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Chapter 1

Magnetism

1.1 Electricity and Magnetism

Electric charges experience a force in an electric vector field E. Charge currents and magnetized
objects experience force in a magnetic vector field B. These definitions of electric and magnetic
appear almost tautologies. The circularity is broken by experience: loadstones!| (lodestones) and
terrestrial magnetism exist; rubbing together amber and fur cause them to be mutually attracted.
Both observations?| need explanation, and each a name. Naming typically follows the first recorded
historical use. The Greek words for the minerals amber and magnetite, elektron and magnetis
[lithos]®, respectively, are the roots of the modern day names. But concepts evolve, names change
in response; and this leads to inconsistency - as noted in Sec. 1.1.2. The word electro-magnetism,
with the terms conjoined, usually denotes the study of the second two expressions in Eq.|1.1/ wherein
a changing magnetic field can create an electric field, and vice versa.

1.1.1 Notation

Maxwell (1831-1879) constructed the classical (mathematical) theory of electro-magnetism from the
experiments, observations and physical laws deduced by others*. Bevis, Cavendish, Coulomb and
Poisson founded static electricity. Ampere, Oersted, Biot and Faraday founded electric current and
magnetism. In his treatise[l], Maxwell Vol. IT Chap. IX General Equations of the Electromagnetic
Field, Article 618, introduced/defined the vector quantities in Table 1.1.

Maxwell®| also introduced the line, surface and volume density of electric charge \, o, p respec-
tively. Maxwell’s treatise predates modern vector notation. Rather than bold face type he used
German Fraktur script; for example 2l = A and B = B. Balanis (1989) continues the Fraktur script
convention. There is no distinct Fraktur letter representing J, so Maxwell moved on to the next
letter K. Modern sources, using Roman letters, restored the alphabetic logic using J for volume
current density and K for surface current density.

Vector calculus operators were introduced by Englishman Oliver Heaviside (1850-1925); his
notation for the operators is still in use. In 1884 he recast Maxwell’s 12 explicit component equations
as 4 of vector equations. Vector analysis and notation was introduced by Josiah Willard Gibbs in
1888 and promulgated by him in 1902[2]. Gibbs standardized vector notation, as it is used today.

'Naturally occurring magnetite. The chinese word is “motherly stone” because magnetite attracts iron like babies
are attracted to their mothers. The french word for magnet is “aimant”, which has a similar logic.

2Often first credited to Greek polymath Thales of Miletus (624-546 BCE).

3Stone from a geographic location called Magnesia, in the region of Anatolia (now in Turkey).

4John Bevis, 1695-1771. Henry Cavendish, 1731-1810. Charles-Augustine de Coulomb, 1736-1806. Jean-Baptiste
Biot, 1774-1862. André-Marie Ampere, 1775-1836. Hans Oersted 1777-1851. Michael Faraday, 1791-1867.

5Vol. I, Chap. II, Elementary Mathematical Theory of Statical Electricity, Article 64.

7
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Maxwell | Modern symbol | Name or Definition Modern name
p r radius vector of a point same
A A electromagnetic momentum® magnetic vector potential (function)
B B magnetic induction varies
C J (total) electric current density | total current density
D D electric displacement same
E E electromotive intensity” electric field
F F force (on an object) same
dp/dt dr/dt velocity of a point® same
H H magnetic force varies
I M magnetization same
K J. (conduction) current density | same

Table 1.1: Notation for vector quantities in electro-magnetism.

78

1.1.2 Nomenclature

Most of the symbols introduced by Maxwell are still in use. Modern authors are uniform in the
usage of the symbols A, B, D, E, F, H, J, M and P (polarization); but not in the naming they
attach to those symbols. Table |1.2| compares naming conventions.

Symbol Naming Authority
B magnetic induction [1, 14, 5, [6]
B magnetic flux density [7, 9L 10, [12]
B magnetic field [11l, [13]
H magnetic field or field intensity 14, 5, 6, 7, 18, 12]
H magnetic field strength [9, [10]
M magnetization [4, 5, 6l 9l 7, 10, 12) 13]
J (volume) current density [4, 5L 6] [7, 9], 10} 11, 12], 13]
Js surface current density [9, 12]
K surface current density [7, (1T, 13]
P (electric) polarization [4, 5, 6l 7, 9, 8, 10} 1T, 12 13]
D (electric) displacement [, 1[4, (51 6l [7, @l 10} [11]
D electric flux density [12]
OE/ot displacement current [8, [T, 12} 13]
oD /ot displacement current [4, 5, [6l, 71, O]
® vector flux through surface 5, 6l 9L 8, 10, 11, 13]
P (volume) charge density [4, 5, 6l [7, 9], 8, 11, 13]

Table 1.2: Nomenclature for vector quantities in electro-magnetism.

