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Chapter 1

Damped Anharmonic Oscillator

1.1 Introduction

Let t, x and ẋ be time, position and motion; and dots denote time derivatives (dx/dt ≡ ẋ). The
damped anharmonic oscillator has the equation of motion (EOM):

ẍ + δ×ẋ + α×x + β×x3 = 0 . (1.1)

Here δ ≥ 0 is responsible for damping. The physical unit of δ is Hz. The constants α ≥ 0 while β
may be positive or negative or zero. The units of α and β are Hz2. The case β < 0 is known as
the soft (or softening) oscillator, while the case β > 0 is called the hard (or hardening) oscillator.
Although the two cases differ only by the polarity of β, they are as alike as chalk and cheese. For the
hard/soft case, an increase in amplitude is opposed/assisted by the increasing/decreasing stiffness.
So there is an intrinsic self-stabilisation for the hard and de-stabilization for the soft oscillator.

The harmonically driven counterpart to Eq. (1.1), known as Duffing’s equation[1, 2], has an
extensive literature. In contrast, publications on the damped, free-oscillations (when β ̸= 0) are
very limited. There are two reasons for this disparity. Primarily, driven oscillators (i.e. resonators)
are of engineering significance. Resonators convert small excitations into large responses, and can
be beneficial or damaging. Intentional resonators such as musical instruments are an example of the
former. Un-intended resonances in mechanical structures, for example beams and bridges, driven
by vibrations (or unforeseen sources such as winds) can lead to damage or destruction of equipment.
Contrastingly, undriven damped oscillations simply die away. The second reason is mathematical
difficulty: driven oscillators succumb to simple Fourier series whereas free oscillations of (simple)
non-linear oscillators demand the use of elliptic functions[3, 4].

1.1.1 Literature survey

The references herein contain a small but notable subset of the literature for the damped anharmonic
oscillator. We begin with Ludeke and Wagner[5] who found approximations for the variation of
frequency with amplitude and the (time-dependent) frequency depression from damping. They
consider the case 0 < δ ≤

√
α and |β x2| ≪ α. They assume simple exponential damping and

employ harmonic balance of Fourier components. The frequency and damping have two adjustable
parameters which are the solution of nonlinear simultaneous equations. They appear also to have
started the fashion of calling the undriven anharmonic oscillator the Duffing oscillator - despite the
century of work by A.M. Legendre, N.H. Abel and C.G.J. Jacobi prior to Duffing.

We continue with the works of Soudack and Barkham, who attempted to treat the general form
ẍ + αx + βx3 + F (x, ẋ, t) = 0 where F is a perturbation. To describe their approach we have to
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6 CHAPTER 1. DAMPED ANHARMONIC OSCILLATOR

introduce a few simple results for the lossless hardening oscillator. The elliptic cosine cn(ϕ,m)×A
with constant amplitude A has the properties:

x(0) = A, ẋ(0) = 0, x(t) = A cn(ωt,m), ẋ = −ωAdn(..) sn(..), ω2 = α+βA2, m = βA2/(2ω2) .

Initially[6, 7] they introduced solutions of the form x = A(t) cn[ω(0)t + Θ(t),m(A)]. The Jacobi
m-parameter keeps lock step with the amplitude, while the frequency ω is held constant at the
initial value; i.e. ω̇× t is discarded in comparison to ω. Θ accounts for the residual phase variation.
Although m[A(t)] is time varying, they hold it constant when performing time derivatives. The
functional forms for A,Θ are unknown at the outset. For compactness we suppress the arguments
of the elliptic functions. The trial is substituted into the EOM, yielding:[

−A(α+ βA2) cn2 Θ̇(2ω + Θ̇)/ω2 + Ä
]
cn − [2Ȧ(ω + Θ̇) +A Θ̈]dn sn + F = 0 . (1.2)

F (x, ẋ, t) is a known function. Balance of the elliptic functions is then used to generate simultaneous
differential equations for A and Θ. Later[8] they realized the necessity of the time varying frequency,
otherwise the phase is compromised. Hence they introduce the phase ϕ = ω(t) × t + Θ(t) and set
ω̈ = 0; and went on to apply the method to the damped[9] non-linear oscillator. (From these works
later emerged the elliptic-Krylov–Bogoliubov method.) However, when forming derivatives with
respect to A and Θ they fail to take the derivative with respect to the second argument of the
elliptic cosine. This is a fundamental error, and no amount of tinkering can save the situation.

In a more recent review (2011) Yabuno[10] explores some global properties of the motion in phase
space (phasen-raume) and Cveticanin[11] gives an erroneous solution of Eq. (1.1); the method fails
because it does not recognise that amplitude and frequency are inextricably linked; the matter is
discussed in Appendix A.

Johannessen[12, 13, 14] makes a significant advance in the use of elliptic functions, which the
present author carries forward. He emphasizes the difficulty of accurately predicting the phase; and
explicitly states that when dealing with time derivatives of cn[ϕ(t),m(t)] we must take derivatives
with respect to both arguments of the elliptic function. For the pendulum oscillator[12], he takes the

trial function x(t) = 2 arcsin
{√

m(t) sn[ϕ(t),m(t)]
}
. This is substituted in the equation of motion

ẍ+ δẋ+α sin(x) = 0, yielding simultaneous differential equations for m and ϕ; which are solved by
inspection. For the hardening oscillator[13], he uses the trial form x(t) = A(t) cn[ϕ(t),m(t)] where
the functions A,m, ϕ are initially unknown. Fortunately, the instantaneous value of ϕ̇ = ω(A) is
known. He assumes A(t) decays exponentially. The trial is substituted in the EOM 1.1, and the
coefficients of ẋ, x, x3 inspected to give simultaneous equations for the unknowns; which are solved
by inspection. His approximate solution for (i) the pendulum is good up to amplitude x0 = π/2;
for (ii) the hardening oscillator is good up to amplitude x0 = 0.5 when β = α = 1; and for (iii)
the softening oscillator[14] is good up to amplitude ẋ0 = 0.5 when −β = α = 1. The present
authors results herein have a similar range of validity for the phase, corresponding to the Jacobi
parameters m = [12 ,

1
8 ,

1
4 ] respectively. And herein, the amplitude variation is predictable for the

complete range of m; and the cubic oscillator is treated at large amplitude with m = 1
2 and x0 = 2.

Euler[15] et al find that a solution of Eq. 1.1 in terms of elliptic functions is possible under the
special condition 2δ2 = 9α and β = 1. The solution is not given explicitly, but they provide sufficient
detail to construct the function. They also find a constant of motion I = exp(43δt)[(ẋ+xδ/3)2+ 1

2x
4].

Panayotounkanos[16] et al, using the properties of Abel’s equation of the second kind, prove that
there is no exact solution of the damped pure cubic oscillator (PCO) in terms of standard functions
- including elliptic functions. Panayotounakos[17] et al propose a methodology to construct exact
solutions for the damped PCO (α = 0), based on successive solutions of nonlinear transcendental
equations. This is an impressive result; but unlike approximate results based on elliptic functions,
does not build intuition as to oscillator behaviour.
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1.1.2 Balance methods

Suppose there is an equation of the form A(. . . ) = B(. . . ) that contains or generates periodic
motion. In the method of harmonic balance (HB), the trial solution is a Fourier series; and the
components either side of the equality must balance. HB has been used since the time of Duffing
(1918) and earlier. In the method of elliptic balance (EB), the trial is an elliptic function; and the
terms must balance. HB is suited to the harmonically-forced nonlinear oscillator. EB is suited to
free oscillation of the nonlinear oscillator. The methods may be applied either to the EOM or the
energy equation EE =

∫ t
EOM[. . . ]ẋdt. Working with the EOM is more straight forward. Working

from the EE is more complicated but will uncover a constant of motion. If the trial is not an
exact solution, there will be a residual. In this case, the EE is superior because it constrains the
components to respect energy conservation.

1.1.3 Road map

There are two key properties of the damped anharmonic oscillator: (1) the frequency depends
on amplitude, and (2) damping induces a frequency shift; and both will be addressed. We shall
explore the motion governed by the EOM (1.1) by way of a series of progressively more challenging
examples. In each case, the problem is addressed in three steps: (1) the conservative motion when
δ = 0; followed by (2) the damped motion; and finally (3) the frequency and phase advance. The
approach is perturbative; and we restrict to the regime where the damping rate is much less than
the oscillation frequency.

In Sec. 1.2 we introduce the elliptic functions and discuss their derivative with respect to the
Jacobi-parameter. The Jacobi elliptic functions cn, dn, sn have two arguments: the phase ϕ and
the elliptic modulus k2 = m. k is related to the amplitude of oscillation, and m is called the (Ja-
cobi) parameter. The cn(ϕ,m) and sn(ϕ,m) are analogues of the cos(ϕ) and sin(ϕ) trigonometric
functions. We shall speak loosely of ϕ̇ as being the angular frequency. However, the nominal fre-
quency is ν = ϕ̇/[4K(m)]. Moreover, the elliptic functions have an infinite set of Fourier harmonics
at multiples of ν; and the period of the fundamental changes with the amplitude. Further, when
damping is present, both ϕ̇ and m(t) are slowly time varying. We assume variations sufficiently
slow that ν is effectively constant over at least an oscillation cycle. We shall find that most of the
change in ν is due to m(t), and that changes in ϕ̇ are “fine tuning”.

Section 1.3, the linear oscillator, introduces the method of energy balance; and demonstrates
that damping is associated with a frequency shift. This property is also shared by non-linear
oscillators. However, for the latter, the damping rate and frequency shift are time dependent.
Sec. 1.4, the pure cubic oscillator, is our first application of the elliptic functions; the working is
simple because the Jacobi parameter is constant. Sec. 1.5, the pendulum oscillator, introduces an
important side effect[12] when the parameter, m(t), is time dependent. Sections 1.6 and 1.8 reprise
established results for free oscillations of the lossless anharmonic oscillator; while Secs. 1.6.1 and
1.8.1 present new results for the damped motion. Section 1.7 reprises the solution of Euler, and
comments on the same. An obvious approach[12, 13] is to make the Jacobi parameter (m) time-
dependent; and occurred to the present author independently. This work differs from Johannessen
in two respects. First, we derive the damping rate from the energy equation; while Johannessen
works from the differential equation. Second, we use the known analytic expression[4] for the
derivative ∂/∂mJ(ϕ,m) whereas Johannessen uses approximate forms. The EE allows to find the
damping rate for large amplitudes without knowing the details of the motion.

