ

γβ2
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3.3 Results

(A) Starting point at s=0 cm The comparison of results are shown in Fig. 5. Three

different bunch charges were compared: no SC, 60 pC and 110 pC. The injector phases were

fine tuned for max energy gain. The final beam energy after passing through the injector is

about 3 MeV.

(a) No space charge

(b) 60 pC

(c) 110 pC

Figure 5: (A) The comparison of transverse beam envelope between TRANSOPTR (solid)
and GPT (dashed) at different bunch charges. This corresponds to TRANSOPTR simu-
lation starting from s=0 cm. The initial condition for three different space charges is the
same.
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(B) Starting point at s=20 cm The comparison of results are shown in Fig. 5 and (B)

Fig. 6 (from s=20 cm).

(a) No space charge

(b) 60 pC

(c) 110 pC

Figure 6: (B) The comparison of transverse beam envelope between TRANSOPTR (solid)
and GPT (dashed) at different bunch charges. The TRANSOPTR simulation starting from
s=20 cm

Generally, the match of (B) is better than (A): the match between these two codes is

within ±10% when (A) and ±2%. This is the case even for no SC. This could be due to the

assumption of
Px
P

<< 1 is not valid at the early stage of beam production (
Px
P

= 1 for this

case). Therefore, Hamiltonian up to only second order seems insufficient. More information

can refer to Appendix B. Overall, the match is the best for no SC in both (A) and (B).

However, the discrepancy for 110 pC is slightly larger for (A).
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4 Comparison of TRANSOPTR with real beam

4.1 Calibration of laser intensity and bunch charge

First, calibration of laser intensity at different bunch charges was performed using the

Faraday’s cup located at the gun. The calibration results is shown as follows:

(a) Linear fit (b) Quadruatic fit

Figure 7: The first and second order fit of the laser intensity to bunch charge. The second
order curve fits better. Hence, it is used in the following work to estimate the bunch charge.

4.2 Comparison of beam size

Sigma of the Gaussian fitted beam is measured at CAM01 using different solenoid cur-

rents. An example of the beam image is shown in Fig. 8.

Figure 8: The beam seen on CAM01 using real beam at 50 pC.
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The data taken is then fitted with the TRANSOPTR calculations to determine the best

initial condition (IC) at s=0 cm for all bunch charges. A round beam (x = y) is assumed

here. The results of solenoid scans are shown in Fig, 9.

(a) 2.5 pC (b) 10 pC

(c) 20 pC (d) 50 pC

Figure 9: Solenoid scan comparing real beam and TRANSOPTR at CAM01 to find the
best-fitted initial conditions for all bunch charges. The best fitted IC in TRANSOPTR
are given as (x, x′, z, z′) = (0.0654, 1.0, 0.00225, 0.0004666) at initial energy of 0.187 eV (the
same as the in the comparison with GPT).
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The best-fitted IC were then used to track the beam until CAM02 (as shown in Fig

10). The experimental beam size at CAM02 is then compared with the tracked values from

TRANSOPTR. The results are shown in Fig. 11.

Figure 10: An example showing the envelope fitted with the IC from Fig. 9. The beam size
obtained at CAM02 is then compared again with the experimental data.

(a) X (b) Y

Figure 11: Comparison of beam size between TRANSOPTR and real beam at CAM02 using
the best-fitted IC from Fig. 9. Note that the experimental beam size is just a Gaussian-
fitted sigma; it is NOT the rms of the beam.
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Appendix A Max. sixth coordinate in TRANSOPTR

The sixth coordinate, σ66, in TRANSOPTR is given as:

σ66 =
∆E

βc

1

p0
(2)

If T , the kinetic energy, is the maximum ∆E ( ∆Emax = T ) at γ ≈ 1 (for instance right

after the cathode),

∆Emax = T =
mv2

2

p0 = mvσ66 =
mv2

2

1

mv · v
=

1

2

Therefore, when energy is small and γ ≈ 1, the maximum σ66 = 0.5.

Appendix B F-matrix of Egun

This section mainly discussed the work from [1], but in a more detailed way for better

understanding. Space charge is omitted here to simplify the formalism. This F-matrix is

similar to the algorithm used in TRANSOPTR, but including SC.