Some of this variation is historical, and some philosophical. The fundamental fields are E and
B. If there were no magnetization or dielectric polarization, there would be no need for the auxiliary
fields H and D. As it is, they are useful constructs. Griffiths[I1] states the case well:

H plays a role in magnetostatics analogous to D in electrostatics; Just as D allowed us to
write Gauss’s law in terms of the free charge alone, H permits us to express Ampere’s law

SMaxwell specifies the vector line integral § A - dl = @ the total magnetic flux through the surface contained by

the path 1.

"Maxwell also uses the phrase “electric field”.
8Maxwell also uses the symbol G, maintaining the alphabetic order.
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in terms of the free current alone—and free current is what we control directly. Bound
current, like bound charge, comes along for the ride—the material gets magnetized, and
this results in bound currents; we cannot turn them on or off independently, as we can
free currents.

Contrastingly, Zangwill states:

In this book, only the electric field E and the magnetic field B are fundamental. We
give no special names to the auxiliary fields D and H.

Sometimes it is necessary to make the distinction between electric and magnetic flux & =
$E-dS and @ = § B-dS. Evidently, it is legitimate to call the integrands flux density. Maxwell
is singular in calling H magnetic force and using the symbol I for magnetization. But his idea is
modern, because the “force” H is under our control. Panofsky[5] calls dE/dt the vacuum displace-
ment current. Balanis[I2] naming of D echoes that of B flux density. Griffiths[11] and Zangwill[13]
are almost singular in calling B magnetic field. Zangwill does not introduce H and Griffith sim-
ply calls it H (no name). We shall resort to the names B-field, H-field; or equivalently magnetic
induction and magnetic field, respectively. Induction is short and is clearly different to field.

1.2 Maxwell’s Equations
The equations of electricity and magnetism are Maxwell’s equations. The equations in vacuum:
V'EZ,Of/EO, V‘BZO, VxE:—((‘?B/(‘)t), VXB//LO:Jf-l-(aE/at)/Go. (1.1)

Here the subscript f denotes free charges and currents; the latter may include conduction currents.
The values €y and g are the permittivity and permeability of free space, respectively.

1.2.1 Equations in matter

We begin by drawing an anlogy between dielectrics and magnetics. Dielectric’ materials are insula-
tors; they contain no free electrons for conduction. However, they do contain electric charges bound
to atoms or molecules. Dielectrics are electrically neutral, but an externally applied electric field
can produce a slight separation of the positive and negative charges leading to an electric dipole
density throughout the volume of the material; a phenomenon called electric polarization. There is
an analogous effect in magnetic materials: they contain atomic-scale magnetic dipoles bound to the
atoms or molecules of which the material is composed. An externally applied magnetic field can
align these magnetic dipoles. If the alignment persists after the field is withdrawn, the phenomenon
is called magnetization. Each of these dipoles can be considered as a sub-atomic current loop. They
are in fact the electron intrinsic spins. A smaller contribution is also made by the electron orbital
rotation. These spin currents do not participate in electrical conduction. The magnetization vector
M measures the density of magnetic dipoles per unit volume, just as the polarization vector P
measures the density of electric dipoles. The spin currents are necessarily present whenever we
have a magnetized medium.

Electric polarization is due to bound charges, pp such that p, = —V - P. Magnetization is due
to bound currents, Jp, such that J, = V x M. The bound-currents do not flow, but they do have a
magnetic effect. When electric fields are time-varying, the concept of current is extended to include
them. The total current becomes J = J¢ + J; + J), + €gOE /0t where J, = 0P /0t is called the

9The Encyclopaedia Britannica tells us the pioneers of dielectrics are the Prussian scientist Ewald Georg von
Kleist (1700-1748), Dutch physicist Pieter van Musschenbroek (1692-1761) — both of whom made Leyden jars — and
English astronomer John Bevis (1695-1771) who made the first capacitor in 1747. The history of dielectrics is tied
to that of capacitors. At the time of Maxwell, capacitors were called condensers or accumulators (of charge).
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polarization current. The system of relations between fields and multiple types of sources (p, J) is
simplified conceptually if we introduce the auzillary fields

D=¢E+P (suchthat V-D=py;) and H=-M+B/pug . (1.2)
The equations in matter (or media) are
V-D=p;, V-B=0, VxE=-0B/ot, VxH=J;+0D/dt. (1.3)

The electric field E and magnetic induction B remain the fundamental physical quantities. In
M.K.S. units the ratios £/B and H/D are both equal to the speed of light. The units of D are
Coulomb/m? and of H are Ampere/m.