We are guided by three principles. The energy equation guides the damping rate and expression
for dm/dt. The quasi-static assumption provides the relation between amplitude r and m. The
EOM determines the frequency ϕ̇(t), which must satisfy the quasi-static value in the limits t → 0
and t → ∞. With damping, the frequency is shifted to a lower frequency; thereby ensuring mutual
consistency of all three functions m(t), r(t), ϕ̇(t). In this approach, unlike Johannessen, we avoid
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having to solve simultaneous differential equations. Typically, the trial solution does not equate
the EOM exactly to zero; and the residual could (in principle) quantify the error.

In section 1.9, we find what range of values δ are consistent with the mathematical formalism;
and in the final section 1.10, we make some observations and speculations on errors, improvements
and extensions.

1.2 Elliptic functions and integrals

The solution of Eq. 1.1 (with δ = 0) relies on the properties of Jacobian elliptic functions. There
are four sets of 3 functions, giving a total of twelve. However, the properties of all may be derived
from the principal set: cn, sn, dn. Two key identities are: cn2 + sn2 = 1 are dn2 + m sn2 = 1.
Those needing a primer may turn to TRI-BN-24-04[20] and the extensive references therein.
Let F (ϕ,m) and K(m) ≡ F (π/2,m) be the incomplete and complete elliptic integrals of the 1st
kind, respectively. Let E(ϕ,m) and E(m) ≡ E(π/2,m) be the incomplete and complete elliptic
integrals of the 2nd kind, respectively. Let A(ϕ,m) be the Jacobi amplitude; such that A[n ×
K(m),m] = n× π/2 for integer n. Then F [A(ϕ,m),m] = ϕ.

Figure 1.1: Left: contour plot of {(∂/∂m) cn[ϕ 4K(n),m]}n → m. Abscissa ϕ and ordinate m.
Right: contour plot of (∂/∂m) cn[ϕ 4K(m,m].

1.2.1 Parameter derivative of elliptic function

In the following sections, we shall need to form the derivative of the elliptic functions with respect
to the Jacobi parameter m. Formulae for the 1st and 2nd derivatives are given in Refs.[4, 19]. For
brevity, we omit the arguments of the elliptic functions. Let cd ≡ cn/dn. For example, the first
derivative of cn(ϕ,m) is:

2m(1−m)× ∂

∂m
cn(ϕ,m) = dn sn [(m− 1)ϕ+ E[A(ϕ,m),m]−m cd sn] . (1.3)

The second derivative is more complicated and contains the term F [A(ϕ,m),m], which is simply
equal to ϕ. The first derivative is sketched in Fig. 1.1-Left as “height” versus increasing ϕ for a
variety of m. Perhaps surprising, the function is not periodic, not small and it increases with ϕ.
For the purpose of the next sentence only, let δm mean a small change in m. The explanation is
that the period of ϕ varies with m. Hence when we construct [cn(ϕ,m+ δm)− cn(ϕ,m)]/δm there
is a cumulative phase mismatch due to the differing periods. In contrast, if we make the phase
track with the period, and form the derivative (∂/∂m)cn[ϕ 4K(m),m] we find a function that is
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small and periodic; as shown in Fig 1.1-Right. To facilitate making plots with similar scales, for the
left-side figure we formed the derivative Eq. (1.3) and then made the replacement ϕ → ϕ× 4K(m).

The frequency is ν = ϕ̇/[4K(m)]. The majority of the frequency change, as the oscillation
decays, comes from the denominator K(m). This variation, which does not appear in the first
argument (ϕ) of the elliptic function, is hidden from us (inside the internal mechanics of the Jacobi
function); but becomes exposed when we form the derivative of the elliptic function with respect
to the second argument.

The E[A(ϕ,m),m] appearing in Eq. 1.3 is a sophisticated function not amenable to manipula-
tion. However, E[A] is a function linear in ϕ with a high-frequency ripple super-imposed. Therefore,
in the analysis, we shall replace E[A] by the excellent approximation

E[A(ϕ,m),m] ≈ ϕ× (1−m/2)(1−m4)1/4 . (1.4)

In fact over the range m = [0, 12 ] the relation E[A(ϕ,m),m] ≈ ϕ× (1−m/2) is perfectly adequate.

1.3 Simple Harmonic Oscillator

For the linear oscillator β ≡ 0. We start by considering the lossless case δ = 0. We multiply
Eq. (1.1) by ẋ and integrate over time, leading to the energy equation:

1

2
ẋ2 +

1

2
αx2 = αJ (1.5)

where J is a constant of motion. We substitute into Eq. (1.5) the trial solution x(t) =
√
r cosϕ

where r is an adjustable parameter and ϕ(t) a simple function. The result is

r[α− (ϕ̇)2](cosϕ)2 + r(ϕ̇)2 = 2αJ .

The method of harmonic balance for the coefficients of cos2 and cos0 leads to two simultaneous
equations with solution ϕ̇ = ±

√
α and J = r/2 provided α > 0, r > 0. Evidently, ϕ(t) = ϕ0 ±

√
αt.

We use the subscript notation X0 to indicate the initial value X(t=0). Depending on the initial
phase ϕ0 there are two steady state solutions.

ϕ0 → 0 implies x =
√
r cos(

√
αt) valid for (x0 ̸= 0, ẋ0 = 0) .

ϕ0 → ±π/2 implies x =
√
r sin(

√
αt) valid for (x0 = 0, ẋ0 ̸= 0) .

General initial conditions are satisfied by a linear super-position of these principal solutions.

1.3.1 Damping

Restoring δ to a non-zero value will result in damped oscillations, and a changing energy value J .
We multiply Eq. (1.1) by ẋ and integrate over time, leading to the energy equation:

αJ(t) ≡ 1

2
ẋ2 +

1

2
αx2 = −δ

∫ t

(ẋ)2ds or αJ̇ = −δ(ẋ)2 . (1.6)

Substituting the steady state solution into Eq. (1.6) yields (α/2)ṙ = −rαδ(sin
√
αt)2. Now, the

damping rate is considered to be slowly varying compared with the oscillation frequency. Hence,
by integrating over a single period we find ⟨ṙ⟩ = −δr where ⟨. . . ⟩ denotes cycle average. This has
solution r(t) = r0 exp(−δt) where r0 is the initial value. The revised solution is

x = exp(−δt/2)
√
r0 cosϕ(t) , ẋ = exp(−δt/2)

√
α
√
r0 sinϕ(t) − (δ/2)x and ϕ(t) = ϕ0 +

√
αt

with ϕ0 equal zero or π/2.
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1.3.2 Frequency shift and phase

The revised solution has two undesirable properties. First, substitution into the EOM ẍ+δẋ+αx =
0 shows the equation to be violated; there is a residual x δ ̸= 0. Second, the new solutions cease to
be principal functions. These properties are shared by damped non-linear oscillators. The residual
can be made zero by allowing a frequency shift. We substitute x = exp(−δt/2)

√
r0 cos[ϕ(t)] into

the EOM, leading to

exp(−δt/2)
√
r0

{
[−4α+ δ2 + 4(ϕ̇)2] cosϕ + 4ϕ̈× sinϕ

}
= 0 . (1.7)

Let α′ ≡ α− δ2/4. Harmonic balance implies ϕ̇ = ±
√
α′ and ϕ̈ = 0; with solution ϕ(t) = ϕ0± t

√
α′.

The frequency shift is ϵ =
√
α′ −

√
α ≈ −δ2/(8

√
α).

1.3.3 Principal functions

Linear combinations of the new solutions are the new principal functions. Let x(t) = e−δt/2×
(A cosϕ + B sinϕ) where ϕ0 = 0. Consider two cases. The condition [x(0) = x0, ẋ(0) = 0] has
solution A = x0, B = δx0/(2ϕ̇). The condition [x(0) = 0, ẋ(0) = ẋ0] has solution A = 0, B = ẋ0/ϕ̇.
Forming the Wronskian determinant W = x1ẋ2−x2ẋ1 of these two solutions gives W = e−δt/2x0ẋ0.
W is non-zero, confirming the functions are linear independent.

For the case of non-linear oscillators, linear combinations of the principal functions (such as
cn,sd or sn,cd) do not satisfy the equation of motion because of cross-product terms arising in
the cubic term βx3. However, general initial conditions can be satisfied by choice of the phase
ϕ0. We demonstrate for the linear case (β = 0). We take the solution x = exp(−δt/2)

√
r cosϕ

and ϕ(t) = ϕ0 ± t
√
α′ where r, ϕ0 are to be determined. The condition [x(0) = x0, ẋ(0) = 0] has

solution r = x20(α/α
′), ϕ0 = ± arccos

√
α′/α. The condition [x(0) = 0, ẋ(0) = ẋ0] has solution

r = ẋ20/α
′, ϕ0 = ±π/2.

1.3.4 Critical damping

In the case of critical damping, the oscillator returns to the equilibrium position as quickly as
possible, without oscillating, and passes it once at most. For the linear oscillator the critical
condition is δ2 = 4α. The sine and cosine solutions cease to be valid, and are replaced by x =
exp(−

√
αt)[1 + t

√
α]x0 and x = exp(−

√
αt)t ẋ0.