Appendix B.1 Series representation of axisymmetric electric field

Laplace equation of an axisymmetric field potential V (r, z) is given as follows:

∇2V (r, z) =
1

r

∂

∂r

(
r
∂V

∂r

)
+
∂2V

∂z2
= 0 (3)

V (r, z) = V0(z) + V1(z)r + V2(z)r2 + ...

where V0(z) = V (r = 0, z) is the on-axis potential. Due to axisymmetric nature, dV
dr (r = 0, z) =

Er(r = 0, z) = 0. Thus,

V (r, z) = V0(z) + V2(z)r2 + V4(z)r4 + ... (4)

=

∞∑
i=0

V2i(z)r
2i

Differentiating eq. 4 acording to 3,

∇2V (r, z) = 4V2 + 16V4r
2 + V ′′0 (z) + V ′′2 (z)r2 +O(r4) = 0
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When r = 0,

4V2 + V ′′0 (z) = 0

V2 = −1

4
V ′′0 (z) (5)

Substituting 5 into 4,

V (r, z) = V0(z)− 1

4
V ′′0 (z)r2 +O(r4)... (6)

Appendix B.2 Hamiltonian for axially symmetry electric field

The Hamiltonian H, with the independent variable s, when passing through a DC ac-

celerator column (such as the e-gun) that has zero magnetic field is given by:

H(x, Px, y, Py, t, E; s) = −

√(
E − qV (x, y, s)

c

)2

−m2c2 − P 2
x − P 2

y (7)

where Px and Py are the canonical momentum conjugate to the transverse x and y, m is

the mass, and V is the potential energy as given in eq. 6.

Taking P 2 = E−qV0(s))2

c2 −m2c2 = βγmc:

(
E − qV (x, y, s)

c

)2

=

(
E − qV0

c

)2

+
(x2 + y2)qV ′′0

2c2

(
E − qV0 − qV ′′0

x2 + y2

8

)
=
(
P 2 +m2c2

)
+

(x2 + y2)qV ′′0
2c2

(
γmc2 +O(q4)...

)
(8)

As only the second order terms are included, drop O(q4) and substitute eq. 8 into 7

H(x, Px, y, Py, t, E; s) = −
√
P 2 +

(x2 + y2)qV ′′0
2c2

(γmc2)− P 2
x − P 2

y

= −P

√
1 +

(x2 + y2)qV ′′0
2Pc2

γmc2

βγmc
− P 2

x

P 2
−
P 2
y

P 2

= −P

√
1 +

(x2 + y2)qV ′′0
2Pβc

− P 2
x

P 2
−
P 2
y

P 2
(9)

Expanding 9 up to O(q2), where q is x, y, Px, Py,

H(x, Px, y, Py, t, E; s) ≈ −P

[
1 +

(x2 + y2)qV ′′0
4Pβc

− P 2
x

2P 2
−

P 2
y

2P 2

]

≈ −P − (x2 + y2)qV ′′0
4βc

+
P 2
x

2P
+
P 2
y

2P
(10)
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Expanding P =
√

(E−qV )2

c2 −m2c2 using E = E0 + ∆E,

P =

√
(E0 + ∆E − qV )2

c2
−m2c2

=

√
(E0 − qV )2

c2
−m2c2 +

∆E2

c2
+

2∆Eγ0mc
2

c2

Taking P0 =
√

(E0−qV )2

c2 −m2c2 = β0γ0mc, expanding P up to second order of ∆E,

P = P0

√
1 +

∆E2

P 2
0 c

2
+

2∆Eγ0m

P 2
0

≈ P0

[
1 +

∆E2

2P 2
0 c

2
+

2∆Eγ0m

2P 2
0

− 1

8

(
2∆Eγ0m

P 2
0

)2
]