1.3 Magnetisation

The sources of magnetic field are currents, which are of three types: free or bound or displacement.
The associated effects, respectively, are: field around current-carrying conductors, magnets and
magnetization, electro-magnetic waves.

Magnetisation has a classical description in terms of Amperian currents, which act as sub-
microscopic magnetic diples; but those currents/dipoles can only be explained by quantum me-
chanics. Nevertheless, the macroscopic Eqgs. 1.1-1.3| are perfectly adequate to predict a wide variety
of fascinating phenomena. (We sketch a quantum-based description of magnetism in Chap. 3.)
These sub-atomic dipoles come from two sources: the electron intrinsic spin (the dominant contri-
bution) and electron orbital angular momentum in an atom. The spin property was predicted by
Dirac[14]. The intrinsic spin is an inevitable feature of writing the quantum wave function as the
components of a 4-vector, such that the wave function is Lorentz invariant (i.e. consistent with
special relativity).

In the Amperian description, the magnetization consists of a vast 3D array of tiny current loops;
and which constitute magnetic dipoles. We may think of the loops as occupying sub-microscopic
3D cells. If the current loops are equal, then they cancel on shared faces of adjacent cells. If the
density of loops is uniform, the residual is a shell of current loops only at the exterior surface of the
material; and we recognize this as uniform magnetization. If the currents are not equal, there is a
net variation of bound-current density throughout the material; which we recognize as non-uniform
magnetization. All of this may seem abstract, but it can be made tangible: the lines of magnetic
force around a magnetized object can be rendered visible with iron filings. Moreover, the iron
filings will float perpendicular to the pole surfaces; and if we snap/break the object in two, the
iron filings will cling perpendicular to the newly exposed pole faces that were previously within the
body of the object.

The classical physics description of magnetization goes back to Ampere, Poisson and Maxwell[3].
However, we follow the pedagogic example of Slater and Frank[4] - with one change in notation:
we replace Slater’s J,,, by J;. When the magnetization varies continuously from point to point, the
spatial variation of the (non-conduction) magnetization current density J; is proportional to the
curl (rotation density) of M. The vectors are related thus:

J,=VxM. (1.4)

The magnetization current is just as effective in producing magnetic induction B as a real current
J; of free charged particles. Ampere’s circuital law is updated thus:

VxB=puJs +Jp) =po(Js +VxM). (1.5)

Evidently, curl(B/pg — M) = J;. It makes no difference if J; is a flow of free charges or a
conduction current inside a metal. The quantity H = (B/pg — M) is called the magnetic field;
and its source is free current such that J; =V x H.



1.3. MAGNETISATION 11

For magnetostatic problems in magnetic media, and no free currents, there are three equations
that determine the fields:

V-B=0, VxH=0, B=pyu(H+M). (1.6)

The last equation states that the magnetic induction is the sum of a field H due to free currents
and a contribution M from the magnetization (alignment) of (sub)-microscopic magnetic dipoles.
The state of the latter depends on prior magnetizations or spontaneous alignments, and so will
contribute depending on the history of the magnetic medium (an effect called hysteresis).

1.3.1 Potential and Green’s functions

For given magnetization, the general solution of Eq. 1.6/ can be expressed as the gradient of a scalar
potential: H = —VU. Inside the magnetic body, V - (H + M) = 0 implies that the potential
satisfies Poisson’s equation V2U = V - M. Outside the body, where magnetization is zero, U
satisfies Laplace’s equation V2U = 0.

There is a formal Green’s function'’ solution for the potential:

AU (x') :/V P(r) 1y +/S onlr) g (1.7)

1 |I'/—I'| urf |I'/—I'| '

Here py, = V- M(r) and o, = n - M(r) are the volume density and surface density, respectively,
of magnetic dipoles. If the magnetization is uniform, the first term is zero. n is the unit normal
outward from the surface.