1.4 Pure Cubic Oscillator

The equation of motion (EOM) for the undamped cubic oscillator is ẍ + βx3 = 0, with β > 0.
There is no linear restoring force, and so α = 0. The free oscillations may be written in terms of
the Jacobi cn(ϕ,m) function. We multiply Eq. (1.1) by ẋ and integrate over time, leading to the
energy equation:

1

2
ẋ2 +

1

4
βx4 = J (1.8)

where J is a constant of motion. We substitute into Eq. (1.8) the trial solution x(t) =
√
rcn[ϕ(t),m]

and ẋ = −
√
r dn[ϕ(t),m] sn[ϕ(t),m]ϕ̇ where the adjustable parameters r,m and phase function ϕ(t)

must be consistent with one another. In the absence of damping, the frequency ϕ̇ is constant. The
energy equation becomes:

[r2β − 2mr(ϕ̇)2][cn(ϕ,m)]4 + 2r(2m− 1)[ϕ̇ cn(ϕ,m)]2 − 2mr(ϕ̇)2 = 4J . (1.9)

The principle of elliptic balance dictates that the coefficients of cn0, cn2, cn4 must each be zero,
leading to three simultaneous equations; with solution ϕ̇ = ±

√
β r and J = βr2/4 and m = 1/2.



1.4. PURE CUBIC OSCILLATOR 11

Thus ϕ(t) = ϕ0 ± t
√
βr. Initial phase ϕ0 = 0 gives x =

√
r cn; while ϕ0 = ±K[m] gives the other

principal function x = −
√

r/2 sd(ϕ, 12). Note, the Jacobi m-parameter is a defined constant. Thus
the effect of damping will show as variation of the amplitude r → r(t) and a corresponding change
of the frequency ϕ̇ →

√
β r(t).

10 20 30 40
t

-1

1

2

3

4

J

Figure 1.2: Energy of damped cubic oscillator versus time. Blue: numerical solution Jn. Gold:
analytic variation Jr. Olive: the magnified difference 10×(Jn−Jr). Coral: the magnified difference
100× (Jn− Ja) where Ja is calculated from the analytic solution for (x, ẋ). Here x0 = 2, ẋ0 = − 1

15 .

1.4.1 Damping & variation r(t)

Restoring δ to a non-zero value will result in damped oscillations, and a changing energy value
J(t) = −δ

∫ t
(ẋ)2ds or J̇ = −δ(ẋ)2. Substituting the free oscillation, and writing J in terms of r,

leads to
1

4
β
d

dt
r(t)2 =

1

2
βrṙ = −δβr2[dn(ϕ, 1/2) sn(ϕ, 1/2)]2 . (1.10)

We integrate over one period to find the average rate of change; the cycle average denoted ⟨. . . ⟩.
We assume that ϕ̇ is constant during one period. The period is 4K(12) and the integral∫ 4K
0 (dn× sn)2dt = (4/3)K(12). Hence 1

2⟨ṙ⟩ = −1
3δ r, with solution r(t) = r0 exp[−2

3δt] where r0 is
the initial value.

These results are confirmed in Fig. 1.2 which compares the energy Jn calculated by numerical
solution of the EOM for (x, ẋ) and substitution in Eq. 1.8 versus Jr = βr2/4 = exp(−4δt/3)β r20/4.
The quantity Ja is the energy calculated from the approximate analytic expressions for (x, ẋ).
The values chosen are β = 1, δ = 1

10 and the large initial amplitude r0 = 4, x(0) = 2, ẋ(0) =
ṙ(0)/(2

√
r0) = − 1

15 . The values Jn, Jr are in good agreement; and the values Jn, Ja in excellent
agreement.

1.4.2 Differential equation

Suppose that instead of the energy equation, we chose to work directly with the differential equation.
Substituting the trial x(t) =

√
r(t)cn[ϕ(t), 12 ] into the EOM leads to the condition:

r2[βr − (ϕ̇)2] cn3 − r[ϕ̇ ṙ + r(ϕ̇ δ + ϕ̈)] dn sn + (1/4)[−(ṙ)2 + 2r(ṙδ + r̈)] cn = 0 . (1.11)

For brevity we have omitted the arguments of the elliptic functions. The EB principle implies
three simultaneous equations, one each for the coefficients of cn, cn3 and dn×sn. There is no
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exact solution, because the trial is not exactly the correct function. However, there are two inexact
solutions. In no particular order, the first1 solution is: r(t) = exp(−2tδ)r0 and ϕ̇ =

√
β r(t); and the

second2 solution is r(t) = exp(−2tδ/3)r0 and ϕ̇ =
√

β r(t). It is not straight forward to determine
which one is the more correct. In each case, the EOM has a small residual. The first has residual
2δ
√
βr(t) dn sn ≈ −2δẋ(t). The second has residual −(2/9)δ2 x(t). Although the second is order δ

smaller, x0 =
√
r0 while ẋ0 = 0; so it is no clear which is actually the smaller quantity. However, we

have the benefit of the energy equation which tells us the correct variation is r(t) = exp(−2tδ/3)r0.

1.4.3 Frequency shift and phase

We may now calculate the frequency and phase advance:

ϕ̇ = ±e−δt/3
√

β r0 and ϕ(t) = ϕ0 ±
√

β

∫ t

0

√
r(u)du = 3[1− exp(−δt/3)]

√
β r0/δ . (1.12)

In the limit δ → 0, we recover the phase advance at constant frequency: ϕ(t) = ±
√
β r0 t.

The trial solution has become x(t) =
√

r(t) cn[ϕ(t), 12 ] where r and ϕ are known functions. We

may now test whether this trial satisfies the EOM. Substituting x, ẋ, ẍ and r, ṙ, r̈ and ϕ̇, ϕ̈ into the
EOM, we find the residual −2

9δ
2√r0 exp(−δt/3) cn[ϕ(t), 12 ] ̸= 0. Although non-zero, the residual is

a small quantity (of order δ2) and decays exponentially.
If we substitute into the EOM, the found functions x, ẋ, ẍ and ṙ, r̈ but hold ϕ̇ and ϕ̈ as unknown

free variables, the residual is√
r(t)

{
[β r(t)− (ϕ̇)2] cn3 − (2/9)δ2 cn − (1/3)(ϕ̇δ + 3ϕ̈) dn sn

}
= 0 .

Equating the coefficients of cn3 and dn×sn each to zero, leads to two simultaneous equations for
ϕ̇; and which both have the solution Eq. 1.12. However, the coefficient of cn cannot be made zero
unless δ = 0. This implies the exponentially damped frequency is a good approximation, but not
an exact behaviour. Let X be the exact solution of the EOM and y the error such that X = x+ y.
A crude estimate is y of order (4/27)δ2X(t)/(β

√
r(t)) ≃ (4/27)δ2

√
r(t)/β. The comparison of

numerical and analytic solutions in Fig. 1.3 confirms that the error is of order δ2 smaller than X.
The PCO parameters are β = 1 and δ = 1

10 .

1.4.4 Principal functions

The effect of damping is that x =
√
r(t) cn[ϕ(t), 12 ] with ϕ0 = 0 and ϕ0 = ±K(12) are nolonger

orthogonal functions. The properties of the principal functions can be restored by adjusting ϕ0.
The time derivative is ẋ = −

√
r(t)dn(ϕ, 12)sn(ϕ,

1
2)ϕ̇+ 1

2(ṙ/
√
r) cn(ϕ, 12).

The condition [x(0) = x0, ẋ(0) = 0] leads to simultaneous equations

√
r0 cn(ϕ0, 1/2) = x0 and

√
r0 δ cn(ϕ0, 1/2) + 3r0

√
β dn(ϕ0, 1/2), sn(ϕ0, 1/2) = 0 ,

to be solved for r0 and ϕ0. Substituting r0 = (x0/cn)
2 into the second condition gives a transcen-

dental equation for ϕ0: δ + 3
√
βx0 dn(ϕ0,

1
2) sn(ϕ0,

1
2)/[ cn(ϕ0,

1
2)]

2 = 0. This is solved numerically
for ϕ0, and then ϕ0 inserted into r0 = (x0/cn)

2.
The condition [x(0) = 0, ẋ(0) = ẋ0] leads to simultaneous equations

√
r0 cn(ϕ0, 1/2) = 0 and

√
r0 δ cn(ϕ0, 1/2) + 3r0

√
β dn(ϕ0, 1/2) sn(ϕ0, 1/2) + 3ẋ0 = 0 .

These have the solution ϕ0 = ±K(12) and r0 = |ẋ0|
√

2/β.

1The coefficient of cn is zeroed first, followed by the coefficient of cn3; and the residual is generated by the
coefficient of dn×sn.

2The coefficient of cn3 is zeroed first, followed by the coefficient of dn×sn; and the residual is generated by the
coefficient of cn.
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Figure 1.3: Cubic oscillator with x0 = 2, ẋ0 = − 1
15 . Left: overlay of approximate analytic xa (gold)

on the exact numerical xn(t) (blue); and the magnified error 10 × (xn − xa). Right: overlay of
approximate ẋa (gold) on the exact ẋn (blue); and the magnified error 10× (ẋn − ẋa).

1.5 Pendulum Oscillator

The damped rigid pendulum has the equation of motion

ẍ + δẋ + α sin(x) = 0 . (1.13)

This is an archetype nonlinear oscillator. However, its principal use as a clock (since the time
of Christiaan Huygens, 1656) relies on small amplitude oscillations of a few degrees. Arguably,
because of the infinite series sinx = x − x3/3+ x5/5+ . . . , the pendulum is more challenging
than the anharmonic oscillator. However, the pendulum has only two parameters (α, δ) and its
“frequency” has a very simple formula; and so we treat it before the anharmonic oscillator.

We begin with the lossless motion, δ = 0. We multiply the EOM by ẋ and integrate over time,
leading to the energy equation:

1

2
ẋ2 − α cos[x(t)] = (J − 1)α , (1.14)

where J is a constant of motion. The couplet (J − 1) ensures that the energy J is always
positive. We substitute into Eq. (1.14) the trial solution x(t) = 2 arcsin[

√
m sn[ϕ(t),m] and

ẋ = 2
√
m], cn[ϕ(t),m] ϕ̇ where the m parameter and phase function ϕ must be consistent with

one another. In the absence of damping, the frequency ϕ̇ is constant. The energy equation be-
comes:

2m[α− (ϕ̇)2] sn2 + 2m(ϕ̇)2 = αJ (1.15)

We equate the coefficients of sn2 and sn0 each to zero, leading to the conditions ϕ̇ = ±
√
α and

J = 2m and α > 0. The period of motion is τ = 4K(m)/
√
α.

