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1 Introduction

Ions created inside an axial magnetic field have polar coordinates (r, r′, θ, θ′).
We are not interested in the longitudinal motion at this point and beam is cw
with minimal energy spread. IGUN[1] outputs particle coordinates, omitting
the θ coordinate. This is possible for axially symmetric sources and makes the
simulation highly efficient. Thus each “particle” in fact represents all azimuths
and can be thought of as a ring of particles. The population of the ring is given
as a separate output as a current labelled Ampere.

Nevertheless the rings have an azimuthal speed rθ′ labelled ATAN(DT/DZ).
(This is meant to stand for arctan(rθ′) but as it is always � 1, we can ig-
nore the arctan.) In fact, it is a characteristic of ECR sources that the average
azimuthal rate of rotation is not zero; i.e. the beam exits the source spinning
about the axis. This is due to the ECR’s magnetic field.

The remaining two coordinates r, r′ are labelled RHO (mm) and ATAN(DR/DZ).
The final z-coordinate is for some unaccountable reason labelled ZETA. The
kinetic energy per charge is Etot/Q in volts. The only other columns of interest
are the mass and charge numbers, labelled appropriately.

From the symmetry, we can calculate the beam’s second moments as follows.
Since

x = r cos θ, y = r sin θ, (1)

we have
x′ = r′ cos θ − rθ′ sin θ, y′ = r′ sin θ + rθ′ cos θ. (2)

Thus knowing the uniform distribution of angles, we (the ‘student’) can show
the following for the beam’s second moments:

〈x2〉 = 〈y2〉 = 〈r2〉/2, (3)

〈xx′〉 = 〈yy′〉 = 〈rr′〉/2, (4)

〈x′2〉 = 〈y′2〉 = 〈r′2〉/2 + 〈(rθ′)2〉/2. (5)

The square of the rms emittance is thus

ε2x = ε2y = 〈x2〉〈x′2〉 − 〈xx′〉2 = [〈r2〉〈r′2〉 − 〈rr′〉2 + 〈r2〉〈(rθ′)2〉]/4. (6)

But there are further correlations if the beam is rotating about the axis due
to the magnetic field:

〈xy〉 = 0, 〈x′y′〉 = 0, (7)

but
〈xy′〉 = −〈x′y〉 = 〈r2θ′〉/2. (8)
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For use in TRANSOPTR, there are only four independent parameters and the
beam sigma matrix has the following form.

Σ =


σ11 σ12 0 σ14
σ12 σ22 −σ14 0
0 −σ14 σ11 σ12
σ14 0 σ12 σ22

 (9)

If the coupling correlation is ignored, one finds the transverse emittances as
usual as

εx = εy =
√
σ11σ22 − σ2

12, (10)

the square root of the 2D determinant. But the actual 4D emittance is not
the product of x and y emittances but rather this determinant gives

ε4D = σ11σ22 − σ2
12 − σ2

14 (11)

To understand this more deeply, let us assume a completely uncoupled axially
symmetric beam,

Σ =


σ11 σ12 0 0
σ12 σ22 0 0
0 0 σ11 σ12
0 0 σ12 σ22

 (12)

The canonical momenta include a component due to the vector potential,
which to good approximation has only an azimuthal component Aθ = 1

2
B0(z)r,

or Ax = −y
2
B0, Ay = x

2
B0. the changes to x′ and y′ are these components multi-

plied by charge and divided by the reference momentum, and sincemv/q = Bρ,
we have that ∆x′ = − y

2ρ
,∆y′ = x

2ρ
, or the transfer matrix is

M =


1 0 0 0
0 1 −κ 0
0 0 1 0
κ 0 0 1

 , (13)

where κ := −B
2Bρ

= −1
2ρ

. Applied to the uncorrelated sigma matrix as ΣECR =

MΣMT, we get

ΣECR =


σ11 σ12 0 κσ11
σ12 κ2σ11 + σ22 −κσ11 0
0 −κσ11 σ11 σ12

κσ11 0 σ12 κ2σ11 + σ22

 . (14)

Now the emittance of one plane is

σ11σ22 + κ2σ2
11 − σ2

12, (15)
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This clarifies that the effect of the axial field is to augment the emittance, with
an additional component of

∆εx = κσ11 =
r2

2ρ
(16)

added to the uncorrelated emittance. (It’s actually added in quadrature, so
the left side should read

√
∆ε2x.) Taking the 4 × 4 determinant, we find the

4D emittance is unchanged at

ε4D = σ11σ22 − σ2
12, (17)

and Liouville theorem still holds (the larger 22 element cancels the coupling
component), but all 2D projections display the larger emittance.

2 Modelling in TRANSOPTR

TRANSOPTR can correctly model the linear optics of a varying axial magnetic
field. It does so using canonical momenta: instead of tracking (x′, y′), it tracks
(Px, Py). This has the advantage that there are no entry and exit matrices to
the field region.[2] The canonical momenta are related to the kinetic momenta
(px, py) by

~P = ~p+ q ~A, (18)

where ~A is the vector potential, which to first order in an axially symmetric
magnetic field is simply

~A =
B(s)

2
(−y, x, 0). (19)

The magnetic field in first order is thus

~B = ∇× ~A =

(
−B

′

2
x,
B′

2
y,B

)
, (20)

or, in other words, the axial field plus a radial field that is linear and given
by half the derivative of the axial field. If we were to track particles or beam
distributions through this field we could do it by applying the Lorentz force
law ~F = q~v × ~B.

But this is not the way TRANSOPTR does it. Instead, using canonical momenta,
the Hamiltonian is

H =
p2x
2

+
p2y
2

=
1

2
(Px + κy)2 +

1

2
(Py − κx)2.1 (21)

1Note that for simplicity, we scale all momenta by the beam’s reference momentum, as
this makes in field-free regions for example x′ = px.
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The resulting equations of motion are

x′ = ∂H
∂Px

= Px + κy (22)

P ′x = −∂H
∂x

= −κ2x+ κPy (23)

y′ = ∂H
∂Py

= Py − κx (24)

P ′y = −∂H
∂y

= −κ2y − κPx, (25)

and no differentiation of B(s) is needed.

Simply integrating these equations is correct for any beam originating outside
the axial field and passing through it. But for a beam created inside an axial
field, such as is the case for an ECR ion source, the initial beam has to be
corrected. Since TRANSOPTR assumes the initial given σ-matrix is canonical,
the particles that originate e.g. from a Maxwell-Boltzmann initial momentum
distribution, need to have their momenta corrected according to their position
with respect to the axis. This is given by eqn.18, or,

Px = x′ − κy (26)

Py = y′ + κx, (27)

or in other words, by applying the matrix eqn. 13. This is handled in TRANSOPTR

by a call to the routine TMAT as the first call in the system routine TSYSTEM.

This starting beam raises an interesting problem that had to be resolved.
When integrating in mode 4 or 5, the numerical Runge-Kutta error is found
from a symplectic check, and it is compared with the set error tolerance speci-
fied in data.dat. However, the matrix in eqn. 13 is flagrantly non-symplectic:
M11M23 −M13M21 + M31M43 −M33M41 should be zero but is actually −2κ,
and this symplectic error is invariant through the remainder of the symplectic
transport elements. It makes ineffective the error checking. This was resolved
by adding a symplectic check to TMAT, and inhibiting the application of the
matrix to the accumulated transfer matrix while still allowing its application
to the accumulating σ-matrix.
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