Note that U enables us to find the magnetic field H and induction B for given magnetization,
but M itself must be found by other means[20], 31]. It transpires that the internal magnetic forces
between the sub-microscopic dipoles will minimize the volume density and surface density of dipoles.

1.3.2 Boundary conditions

In addition to Egs. 1.6, there are boundary conditions at the surface of the magnet. The component
of H parallel to the surface must be continuous. The component of B normal to the surface must
be continuous. To be more precise, the tangential component of H is continuous across a surface
carrying no free current Jy. If there is a surface current, its value is Jy = AH x n where AH is the
discontinuity across the surface and n is the unit normal vector to the surface. There are similar
statements to be made for M and Jyp.

1.3.3 Field directions for bar magnet

We take a moment to consider the directions of the quantities M, H, B for the simple case of a
magnetized iron bar. The situation is sketched in Fig. 1.1 for a short cylindrical bar magnet aligned
with the vertical axis z. The fields are derived from the scalar potential, as in Sec. 1.3.4. Which
end of the bar is a north (N) or south pole (S) depends on the polarity of the magnetic field that
drove the bar into saturation. Let us suppose the external magnetizing field has been removed.
Inside the bar, by definition, the magnetization points from the south to the north pole. Inside the
bar, H points directly from N to S (and is entirely the demagnetization field). Outside the bar, H
points outward away from the N pole, follows a return path outside the magnet, and then points
inward to the S pole. The magnetic induction B points directly from S to N within the magnet;
and follows the same direction as H outside the magnet. Note, there is a discontinuity in H at the
surface of the poles; this is attributable to a surface density of magnetic dipoles.

0George Green (1793-1841): An Essay on the Application of Mathematical Analysis to the Theories of Electricity
and Magnetism, 1828.
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Figure 1.1: Fields around and within a bar magnet. Left: magnetic field H. Right: magnetic
induction B. The bar is shown with a red coloured north pole and green south pole.

1.3.4 Scalar potential for magnetized cylinder

The magnetic field of a uniformly magnetized cylindrical bar may be found from the magnetic
scalar potential. Corson[6] Chap. 9.8 points out that the H-field of such a cylinder is identical (in
shape) to the electric field of an electret (described in [6] Chap. 3.7) whose field is equivalent to
that of two oppositely charged circular discs with their faces parallel. The scalar (electric) potential
for a charged disc is given in spherical polar coordinates [r, 8, ¢] by Morse[37] Chap. 10.3 pg. 1267
Eq. 10.3.29. Let the discs have radius a, and set p = r/a and ¢ = cosf. The axial coordinate is
z = rcosf. The potential due to one disc is

Vo = (2Q/a)[1 - p|Pi(c)] + (1/2)p*Pa(c) — (1/8)p"Pa(e) +...] p<1 (1.8)
Vi = (20/a)l1/27 — (18 Bale) + (1/1075Pie) +..] p>1 (1Y)

Here P, are the Legendre polynomials. Pj(c) = ¢ and so p|Pi(c)| = (r/a)|cosf| = |z|/a. The
potential is independent of ¢ and reduces to Q/r at large distances, as it should. There is a
discontinuity in gradient at the surface of the disc equal to 4Q/a?.

Suppose the electret or bar magnet is of length Az = 2L. We find the field of the electret
as follows: (1) Form the gradient vector of the potential; (2) convert from spherical to Cartesian
coordinates; (3) for the positive-charged disc move the origin to z = +L, and for the negative-
charged disc move the origin to z = —L; (4) sum the two vector fields to give E; (5) sum the field
and polarization vector P = Pu, to obtain the displacement D = E 4+ P. Due to the “region
of applicability” conditions in V,, V}, care must be taken to sum the correct fields in the relevant
regions; assuming L > a there are six regions. The construction for magnetic fields is analogous:
Va, Vi become the scalar potential whose (negative) gradient is H. The magnetic induction inside
the bar is B = pio(H + M) where M = u, M and M = 4Q/a?.