1.5.1 Damping & variation m(t)

Restoring δ to a non-zero value results in a changing energy value αJ̇ = −δ(ẋ)2. Under the
assumption of weak damping, we substitute J(m) and ẋ for the lossless case, leading to

α
d

dt
2m = −4mαδ[ cn(ϕ,m)]2 . (1.16)

The average damping rate is found by integrating over one period of the oscillation. The integral

2m

∫ 2K

0
cn2dt = 2 {E[A(2K,m),m] + 2(m− 1)K(m)} = 4[E(m) + (m− 1)K(m)] .
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Figure 1.4: Energy of damped pendulum oscillator versus time. Blue: numerical solution Jn. Gold:
approximate solution Jr. Olive: the difference (Jn − Jr). Here m0 = 0.99 .

Hence the damping law:

⟨ṁ⟩ = −2δ [(m− 1) + E(m)/K(m)] . (1.17)

This result is confirmed in Fig. 1.2 which compares the energy Jn calculated by numerical solution
of the EOM and substitution in Eq. 1.14 versus Jr = 2m(t) where m is computed by numerical
integration of Eq. 1.17. The values chosen are α = 1, δ = 1

10 and the large initial amplitude
m0 = 0.99, x(0) = 0, ẋ(0) = 2

√
αm0 = 1.99. The values are in good agreement for J < 1 (or

m < 1
2); but there is an oscillator mismatch prior to that. The damping law is sketched in

Fig. 1.5 Left.

Approximate m(t)

The function Eq. 1.17 goes to zero at m = 0 because the amplitude is zero; and also at m = 1
because the period becomes infinite due to the pendulum being inverted (x = π). Over the range
m = [0, 12 ] the approximation ṁ/δ = −m is perfectly adequate; leading to m(t) = m0 exp(−δt)
where m0 is the initial value. In the range m = [0, 1], the function is well approximated by
ṁ/δ ≈ −m × (1 − m2)1/5. Unfortunately, this does not have a closed-form integral. The poor
approximation ṁ/δ ≈ −m× (1−m2)1/2 and initial value m0, however does have an integral:

m(t) = sin
{
2 arccot

[
etδ cot(u0/2)

]}
=

eδtm0(
√

1−m2
0 − 1)

(
√
1−m2

0 − 1) +m2
0(1− e2δt)/2

. (1.18)

Here sin(u0) = m0. The derivation3 of Eq. 1.18 begins with the substitution m(t) → sin[u(t)]; and
ends with the replacement cot(θ/2) → sin θ/(1− cos θ). We call this solution m1(t).

A better approximation is ṁ/δ ≈ −m × (1 − m2)1/4 which has the approximate integral:
F [u(t)] = tδ + F [u0] where F (X) =

√
(cosX)3/(2 sinX) and m = sinu. Hence

F (m) = (
√
1−m2)3/4/

√
(2m). This leads to a sextic algebraic equation for m(t), which is soluble.

The formal solution is m(t) = F−1[tδ + F (m0)] where F−1 denotes inverse. We call this solution
m2(t). Fig. 1.5 Right compares the approximate solutions (m1,m2) against numerical integration
of Eq. 1.17, all starting from the initial value m(0) = 0.99. The agreement is satisfactory for m2.

3The substitution m(t) → tanh[u(t)] leads to the same result.
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Figure 1.5: Left: Pendulum damping form factor. Right: Jacobi parameter m versus time for
pendulum; Blue = m1(t); Olive = m2(t); Coral = Exact variation; m0 = 0.99

1.5.2 Frequency shift and phase

We have a successful trial solution x(t) = 2 arcsin[
√

m(t) sn[ϕ(t),m(t)] with known dependencies
for ṁ and ϕ̇. Unless it is the exact solution, substitution into the EOM (1.13) will leave a residual
error. For the linear oscillator, we found that the error could be reduced (in fact zeroed) by
introducing a frequency shift related to the damping rate δ. We shall attempt a similar reduction
for the pendulum oscillator. We substitute the trial into the EOM taking full account that the time
dependency of m implies we must take derivatives of the elliptic functions with respect to both
arguments. The resulting expression is very lengthy, so we shall restrict attention to the dominant
terms which are large and/or growing. The missing terms are oscillatory and will integrate to zero
effect. To further simplify the expression, we restrict to m < 1

2 such that ṁ ≈ −δm and m̈ ≈ δ2m,
and E[A(ϕ,m),m] ≈ ϕ×(1−m/2). For brevity we omit the arguments ϕ,m of the elliptic functions
and write m(t) as simply m. Our approximate EOM has a common factor

√
m multiplying terms

in cn and sn; elliptic balance implies each must be zero.

dn sn

[
−1

8

(δ ϕm)2

(1−m)2
− δ ϕm ϕ̇

(1−m)
+ 2(α− ϕ̇)2

]
= 0 (1.19)

2 cn× ϕ̈ − cn× 1

2

δ2 ϕmdn2

(1−m)2
= 0 (1.20)

We solve the quadratic Eq. (1.19) for ϕ̇

ϕ̇ = ±
√
α − δ × ϕ(t)m(t)/[1−m(t)]/4 . (1.21)

We substitute the explicit m(t) = m0e
−δt. The resulting equation has an exact and complicated

solution in terms of the 2F1 hypergeometric function and powers of decaying exponentials. How-
ever, our approach is perturbative and leads to a simple, compact expression that is an excellent
approximation. We start from ϕ̇ =

√
α, and ϕ̈ = 0, and substitute the original ϕ(t) = ±

√
α t.

±ϕ̇ =
√
α − δ t

√
αm0/(e

δt −m0)/4 . (1.22)

Notably ϕ̇ = ±
√
α when t → 0 and as t → ∞. Generally, the damping shifts ϕ̇ to lower frequency.

The depressed frequency is crucial to obtaining a match between values of (x, ẋ) computed by
numerical solution of the EOM and those calculated from the approximate analytic expressions.

The phase is the integral of Eq. (1.22). The first term has integral ±
√
αt. The second term has

an exact integral; the precise form depends on the sign of δ and whether m(t)/m(0) is greater or
smaller than unity. Here δ > 0 and m(t)/m(0) < 1. Hence the phase:

ϕ(t) ≈
√
α t +Φ(t) where Φ(t)× (4/

√
α) ≡ −t ln[1−m(t)] + Li2[m(t)]− Li2[m(0)] (1.23)
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and where Li2[. . . ] is the polylogarithm Lin(z) =
∑∞

k=1 z
k/kn.

We must verify if the solution (1.21) also satisfies Eq. (1.20). We substitute ϕ̈ the time derivative
of Eq. (1.21), and ṁ = −δ ×m, and replace dn2 by its average value dn2 ≈ 1 −m/2, to find the
residual

δ ×m[−4
√
α + (4

√
α+ 3 δ ϕ)m] cn(ϕ,m)/(1−m)2 . (1.24)

At t = 0 this quantity is small, but not zero. With ϕ ≈
√
αt and to second order in m(t), the

residual is cn × [−4
√
α δm(1 +m) + 3 t

√
α δ2m2]. The maximum value occurs at t ≈ 1/(2δ), and

then decays as m = m0e
−2δt. This implies the trial x(t) will deviate from the exact solution of

the EOM; but the error is bounded because it mostly accrues during the interval t = [0, 1δ ]. The
comparison of numerical and analytic solutions in Fig. 1.6 confirms that the error is small and
peaks around t ≈ 1/δ. The pendulum parameters are α = 1 and δ = 1

10 .
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Figure 1.6: Pendulum oscillator with x0 = 0, ẋ0 =
√
2. Left: overlay of approximate analytic xa

(gold) on the exact numerical xn(t) (blue); and the magnified error 10× (xn − xa). Right: overlay
of approximate ẋa (gold) on the exact ẋn (blue); and the magnified error 10 × (ẋn − ẋa). Here
m0 =

1
2 .

The approximate expression for the EOM, after the trial solution has been inserted, and highly
oscillatory terms dismissed, contains the powers ϕδ, ϕδ2 and (ϕδ)2 where δ ≪ 1 and ϕ ≫ 1. In the
absence of damping, ϕ increases linearly with time. It might be supposed, therefore, that the term
(ϕδ)2 will dominate. But this is not the case. The phase always appears in combination with m(t)
which is exponentially damped, preventing the product from reaching large values; and hence the
terms containing ϕδ2 and (ϕδ)2 are comparable.

1.6 Hard Anharmonic Oscillator

After introducing the preliminaries above, we now focus on the anharmonic EOM Eq. (1.1). We
shall find a solution in terms of an elliptic function with all the adjustable parameters r,m, ϕ̇ varying
in lock step to follow the decaying oscillation. In the limit δ → 0 the system will approach the
quasi-static limit: a dynamic equilibrium in which the EOM is identically equal zero. For finite
values of δ, there will be a small residual to the EOM despite the coupled variation of the oscillator
parameters; and this must be reduced by introducing a frequency shift.

We begin with the lossless motion, δ = 0. Many authors work directly with the differential
equation, Eq. 1.1, but it is more elegant to work with the integral of motion. We multiply the
EOM by ẋ and integrate with respect to time, leading to the Hamiltonian:

1

2
(ẋ)2 +

1

2
αx2 +

1

4
β x4 = Jα . (1.25)
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The constant of integration J is chosen to satisfy the initial conditions, and is dimensionless. The
next step is to substitute a trial function

x(t) =
√
r cn(ϕ,m) and ẋ = −ϕ̇

√
r dn(ϕ,m) sn(ϕ,m) (1.26)

with adjustable constants (ϕ̇, r,m, J) into Eq. 1.25, leading to

2r(1−m)(ϕ̇)2 + 2r[α+ (2m− 1)(ϕ̇)2] cn(ϕ,m)2 + r[rβ − 2m(ϕ̇)2] cn(at,m)4 = 4αJ . (1.27)

The coefficients of the time-varying functions must all be zero. This leads to three simultaneous
non-linear algebraic equations for the adjustable constants.