≈ P0 +
∆E2

2P0c2
+

∆Eγ0m

β0γ0mc
− 1

2

∆E2γ2
0m

2

P 3
0

≈ P0 +
∆E

β0c
+

∆E2

2P0c2

[
1− 1

β2
0

]
≈ P0 +

∆E

β0c
+

∆E2

2P0c2

[
− 1

γ2
0β

2
0

]
≈ P0 +

∆E

β0c
− ∆E2

2γ3
0β

3
0mc

3

Substitute this into eq. 10,

H(x, Px, y, Py, t, E; s) = −P0 −
∆E

β0c
+

∆E2

2γ3
0β

3
0mc

3
− (x2 + y2)qV ′′0

4βc
+
P 2
x + P 2

y

2P
(11)

Appendix B.3 Generating function to change variables

Changing the canonical conjugate from (t,−E) to (z, Pz) can be done in two stages.

First, it is changed from (t,−E) to (∆t,−∆E), then to (z, Pz).

Appendix B.3.1 Changing from (t,−E) to (∆t,−∆E)

The generating function of the second type, G(P; q; s) can used:

G = −
(
t−
∫

ds

β0c

)
(∆E + E0)

∂G

∂s
=
E0 + ∆E

β0c

∂G

∂t
= −E

∂G

∂(−∆E)
= ∆t
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The new Hamiltonian H∆t = Ht + ∂G
∂s is now

H(x, Px, y, Py,∆t,−∆E; s) =
E0

β0c
− P0 +

∆E2

2γ3
0β

3
0mc

3
− (x2 + y2)qV ′′0

4βc
+
P 2
x + P 2

y

2P
(12)

Appendix B.3.2 Changing from (∆t,−∆E) to (z, Pz)

Similarly, generating function of the second typeG(P; q; s) is used (taking (z, Pz) = (−β0c∆t,∆E/β0c)

G = −βc∆tPz
∂G

∂s
=
β′

β
zPz

∂G

∂∆t
= −∆E

∂G

∂Pz
= −βc∆t = z

The new Hamiltonian Hz = H∆t + ∂G
∂s is now

H(x, Px, y, Py, z, Pz; s) =
β′

β
zPz +

E0

β0c
− P0 +

P 2
z β

2c2

2γ3
0β

3
0mc

3

− (x2 + y2)qV ′′0
4βc

+
P 2
x + P 2

y

2P
(13)

Assuming β ≈ β0 for ∆E << E0,

H(x, Px, y, Py, z, Pz; s) =
β′

β
zPz +

E0

β0c
− P0 +

P 2
z

2γ2
0P0
− (x2 + y2)qV ′′0

4βc
+
P 2
x + P 2

y

2P
(14)

Appendix B.4 Hessian matrix of hamiltonian

The first order derivative of Hamiltonian from eq. 14 is zero when (x, Px, y, Py, z, Pz) =

(0, 0, 0, 0, 0, 0).

The second order derivative of Hamiltonian (also known as the Hessian Matrix, H),

H =


∂2H
∂x2

1

∂2H
∂x1∂x2

· · · ∂2H
∂x1∂x6

∂2H
∂x2∂x1

∂2H
∂x2

2
· · · ∂2H

∂x2∂x6

...
...

. . .
...

∂2H
∂x6∂x1

∂2H
∂x6∂x2

· · · ∂2H
∂x2

6


with (x1, x2, x3, x4, x5, x6) = (x, Px, y, Py, z, Pz)
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Appendix B.5 Infinitesimal matrix of DC accelerating column

The infinitesimal transfer matrix F (s) is defined as

dx

ds
= Fx

x =



x

px

y

py

z

pz


Note that all px, py and pz are the normalized momenta in TRANSOPTR, i.e. px =

Px
P

and so. The corresponding F matrix can be obtained by taking the product between the

Hessian Matrix H) and S

S =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


(15)

F =



0
1

P
0 0 0 0

qV ′′
0

2βc 0 0 0 0 0

0 0 0
1

P
0 0

0 0
qV ′′

0

2βc 0 0 0

0 0 0 0
β′

β
1

Pγ2

0 0 0 0 0 −β
′

β


(16)

The F-matrix including SC is not discussed here as this is just to provide an insight for

the derivation of the DC accelerating column. More work integrating SC can be found in

[1].
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