1.4 Demagnetization Factor

The purpose of this article is to de-mystify an effect called the de-magnetizing field. We shall begin
with the result, and follow with the explanation. Suppose there is an 3D object of arbitrary shape,
with internal uniform magnetization M. With respect to a Cartesian coordinate system, M has the
components [M,, M,, M.]. Further suppose there is no external field H due to free current; to be
clear, we mean there is no externally applied H-field. Inside the magnetized material, the induction
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is B = po(Hiny + M). Outside the material, the induction is B = pg(Heyxt). The demagnetization
tensor (or matrix) N tells us what is the internal H-field for a given magnetization M of the object:

Hiyy = —NM . (1.10)

This internal field'! is attributable to the density of magnetic dipoles at the surface of the object.
The external field Hey is given by the field equations (with no source currents J¢) and the boundary
conditions at the surface of the object. The orientation of the Cartesian unit vectors could be
arbitrary, but if the object has a symmetry axis it is customary to align one of the unit vectors,
say u,, with that axis. If in addition to the fields already mentioned, we introduce an external field
(due to free currents), then it is customary to orient this field either parallel or transverse to the
object’s symmetry axis.

Each of the matrix elements N; ; is a demagnetization factor. In the situation that there is a
single non-zero magnetization component, and that we are interested solely in the parallel H-field
component, there is a tendency for authors to notate the demagnetization factor v = N; ;.

We now enter the explanation. We follow a pedagogic path from a single component magneti-
zation and scalar relationship between M and Hiy, ending in the tensor form above. We start with
the confounding result that for an infinite'? block with uniform magnetization M, the magnetic
induction is B = pugM — whereas for an isolated magnetized sphere in vacuuo the induction is
B = 10(2/3)M . The effect is explained by topology: there can be no outside field for an infinite
block, whereas there are inside and outside fields for the sphere. The equations for the magnetic
induction B have to be satisfied inside, outside and at the boundary between. There is a near field
(related to the magnetization inside the specimen), and a far field varying as the inverse square of
distance from the source; and they have to be married at the boundary which has bound currents at
its surface; this is the origin of the so-called demagnetizing field. The value of the demagnetization
factor v depends on the 3D shape of the magnetized material. The auxiliary function H, which has
different (mathematical) forms inside versus outside, will resolve the mystery of the missing one
third magnetic induction (in the case of the sphere).

Suppose we have a sample of magnetized material, and that the interior is filled with a vector
field M which we call the magnetization. M is confined to the magnetic material, and does not
extend outside. We may know M, but not necessarily the distribution of bound magnetic dipoles on
its surface. What is the magnetic induction B inside the sample? The answer is B = puo(H + M);
in which we must find H in a region where there may be bound currents (in/on the magnetized
sample) but no free currents. We gave the equations of magneto-statics in Sec. 1.3. In general, the
equations for the potential must be solved numerically for a particular geometry of the magnetic
material. But in the case of very high symmetry, such as the sphere, analytic methods are possible.

1.4.1 Spherical magnet in external field

Let u, be a unit vector along the axis z. Consider a sphere (radius a) with uniform magnetization
M = Mu,. Suppose the sphere is subject to a uniform external magnetic field. (For example, it is
placed between the iron poles of a large dipole electromagnet whose gap-field points along z.) We
adopt spherical polar coordinates r, 0, ¢. Let the radius vector » make an angle 6 with the axis z.
V - M = 0 inside the sphere. We take trial forms for the potentials inside and outside the sphere:

Ui(r<a) = —Hjrcosf (1.11)
Us(r >a) = —Harcosf+ (A/r?)cosh (1.12)

H(r <a) = [H, Hy,Hy| = [Hycost,—H;sin6, 0] (1.13)
H(r>a) = [(Hy+2A/r%) cosh,(—Hy+ A/r®)sinf, 0] (1.14)

11f the magnetization is non-uniform, then there is also a contribution from bound current density within the
body.
12Tn all spatial directions.
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The third component Hy is zero. Hy, Ha, A are adjustable constants. The subscripts 1,2 indicate
inside and outside, respectively. The normal and tangential components of M are M, = +M cos 6
and My = —Msin6. It is a peculiarity of the coordinate system that the axial component is
M, = M, cosf — Mysinf = M. Continuity of the tangential component of H Hy at r = a implies
Hy = Hy— A/a®. Continuity of the normal component of B B, = o(H,+ M,) and B,~q = poH,
implies (H; + M) = (Hy+2A/a?). Two simultaneous equations may be solved for H; = Hy — M/3
and A = a®M /3. Hence the fields.