2αJ + r(m− 1)(ϕ̇)2 = 0 α+ (2m− 1)(ϕ̇)2 = 0 rβ − 2m(ϕ̇)2 = 0 . (1.28)

There are 3 equations and 4 adjustable constants. Therefore, we may choose one quantity as the
control parameter; and find the remainder constants in terms of that parameter. If we treat r > 0
as the parameter, we find the solution:[

ϕ̇ = ±
√

α+ rβ, J = r(2α+ rβ)/(4α), m = rβ/[2(α+ rβ)]
]

with β > 0 . (1.29)

If we treat m as the parameter, we find an alternative form (for the same solution):[
ϕ̇ = ±

√
α√

1− 2m
, J =

(1−m)mα

(1− 2m)2β
, r =

2mα

β(1− 2m)

]
with 0 < m ≤ 1/2 . (1.30)

We shall refer to these conditions with m replaced by m(t) as quasi-static. By inspection, the
adjustable constants diverge asm → 1

2 . This is the limit of very large amplitude such that βx2 ≫ α.
In this case, the linear restoring force (αx) becomes insignificant, and the motion tends to that of
the pure cubic oscillator. The period of oscillation τ(m) is given by the condition ϕ̇τ = 4K[m].

The quadrature solution is obtained by making the Jacobi argument substitution
[ϕ,m] → [ϕ+K(m),m] in Eq. 1.26, leading to

x(t) = −
√
r
√
1−m sd(ϕ,m) and ẋ = −ϕ̇

√
r
√
1−m cd(ϕ,m) nd(ϕ,m) . (1.31)

1.6.1 Damping & variation m(t)

We consider the case of weak damping, wherein the energy loss per cycle of the oscillation is a small
fraction of the total energy. In this case, we may adopt a perturbative approach. We multiply the
EOM, Eq. 1.1, by ẋ and integrate over time, leading to

αJ = −δ×
∫ t

(ẋ)2du or α
d

dt
J(t) = −(ẋ)2 ×δ . (1.32)

If the damping constant δ is sufficiently small, then we may insert the unperturbed motion in the
right hand side of Eq. 1.32. This will give the instantaneous damping rate. If we then form the
time average over an oscillation cycle, we shall find the right side is related to J ; and so we shall
have an evolution equation for J(t).

It is expedient to write J in terms of the Jacobi m parameter. The left side of Eq. 1.32 is

α2

β

d

dt

[
(1−m)m

(1− 2m)2

]
=

α2

β

ṁ

(1− 2m)3
where m = m(t) .

The right side of Eq. 1.32 is −2mα2δ dn(ϕ,m)2 sn(ϕ,m)2/(1− 2m)2/β. Hence the rate equation

ṁ = −δ 2m(1− 2m) dn(ϕ,m)2 sn(ϕ,m)2 . (1.33)
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Figure 1.7: Energy of damped hardening oscillator versus time. Blue: numerical solution Jn. Gold:
approximate solution Jr. Olive: the magnified difference 10× (Jn − Jr). Here m0 = 0.490 .

The cycle-average of Eq. 1.33 is: ⟨ṁ⟩ = −δ × 2m(1− 2m)× F (m) where

F (m) ≡ 2

∫ 2K(m)

0
dn2(z,m)sn2(z,m)dz/4K(m) =

(1−m)

3m
+

(2m− 1)E(m)

3mK(m)
. (1.34)

The product function on the right side of ⟨ṁ⟩ is plotted in Fig. 1.8; and simplifies to

⟨ṁ⟩/δ = −2

3
(1− 3m+m2) +

2

3
(1− 2m)2

E(m)

K(m)
(1.35)

≈ −2

3
(1− 3m+m2) +

2

3
(1− 2m)2(1−m/2) = −m+

8m2

3
− 4m3

3
.

This result is confirmed in Fig. 1.7 which compares the energy Jn calculated by numerical solution
of the EOM and substitution in Eq. 1.25 versus Jr = (1 − m)m]α/[(1 − 2m)2β] with m(t) the
numerical solution of Eq. 1.35. The values chosen are α = 1, β = 1, δ = 1

10 and the large initial
amplitude m0 = 0.49, r0 = 49, x(0) = 7, ẋ(0) = −0.235862. The values are in good agreement.
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Figure 1.8: Damping form factors for the hard (left) and soft (right) Duffing oscillator.

Approximate m(t)

The first term in Eq. 1.35 is precisely −m, with implication of exponential damping m(t) =
m(0) exp(−tδ). The cubic form for ⟨ṁ⟩ is an excellent approximation, but unfortunately does
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not lead to an integral. In its place, a reasonable approximation is −A sin(2mπ), where the con-
stant A = 0.105912 is the value at the minimum m = 0.22615. The equation ṁ = −Aδ sin(2mπ)
has the exact solution tan[πm(t)] = exp(−bt) tan[πm(0) where b = 2πAδ and m(0) is the initial
value. Fig. 1.10 compares this approximate solution for m(0) = 0.49 against numerical integration
of the exact evolution equation; the agreement is good.

1.6.2 Frequency shift and phase

When δ = 0, we have a successful trial solution x(t) =
√
r cn[ϕ,m] with known dependencies for

ϕ̇ and r given by Eq. 1.30. When 0 < δ ≪
√
α is non-zero, we know that ⟨ṁ⟩ depends only on

m; see Eq. 1.35. In the limit of very slow variation, the solution takes on the quasi-static form
x(t) =

√
r(t) cn[ϕ(t),m(t)] with r(t) following the variation of m(t) through Eq. 1.30. However,

the phase variation will depart from that given in Eq. 1.30. Substitution of the quasi-static form
into the EOM (1.1) will leave a residual error; and this may be used to improve the estimate of the
frequency ϕ̇.

We substitute the quasi-static form x =
√

r(t) cn[ϕ(t),m(t)] into the EOM taking full account
that the time dependency ofm implies we must take derivatives of the elliptic functions with respect
to both arguments. The resulting expression is very lengthy, so we shall restrict attention to the
dominant terms which are large and/or growing. We use the quasi-static form r(m) Eq. 1.30, and
the relation between ṙ and ṁ to achieve some cancellations and simplification. We leave ϕ̇ as a
free variable. For the hardening oscillator, 0 ≤ m ≤ 1

2 for which E[A(ϕ,m),m] ≈ ϕ × (1 −m/2).
However, to further simplify the expression we must restrict ⟨ṁ⟩ to the near-linear range m < 1

4
such that ṁ ≈ −δm and m̈ ≈ δ2m. For brevity we omit the arguments ϕ,m of the elliptic functions
and write m(t) as simply m. The EOM contains terms in cn and sn; elliptic balance implies the
coefficients of both must each be zero. Hence two simultaneous equations:

√
r

{
2αm

(1− 2m)
cn3 + cn

[
ϕ(t)ϕ̇ δΛm

2(1−m)
+

ϕ2δ2Λm2

42(1−m)2
+ (α+ Λ× ϕ̇2)

]}
= 0 (1.36)

dn sn√
r

{
α δ2 ϕm2[Λ− 5m+ 4m2 + 4mdn2]

2β(1− 2m)2(1−m)2
+

2αm ϕ̈

β(1− 2m)

}
= 0 (1.37)

where Λ(t) ≡ 1 − 2 dn2. It is worth stating that had we not relied on the quasi-static forms and
the guiding hand of the energy equation, but left r, ϕ̇,m all as free functions, the equations would
have contained dozens of terms; a bewildering expression with no hope of solution.

The Eq. (1.36) is quadratic in ϕ̇, and can be solved4 exactly:

ϕ̇ = ±
√
α√

1− 2m(t)
− δ× ϕ(t)m(t)

4[1−m(t)]
. (1.38)

We substitute the explicit m(t) = m0 exp(−δt). The first term has an exact integral. We substitute
ϕ ≈

√
αt into the second term, and find its integral to be Φ(t). Hence the phase

ϕ(t) ≈
√
α t+ 2(

√
α/δ) ln

[
1 +

√
1− 2m(t)

1 +
√
1− 2m(0)

]
+Φ(t) . (1.39)

The terms excluding Φ have the first order approximation
√
αt+ (

√
α/δ)[m(0)−m(t)].

For consistency, the coefficient of dn×sn must be zero or very small. Certainly it is small: the
first term is order δ2, and in the absence of damping ϕ̈ = 0. We now quantify the assertion. The
solution Eq. 1.38, and its derivative ϕ̈ is substituted into Eq. 1.37. We substitute ṁ = −δ m, and

4The elliptic functions cancel between denominator and numerator leaving this remarkably simple form.
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replace dn2 by its (approximate) average value 1 − m/2. Simplifications are achieved, with the
residual EOM equal to

√
r dn sn

4(1−m)(1− 2m)

[√
α δm(5− 6m)√

1− 2m
+

ϕ δ2m2(7− 6m)

4(1−m)

]
. (1.40)

The second term, in ϕ δ2 is of order δ times smaller than the first and can be neglected. Thus
the residual has magnitude of order

√
r
√
αmδ; and is bounded because both m and r decay

exponentially. It is an effort to find even a crude estimate for the deviation of the trial function
x(t) from the exact solution X(t) of the EOM. Let X = x + y where y is the error. It may be
inferred that y is of order δ m(t)

√
r/α. The comparison of numerical and analytic solutions in

Fig. 1.9 confirms that the error is of order δ × m smaller than X. The oscillator parameters are
α = β = 1 and δ = 1

10 ; and m0 =
1
8 .
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Figure 1.9: Hardening oscillator with x0 = 1/
√
3 ≈ 0.5774, ẋ0 = −0.0266. Left: overlay of ap-

proximate analytic xa (gold) on the exact numerical xn(t) (blue); and the error (xn − xa). Right:
overlay of approximate ẋa (gold) on the exact ẋn (blue); and the error (ẋn − ẋa). Here m0 =

1
8 .

1.7 Euler’s solution for hardening oscillator

The goal of Euler[15] et al was to find conditions under which the EOM 1.1 has a solution of the form
x(t) = v(t) cn[ϕ(t), 12 ] with m a constant. The restriction β = 1 is unnecessary. We outline their
solution, and comment on critical damping. Euler begins from the trial function x = v(t)u[ϕ(t)]
where u, v, ϕ are initially unknown. Substitution into the EOM yields:

u× [α v + v̇δ + v̈] + u̇× [2ϕ̇v̇ + v(ϕ̇δ + ϕ̈)] + v(ϕ̇)2ü+ β × (uv)3 = 0 . (1.41)

The coefficients of u and u̇ are equated to zero (see below), leaving v[(ϕ̇)2ü+βv2u3] = 0. The latter
is suggestive of the pure cubic oscillator. They insert the trial ϕ̇ = v(t)/

√
k and find the condition

for u to be of the form u(z) =
√
r cn[ωz, 12 ] where z ≡ ϕ(t). The condition is ω =

√
k rβ.

The coefficient of u becomes zero when v(t) = c1 exp(tρ1) + c2 exp(tρ2) where the roots 2ρ1 =
−δ−∆ and 2ρ2 = −δ+∆ where ∆ =

√
δ2 − 4α, and c1, c2 are adjustable constants. Next, we must

find the conditions under which substitution of v into the coefficient of u̇ makes that coefficient
become zero. There are two such conditions: (1) that δ = −3

√
α/2 and c2 = 0; and (2) that

δ = +3
√
α/2 and c1 = 0. Because α > 0, the former is a growing solution and is discarded. Hence

v(t) = c2 exp[−t
√
α/2]. With no loss of generality, c2 may be set equal to one. Now ϕ̇ = v(t)/

√
k

may be integrated to find ϕ(t); and the first argument of the elliptic function is ω ϕ. Hence Euler’s
solution:

x(t) = exp[−t
√

α/2]
√
r cn

{
[1− exp(−t

√
α/2)]

√
2 rβ/α, 1/2

}
. (1.42)

The quadrature solution is found by adding ±K(12) to the argument of the elliptic cosine.
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1.7.1 Critical damping

The condition δ2 = 9α/2 is suggestive of the critical damping for the simple harmonic oscillator.
However, for the nonlinear case the oscillation frequency depends on amplitude; and there will be
one precise amplitude at which critical damping occurs. The condition that there be no more than
one zero crossing during the oscillation is

√
2 rβ/α ≤ K[12 ]. The equality determines the critical

amplitude r ≈ 1.7188α/β.

1.8 Soft Anharmonic Oscillator

For the softening oscillator β < 0. This has implications for large amplitude oscillations. Let us
write the EOM as A + B = 0 where A = αx + βx3 and B = δẋ + ẍ. At a certain amplitude
x0 = ±

√
α/|β| the quantity A = 0 and the equation B = 0 has the momentary solution x(t) =

x0 exp(−δt). In this regime of amplitude, the term δ × ẋ cannot be considered a small quantity.
The analysis below is perturbative in δ; and therefore will break down as the limit |x0| =

√
α/|β|

is approached. This coincides with the limit of Jacobi parameter m → 1.
The first step is to find the steady state solution, in the absence of damping. We substitute the

trial function

x(t) =
√
r sn(ϕ,m) and ẋ = +ϕ̇

√
r cn(ϕ,m) dn(ϕ,m) (1.43)

with adjustable constants (ϕ̇, r,m, J), into the energy equation 1.25; leading to

4Jα = 2(ϕ̇)2r + 2r[α− (1 +m)(ϕ̇)2] sn2(ϕ,m) + r[2m(ϕ̇)2 + rβ] sn4(ϕ,m) . (1.44)

The coefficients of the time-varying functions must all be zero. This leads to three simultaneous
non-linear algebraic equations for the four adjustable constants. If we treat r > 0 as the parameter,
we find the solution:[

ϕ̇ = ±
√

Γ/2, J = rΓ/(4α), m = −rβ/Γ
]

with Γ = (2α+ rβ) and 0 < r ≤ −α/β . (1.45)

If we treat m as the parameter, we find the equivalent form:[
ϕ̇ = ±

√
α√

1 +m
, J =

−mα

(1 +m)2β
, r =

−2mα

(1 +m)β

]
where 0 < m ≤ 1 . (1.46)

We shall refer to these conditions with m replaced by m(t) as quasi-static. The period of oscillation
τ(r) is given by the condition ϕ̇τ = 4K[m]. The quadrature solution is obtained by the Jacobi
argument substitution [ϕ,m] → [ϕ+K(m),m] in Eq. 1.43, leading to

x(t) =
√
r cd(ϕ,m) and ẋ = a

√
r(m− 1) sd(ϕ,m) nd(ϕ,m) . (1.47)

1.8.1 Damping & variation m(t)

The starting point is Eq. 1.32. We substitute ẋ by the expression in Eq. 1.43 and form the
average over one oscillation cycle. As before, working is simplified if we choose to use the Jacobi
m parameter. The left side of Eq. 1.32 becomes

−α2

β

d

dt

[
m

(1 +m)2

]
=

α2

β

(m− 1)ṁ

(1 +m)3
where m = m(t) .

The right side of Eq. 1.32 is 2mα2 δ cn(ϕ,m)2 dn(ϕ,m)2/(1 +m)2/β. Hence the rate equation

ṁ = −δ 2m(1 +m) cn(ϕ,m)2 dn(ϕ,m)2/(1−m) . (1.48)
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Figure 1.10: Jacobi amplitude m versus time for the hard (left) and soft (right) Duffing oscillator.
The damping parameter δ = 0.1 in both cases. The blue curve is the approximate analytic solution,
whereas the coral coloured curve is that from numerical integration. Note that the time scale is
markedly different between the two plots, as are the initial values m0 = 0.49 and m0 = 0.85.

The cycle-average of Eq. 1.48 is: ⟨ṁ⟩ = −δ × [2m(1 +m)/(1−m)]× F (m) where

F (m) ≡ 2

∫ 2K(m)

0
dn2(z,m) cn2(z,m)dx/[4K(m)] =

m− 1

3m
+

(1 +m)E(m)

3mK(m)
. (1.49)

The product function on the right side of ⟨ṁ⟩ is plotted in Fig. 1.8; and simplifies to

⟨ṁ⟩/δ =
2

3
(1 +m)− 2

3

(1 +m)2E(m)

3(1−m)K(m)
≈ − m

(1−m)
. (1.50)

This result is confirmed in Fig. 1.11 which compares the energy Jn calculated by numerical solution
of the EOM and substitution in Eq. 1.25 versus Jr = −mα/[(1 +m)2β] with m(t) the numerical
solution of Eq. 1.35. The values chosen are α = 1, β = 1, δ = 1

10 and the large initial amplitude
m0 = 0.99, r0 = 0.995, x(0) = 0, ẋ(0) = 0.7071. The values are in good agreement.

Approximate m(t)

The first term in the Taylor expansion of ṁ (Eq. 1.50) aboutm = 0 is precisely−m, with implication
of exponential damping m(t) = m(0) exp(−tδ). For the purpose of the next few sentences only, let
A be an adjustable constant. The approximate equation ṁ = δ×Am/(m−1) has the exact solution
m(t) = −ProdLog{−m(0) exp[−m(0) − A t δ]} where the product ProdLog{z} is the solution for
w of z = w exp(w). Over the range m = [0, 1] the best fit to ṁ is A = 1. Over the reduced range
m = [0, 0.85] the best fit to ṁ is A = 1.08; but we must accept the derivative is not quite correct
at m = 0. Fig. 1.10 compares this approximate solution against numerical integration of the exact
evolution equation starting from the initial value m(0) = 0.85. The agreement is good: the relative
fractional error is no more than a few percent over the entire time interval.

1.8.2 Frequency shift and phase

When δ = 0, we have a successful trial solution x(t) =
√
r sn[ϕ,m] with known dependencies for

ϕ̇ and r given by Eq. 1.46. When 0 < δ ≪
√
α is non-zero, we know that ⟨ṁ⟩ depends only on

m; see Eq. 1.50. In the limit of very slow variation, the solution takes on the quasi-static form
x(t) =

√
r(t) sn[ϕ(t),m(t)] with r(t) following the variation of m(t) through Eq. 1.46. However,

the phase variation will depart from that given in Eq. 1.46. Substitution of the quasi-static form
into the EOM (1.1) will leave a residual error; and this may be used to improve the estimate of the
frequency ϕ̇. We take full account that the time dependency of m implies we must take derivatives
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Figure 1.11: Energy of damped softening oscillator versus time. Blue: numerical solution Jn. Gold:
approximate solution Jr. Olive: the difference (Jn − Jr). Here m0 = 0.99 .

of the elliptic functions with respect to both arguments. The resulting expression is very lengthy,
so we shall restrict attention to the dominant terms such as ϕδ, ϕδ2, (ϕδ)2. We use the quasi-static
form r(m) Eq. 1.46, and the relation between ṙ and ṁ to achieve some simplification. We leave
ϕ̇ as a free variable. For the softening oscillator, 0 ≤ m ≤ 1. However, we restrict the range to
0 ≤ m ≤ 1

2 for which E[A(ϕ,m),m] ≈ ϕ × (1 −m/2). In the near-linear range m < 1
2 the cycle-

average ⟨ṁ⟩ behaves such that ṁ ≈ −δm and m̈ ≈ δ2m. For brevity we omit the arguments ϕ,m of
the elliptic functions and write m(t) as simply m. The approximate EOM residual contains terms
in cn and sn; elliptic balance implies their coefficients must each be zero. Hence two simultaneous
equations:

√
r

{
− 2αm

1 +m
sn3 + sn

[
ϕ2 δ2m(Λ−m)

42(1−m)2
+

ϕ δm(Λ−m)ϕ̇

2(1−m)
+ α+ (Λ−m)(ϕ̇)2

]}
= 0 (1.51)

−dn cn√
r

{
2αm

β(1 +m)
ϕ̈ +

α δ2ϕm2(−1 + 2m+m2)