Inside the sphere H=Hy —M/3 and B =pu(H+M)= puo(Hz +2M/3) (1.15)

Outside the sphere H = Hy + (a/r)3M[(2/3) cos 8, (1/3)sind, 0], B = uoH. (1.16)

The import of Egs. 1.15/and 1.16/is as follows. If there is no externally applied field'® Hy = 0, the H-
field and magnetic induction inside the sphere are H = —(1/3)M and B = uo(2/3)M respectively.
Inside a magnetized sphere placed in an external field Hy, the H-field is only Hy — M/3. The
geometry-dependent scale factor IV, which happens to be % for a sphere, is called the demagnetizing
factor. The quantity H = —N,M is called the demagnetizing H-field, and it arises from the exterior
surface density of magnetic dipoles on the sphere. The Eqs. [1.15 and [1.16| are illustrated in Fig. [1.2
which show a section of the sphere in the y, z plane. The particular values used are a = 2, M = 4
and applied H-field equal 0 or 2.
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Figure 1.2: Magnetic field B lines in a planar section of the sphere. In Cartesian coordinates
(z,y, z), the plane could be z = 0 or y = 0, with the z-axis vertical. Left: no external applied
H-field, but upward magnetization. Right: with applied upward H-field and magnetization. The
sphere circumference is shown green.

1.4.2 Recursive relation between H and M

The name “demagnetizing field” is strongly suggestive that it opposes the externally applied field
Hs. And yet, the demagnetizing field is present even when there is no applied field; in which case
there is nothing to oppose. So, how does the effect come by its name? The answer is that the
magnetization M usually depends on the magnetic force H inside the material. This is recursive:
M depends on H, and M contributes an H-field which is oppositely directed to M. This is how
—N, M gets the name demagnetizing field. If the relation between M and H (called permeability)

13That is no electromagnet present to provide a uniform bias field.
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is near-linear, the recursion may be solved for the magnetization and B-field as a function of Ho; as
in Sec. 1.5.1. The recursive nature of M (H), recognized since the early 1900’s, has the implication
that the shape of lines (and surfaces) of constant magnetization value depend on the permeability
of the material. For example, in the case of the cylinder with axial applied field, the internal field
lines become increasingly parallel at larger values of material permeability. This, in turn, implies
that the spatial-average demagnetization factor also varies with material permeability. Hence, it
is necessary to tabulate v as functions both of aspect ratio (diameter/length) and permeability.
Chen[22] gives an overview of the literature for the cylinder.

The demagnetizing fields has consequences for two practical scenarios. Suppose that we take
a magnetized block and that we move it into the field of an electro-magnet. When the move is
complete, what is the shape of the B-field? Again, we must find H. A variant would be to keep
the block still, and change the field of the electromagnet. In both situations, there is a slight
re-adjustment of the interior volume density and the exterior surface density of magnetic dipoles
in/on the block - so as to (partially) oppose the applied H-field. The final configuration is consistent
with minimizing the self-interaction energy of all the sub-microscopic dipoles. However, we shall
not need that condition to find the H-field. We simply assume that an equilibrium is reached, and
that magneto-statics applies.

1.4.3 Consequences of symmetry

Symmetry is important. In the case of the sphere with applied field H,, plots of the field lines
Fig. 1.2 are identical in the planes z = 0 and y = 0. Likewise if the applied field is H,, field plots
are identical in the planes x = 0 and z = 0; and so on for applied field H,. It follows that the
demagnetizing factors NV, = N, = N, are all equal, and their sum equal to 1.

Symmetry is important. An infinite medium has only an inside, there is no outside; so there is
no surface upon which to place magnetic dipoles. Another way to think of this is that the surface
dipoles (along with the surface) have been moved away to infinity, and therefore can have no effect.
Therefore the demagnetization factor is zero in every direction. Yet another description is that
the infinite medium has complete translational invariance, so there can be no geometry-dependent
effects.

A magnetic medium that is infinite in one direction only, and has finite extent in the other
two, will have demagnetization factor zero in that one direction — irrespective of the cross-section
shape in the other two directions. Thus, for example, the infinite prism aligned with the z-axis has
demagnetizing factors N, = 0 and N, + N, = 1. In the case of an infinite cylinder, with rotational
symmetry, the factors are N, =0 and N, = Ny, = %

An ellipsoid, is a closed surface of which all plane cross sections are either ellipses or circles.
An ellipsoid is symmetrical about three mutually perpendicular axes (called principal axes) that
intersect at the centre; but has lower symmetry than the sphere. If the (uniform) H-field is applied
parallel to one of the principal axes, the reactive (demagnetizing) field is also parallel to the axis.
The lower symmetry implies the demagnetizing factors N, N, N, are unequal; but they still sum
to 1. If the (uniform) H-field is applied in a general direction, not along a principal axis, the relation
between the demagnetization field and the magnetization M, is given by a matrix (tensor of rank
2) with elements N; ; such that u; - Hyemag = —N; ;M - u; where uy, is a unit vector in direction k.