2β(1−m)2(1 +m)2

}
= 0 (1.52)

where Λ(t) ≡ 1− 2 dn2. The Eq. (1.51) is quadratic in ϕ̇, and can be solved exactly:

ϕ̇ = ±
√
α√

1 +m
− ϕ δm

4(1−m)
. (1.53)

We substitute m(t) = m0 exp(−δt). The first term on the right side of Eq. 1.53 has an exact
integral, and the second term has the approximate integral Φ(t). Hence the phase:

ϕ(t) =
√
αt + 2(

√
α/δ) ln

[
1 +

√
1 +m(t)

1 +
√
m(0)

]
+ Φ(t) . (1.54)

To first order in m, the first term approximates to
√
αt +

√
α/(2δ)[m(t) − m(0)]. This may be

substituted in Eq. 1.53 to give an improved version of Φ; however, the expressions become lengthy.
For consistency, the coefficient of dn×cn must be zero or very small. We now quantify the

value. The solution Eq. 1.53, and its derivative ϕ̈ is substituted into Eq. 1.52. The residual EOM
simplifies to

m cn dn

2
√
2 (1−m)

[√
α δ (1− 3m)

√
r

(1 +m)3/2
− ϕαm2 δ2(13 + 5m)

4β(1−m)
√
r

]
. (1.55)
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The two terms are roughly equal in magnitude. Let X be the exact solution of the EOM and y the
error such that X = x+ y. It is not straight forward to infer what this residual implies about the
error y(t), other than it is bounded and decays exponentially.
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Figure 1.12: Softening oscillator with x0 = 0, ẋ0 = 2
√
2/5 ≈ 0.5657. Left: overlay of approximate

analytic xa (gold) on the exact numerical xn(t) (blue); and the error (xn − xa). Right: overlay of
approximate ẋa (gold) on the exact ẋn (blue); and the error (ẋn − ẋa). Here m0 =

1
4 .

1.8.3 Energy variation, hard and soft

The article would be incomplete without showing the energy variation J(t) corresponding to the
motions (x, ẋ) shown in Figs. 1.9 and 1.12. Figure 1.13 is the counterpart to Figs. 1.7 and 1.11 but
for smaller initial value of Jacobi-m. For the hardening oscillator m0 = 1

8 , and for the softening
oscillatorm0 =

1
4 . As elsewhere α = 1, |β| = 1, δ = 1

10 . The quantity Jn is the energy evaluated from
(x, ẋ) calculated by numerical solution of the EOM; and can be treated as exact. The quantity Ja is
evaluated from the approximate analytic expressions for (x, ẋ). The quantity Jr[m(t)] is evaluated
fromm(t) calculated by numerical solution of the damping law (obtained from the energy equation).
The error (Jn − Ja) is at the percent level. Ja faithfully reproduces the ripple in Jn due to the
envelope oscillations.
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Figure 1.13: Energy versus time. Left: hardening oscillator. Right: softening oscillator. Blue:
numerical solution Jn. Gold: approximate solution Ja. Olive: Jn − Jr. Coral: (Jn − Ja).
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1.9 Valid range of damping constant

Ludek[5] and Barkham[9] both claim their results are for large damping rate δ. Caution must be
exercised when making claims of this sort. Ludek asserts the restriction δ2 < 4α, as for the critically
damped linear oscillator. However, it is not straight forward in the case of nonlinear oscillators;
and careful study is required. In our reliance on the energy equation, it is explicit that δ must
be sufficiently small that parameters are (at worst) slowly varying or (at best) almost constant
over one period of the (undamped) oscillation. It might be thought that working directly from the
EOM releases that restriction, but this is an illusion. Inevitably, there will be time-averaging over
non-linear terms; and similar restrictions will arise.

There is no physical impediment to achieving the condition ∆J/J → −1 in a single oscillation;
all that is required is a large damping constant δ in excess of 2

√
α. However, in such an extreme,

frequency, phase and damping rate become ill-defined; as do kinematic integrals that depend on
parameters being slowly varying or constant. We shall examine the condition |∆J/J | ≤ 1 in the
context of performing integrals and applying them. From this will emerge criteria for the valid
range of δ consistent with time averaging of the non-linear term (ẋ)2.

We rely on the energy equation and time averaging to find ⟨J̇⟩, thus we shall study the variation

∆J ∝ −δ ×
∫ +τ/2
−τ/2 (ẋ)

2dt per oscillation period τ . There are three considerations. (1) There is a
difference between the zero and first order perturbation theory in the rate of phase advance that
depends on δ. (2) We treat the energy J as a continuous variable. This appears to imply that
the relative fractional change ∆J/J per oscillation cycle shall be small, say |∆J/J | ≪ 1; however,
that is incorrect. Although the change ∆J(m) is calculated from a window of width 2τ , the
quantity ⟨J̇ [m(t)]⟩ we employ (in our differential equations) acts point-like, changes continuously
with time, and at any instant contributes an infinitesimal effect. Large step-like values of ∆J
never accumulate because we use differential equations to determine m(t) and ϕ̇(t). This being
so, the correct condition is |∆J/J | < 1. We take care of (relatively) fast parameter changes by
continuously moving from one integral to another. To be more precise, moving from one value of
the integral, as parametrised by m, to another - following the continuous variation of m(t). One
might say that fast variation of m(t) within the integrand is mimicked by the changing value of
the integral parametrised by m(t). (3) Previously, when performing the ∆J integrals, we held m
constant. In the following, we shall find the effect of allowing m(t) to vary during the integration
over time. We shall derive results for the pendulum oscillator in detail. Results for the hardening
and softening anharmonic oscillators are similar to the pendulum, and are presented briefly. In all
three cases, it is concluded that δ/

√
α ≪ 1 is a sufficient condition for validity of the perturbative

formalism. For the cubic oscillator, substitute β for α.

1.9.1 Pendulum oscillator

The integrand for ∆J is

−δ × (ẋ)2/α = −4mδ × (cn[ϕ(t),m])2(ϕ̇)2/α .

Previously, the integral was evaluated with the zero order approximation ϕ̇ =
√
α and ϕ(t) =

ϕ0 +
√
α t. However, we discovered the first order perturbation ϕ̇ =

√
α− ϕξ. If m is constant and

ϕ0 = 0, this has solution

ϕ(t) = [1− exp(−ξt)]
√
α/ξ ≈

√
αt(1− ξt/2) and ϕ̇ ≈

√
α(1− ξt) with ξ =

mδ

4(1−m)
.

Evidently these two versions of the integrand will differ little if ξ × t evaluated at ±τ/2 =
±2K(m)/

√
α is small compared with unity. This leads to the condition δ/

√
α ≪ 4(1−m)/[mK(m)].

In the near-linear regime, m ≪ 1, the righthand side is typically much greater than one. The right-
hand side equals 2.157 when m = 1

2 , and is greater than one for m < 0.6639; and only becomes
restrictive as m → 1.
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Evaluating the integral for ∆J , we may form the fractional change |∆J/J | < 1 per cycle and
hence a condition on δ:

δ√
α

< λ(m) ≡ m

8[E(m) + (m− 1)K(m)]
where

1

8
≤ λ ≤ 1

2π
. (1.56)

This condition is plotted in Fig. 1.14 as a function of m; and for m < 0.9223 is much more restrictive
than the condition immediately above. Nevertheless, the condition is slowly varying function of m.

It is worth noting that (i) the potential and the oscillation is symmetric about x = 0; and (ii)
the integrand has half the period of the oscillation and repeats itself. Consequently, the value of
⟨J̇⟩ is the same whether the average is over a whole or half period. This being so, we could from
the beginning have taken a half-size window.

Previously, when performing the ∆J integrals, we held m constant. Now we let m vary during
the integration. We make the substitution m → m + ∆m and Taylor expand the integrand to
first order in ∆m. This necessitates taking the derivative of the Jacobi functions with respect to
the second argument. If ϕ(t) = ϕ0 + ϕ̇t and ∆m(t) = ṁt are both locally linear in time t, and
the integral is constructed symmetrically about its midpoint t = 0, then there is no change in its
value when m(t) varies. This transpires because the variation introduces additional terms into the
integrand that are either the product of t and a symmetric function, or the product of t2 and an
anti-symmetric function; and both cancel to zero when integrated. The insensitivity of ∆J with
respect to variation m(t) during the integration is reassuring; and common to all three oscillator
types.

1.9.2 Hardening oscillator

As above, we investigate the integrand for ∆J :

−δ × (ẋ)2/α = −2mδ × (dn[ϕ(t),m])2(sn[ϕ(t),m])2(ϕ̇)2/[β(1− 2m)] .

Here β > 0. Previously, we evaluated the integral using the unperturbed (δ = 0) phase advance
ϕ̇0 ≡

√
α/

√
1− 2m. However, the perturbed value is ϕ̇ = ϕ̇0 − ϕξ; and this has solution

ϕ(t) = [1 − exp(−ξt)]ϕ̇0/ξ. The two versions of the integrand will differ little if |ξ × t| ≪ 1 when
evaluated at τ = ±2K(m)/ϕ̇0. This leads to the condition δ ≪ 4(1−m)/[mK(m)]ϕ̇0. The smallest
value of the righthand side is 7.533 and occurs at m = 0.3909. The condition does not constitute
a practical restriction.

Evaluating the integral for ∆J , we may form the fractional change |∆J/J | < 1 per cycle and
hence a condition on δ:

δ√
α

< λ(m) ≡ 3m(1−m)

8
√
1− 2m[(2m− 1)E(m) + (1−m)K(m)]

. (1.57)

This condition is plotted in Fig. 1.15 as a function of m. In the near-linear regime m < 1
4 , λ(m) is

a slowly varying function. λ(0) = 1/(2π) is the smallest value. λ(1/4) = 0.1874.

1.9.3 Softening oscillator

As before, we investigate the integrand for ∆J :

−δ × (ẋ)2/α = 2mδ × (dn[ϕ(t),m])2(cn[ϕ(t),m])2(ϕ̇)2/[β(1 +m)] .

Here β < 0. Previously, we evaluated the integral using the unperturbed (δ = 0) phase advance
ϕ̇0 ≡

√
α/

√
1 +m. However, the perturbed value is ϕ̇ = ϕ̇0 − ϕξ; and this has solution

ϕ(t) = [1 − exp(−ξt)]ϕ̇0/ξ. The two versions of the integrand will differ little if |ξ × t| ≪ 1 when
evaluated at τ = ±2K(m)/ϕ̇0. This leads to the condition δ ≪ 4(1−m)/[mK(m)]ϕ̇0. In the near-
linear regime, m ≪ 1, the righthand side is typically much greater than one. The righthand side
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equals 1.7615 when m = 1
2 , and is greater than one for m < 0.6154; and only becomes restrictive

as m → 1.
Evaluating the integral for ∆J , we may form the fractional change |∆J/J | < 1 per cycle and

hence a condition on δ:

δ√
α

< λ(m) ≡ 3m

8
√
1 +m[(1 +m)E(m) + (m− 1)K(m)]

where
3

16
√
2
≤ λ ≤ 1

2π
. (1.58)

This condition is plotted in Fig. 1.14 as a function of m; and for m < 0.8955 is much more restrictive
than the condition immediately above. λ(m) is a slowly varying function over the entire range.

1.9.4 Cubic oscillator

For the pure cubic oscillator, the role of α is taken on by β. We investigate the integrand for ∆J :

−δ × (ẋ)2 = −r δ × (dn[ϕ(t), 1/2])2(sn[ϕ(t), 1/2])2(ϕ̇)2 .

The phase advance is ϕ̇ =
√
β r(t) and is non-perturbative. The action is J = r2β/4. Performing

the integral, we may form the fractional change ∆J/J = −δ 16K(1/2)/[3
√
rβ]. The condition

|∆J/J | < 1 is solved for δ, leading to δ/
√
β < λ ≡ 3

√
r/[16K(1/2)]. This condition is plotted in

Fig. 1.15 as a function of r. Evidently, the restriction on δ/
√
β is weak except for small oscillations

in the vicinity of r < 1.
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Figure 1.14: Permissible values of δ. Left: simple pendulum. Right: softening oscillator.
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Figure 1.15: Permissible values of δ. Left: hardening oscillator. Right cubic oscillator.
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If the conditions on δ are respected, the relative fractional errors in x(t), ẋ(t), J(t) calculated
from the approximate analytic formula are 1-2% when δ/

√
α ≈ 1

10 ; and less for smaller values of
δ. Perhaps remarkable, if δ/

√
α ≈ 1

2 , graphs of x(t), ẋ(t), J(t) calculated from the approximate
expressions still resemble plots calculated by exact numerical solution of the EOMs. However, due
to mis-match of the phase advance, the relative fractional errors contain ripple that rises to 20%.

1.10 Further observations

1.10.1 Second order expansion

We have expressions for ⟨ṁ⟩ valid for the entire range of Jacobi-m. We have presented the formalism
as if the only mathematically tractable variation was ṁ = −δm. However, the second order
expansion ṁ = −δm+ ϵm2 with m(0) = m0 also has an exact solution:

m(t) =
m0δ

m0ϵ+ etδ(δ −m0ϵ)
. (1.59)

This expression may be used directly for the pendulum amplitude, or when forming r[m(t)] for the
hard and soft anharmonic oscillators. Appropriate parameters are given in the table immediately
below. The form Eq. 1.59 should not be substituted into the first-order phase advance ϕ which
assumes m(t) = m0e

−tδ.

Oscillator Maclaurin expansion Best fit Fit range Epsilon Linear Regime
type ṁ/δ = ṁ/δ = m = ϵ = m =

Pendulum −m+m2/8 + . . . −m+m2/6 + . . . [0, 1/2] (1/6)δ [0, 1/3]

Hardening −m+ 21m2/8 + . . . −m+ 19m2/8 + . . . [0, 1/4] (19/8)δ [0, 1/16]

Softening −m− 13m2/8 + . . . −m− 19m2/8 + . . . [0, 1/2] (−19/8)δ [0, 1/8]

By “linear regime” we mean the error is very small; and by “near-linear” we mean that the error
incurred is small when ⟨ṁ⟩ is treated as locally linear in m.

1.10.2 Residual and errors

Substitution of an inexact trial solution into the EOM leaves a residual R. Unfortunately, this
cannot be used to estimate easily the error; as is demonstrated below. Suppose the exact solution,
the trial solution, and the error are X,x, y respectively. Evidently, X = x + y. Substitution of X
alone into the EOM leaves zero. Substitution of x alone into the EOM leaves R. Thus, substitution
of x+ y into the EOM results in the equation

ÿ + δẏ + (α+ 3β x2)y + β(3xy2 + y3) +R(t) = 0 . (1.60)

Unfortunately, this cannot successfully be linearized in y. The terms are finely balanced against
one another. If we assume y is initially small, and discard the terms in xy2 and y3 then we find that
y grows quickly - in contradiction to the initial assumption. Only if all terms are retained, does
the error estimate y remain small and valid. Hence, to find y we must solve a driven non-linear
differential equation; and to resort to numerical methods.

1.10.3 Taylor versus Maclaurin expansion

We have given approximate solutions in the near-linear ranges: m < 1
2 for the pendulum oscillator,

m < 1
8 for the hardening, and m < 1

4 for the softening oscillator. However, the formalism is not
limited to those ranges.

Because all oscillations finally terminate at m = 0, a Maclaurin series expansion of m(t) about
0 is an expansion appropriate to late (i.e. large) time. To access times in the distant past, at which
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the initial m was large, we need either to (i) retain many power of m in the expansion, or (ii) move
the the expansion point to some value mb ̸= 0 that is closer to m = 1 (or m = 1/2).

We have expressions for ⟨ṁ⟩ valid for the entire range of Jacobi-m. Previously, we made
Maclaurin expansions in m about zero, thus ṁ = c1m + c2m

2 + . . . where the cn are coefficients.
However, we could have made Taylor expansions about a non-zero value m = mb; thus ṁ =
F (mb)+ b1∆m+ b2∆m2+ . . . where ∆m = (m−mb). F is the local value, b1 is the local gradient,
and b2 the local 2nd derivative, and so on. All expressions for J, r, ϕ̇, etc, have to be re-written
in terms of the adjustable constant mb and variable ∆m. The evolution equations quickly become
complicated and daunting, but the procedure could be continued to completion. Inevitably, we
would truncate expressions to linear in ∆m and valid for short time scales.

1.10.4 Conclusion

We have presented a literature survey for methods relating to the damped anharmonic oscillator
ranging from the introduction of elliptic balance in 1969 to the most recent work of Johannessen
in 2017. The damping has been modeled by a time-varying Jacobi-m parameter, and its influence
on the oscillation frequency has been fully accounted for. The present author has introduced the
quasi-static limit and the energy equation to guide and simplify the problem. We have given a
systematic and uniform treatment of four classic non-linear oscillators: the pendulum and the
anharmonic oscillator class. And have illustrated the methods with examples from the near-linear
regime, and compared them against pure numerical integration of the equation of motion. In all
cases, the agreement is found to be at the percent level when the ratio of damping and oscillation
constants δ/

√
α is ≃ 1

10 . The underlying strategy is perturbative, and so the accuracy improves as
δ/
√
α is progressively reduced.
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Appendix A

Small error, larger consequences

Cveticanin’s Review[11] is an authoritative account of methods used to solve Duffing’s equation.
However, in Article 4.3.2 “The Duffing equation with damping”, it is stated1 that solutions of
Eq. (1.1) can be written as the product of a decaying exponential and a Jacobi elliptic function
with time-independent frequency and modulus. We demonstrate this to be incorrect. Following
Ref.[11] we write the equation of motion (EOM) as ẍ+2δẋ+αx+βx3 = 0, and derive the properties
by balance of powers of the elliptic functions.

For the hard anharmonic oscillator (β > 0) take the trial form x(t) = x0 exp(−st) cn[ϕ(t),m]
where s,m are adjustable constants. For brevity, we omit the arguments of the elliptic function.
Substitution into the EOM yields:

x0

{
cn3[x20β − 2e2stm× (ϕ̇)2] + e2st cn[α+ s2 − 2sδ + (2m− 1)(ϕ̇)2] + e2st dn sn[2(s− δ)ϕ̇− ϕ̈]

}
= 0 .

Equating the (correct) coefficients of the powers cn3, cn, dn×sn each to zero leads to three simul-
taneous equations, which are incompatible and have no solution for ϕ(t). In a simple algebraic
error, Cveticanin gives the coefficient of cn3 as [x20β − 2m × (ϕ̇)2]; omitting the exponential term
e2st fundamentally alters the nature of the equations thereby admitting a solution with constant
values for m, s, ϕ̇ - albeit incorrect.

For the pure cubic oscillator (α = 0) we take again the trial form x(t) = x0e
−st cn[ϕ,m], and

substitute into the EOM. The coefficients of cn3 and dn×sn are unchanged. α is set to zero in the
coefficient of cn. Hence, the same conclusion applies.

Cveticanin does not treat the softening oscillator, but for completeness we do. For the soft
anharmonic oscillator (β < 0) we insert the trial form x(t) = x0 exp(−st) sn[ϕ(t),m] into the EOM,
giving:

x0

{
sn3[x20β + 2e2stm× (ϕ̇)2] + e2st sn[α+ s2 − 2sδ − (1 +m)(ϕ̇)2]− e2st dn cn[2(s− δ)ϕ̇− ϕ̈]

}
= 0 .

Equating the coefficients of the powers sn3, sn, dn×cn each to zero leads to three simultaneous equa-
tions, which are incompatible and have no solution for ϕ(t). The problem is the time-dependence
e2st appearing in the coefficient of sn3: [x20β+2e2stm×(ϕ̇)2] = 0. This condition implies that either
(or both) m and ϕ̇ must be time-dependent.

1The statement is not attributed. It may be that Cveticanin reproduces the mistake of a previous author.
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