Consider a solid cylinder like the one in Fig. 1.1, The reader may notice that even when the
magnetization is uniform (aligned with the vertical z-axis), the H-field and B-field inside the bar
are not uniform and not aligned with the magnetization. In this case, the relation between the
demagnetization field and the magnetization M, is given by a tensor of rank 3 whose elements vary
both with direction and position. This complication is usually evaded by averaging'* over the sam-
ple (to eliminate the spatial dependence) leaving a matrix. Nevertheless, the rotational symmetry

'4The mid-plane average is called the fluxmetric (or ballistic) value, while the volume average is called the magne-
tometric value.



16 CHAPTER 1. MAGNETISM

implies that special relationships exist between the matrix elements when uniform external fields
are applied along z or y or z.

The toroid is a surface of revolution with a hole in the middle. Take Cartesian coordinates with
z aligned with the rotation axis. We may apply uniform fields along x or y or z, and find N, = N,
and Ny + Ny + N, = 1. The same body may be described in cylindrical polars [r, 6, z]. Suppose
there is a method to create an azimuthal magnetization. The toroid has single-axis rotational
invariance. This implies there is no (cross-sectional) plane perpendicular to the azimuth () upon
which to deposit surface magnetic dipoles; and therefore the azimuthal demagnetization factor Ny
is zero. Does this imply that N, + N, = 1 or N, = N,?7 Not necessarily so. We have to consider
how the individual fields H, or Hy or H, would be created and applied to the sample. The axial
field H, could be created, for example, by a Helmholtz coil'® or large aperture H-frame dipole
magnet. The azimuthal field Hy could be created by many helical turns around the circular limb
of the torus. But there is no way to create a field H,, because it would require the presence of a
magnetic monopole. So in magnetostatics, N, is meaningless. However, if we consider time varying
fields (AC or RF), the second pair of Maxwell equations in Eq. 1.3 are consistent with TM cavity
modes that have Hy or TE cavity modes that have H,. But only if the cylindrical symmetry of the
normal mode is broken, is it possible to find modes with both Hy and H, non-zero.

Note, a single-turn current-carrying winding about the circular limb of the torus leads to a
situation in which there is both an inside and outside field, and so there is a demagnetizing field.
However, in this configuration neither the magnetization nor the internal H-field is uniform. Con-
trastingly, if there are a large number of equally spaced turns in the winding, the outside field
drops toward zero; and the azimuthal factor Ny tends to zero. Note how N, of a very long cylinder
behaves like Ny of the torus. We may think of bending a long straight cylinder into a torus, such
that the end faces of the cylinder touch and become lost within the body of the torus. The equal
in size and oppositely directed, North versus South, surface density on (what were) the end faces
become united into a cross-sectional sheet of magnetic dipole density (within the torus) just like
any other cross-section of the original magnetized rod. Evidently the end-face dipole density (which
is a source of demagnetizing field) disappears, and so the factor Ny must become zero.

1.4.4 Other geometries

Only in the case of the uniformly magnetized ellipsoid, is the demagnetizing H-field uniform and
parallel to the magnetization. For other geometries, even if M is uniform, the internal H-field H
is neither uniform nor everywhere parallel to M. In such a situation we make the projection of
H onto M, and integrate the vector scalar product M - H over the volume to obtain the average
demagnetizing factor. Under that procedure, by symmetry, the demagnetization factors of the cube
are all equal %

The demagnetizing factor arises from the surface magnetic dipole density. Thus we should
expect the internal H-field to be proportional to the area of the exposed face, and stronger if the
interior is close to the surfaces (poles). Thus we should expect that a thin circular disc or a square
lamina to have v — 1 in the direction perpendicular to the large flat surfaces. Similar reasoning
tell us that if an object has aspect ratios a : b : ¢ in orthogonal directions, the demagnetization
factors will be approximately in the ratio: 1/a,1/b,1/c, that is smallest in the direction in which
the object is longest.

In the case of a magnetized ellipsoid[I8], 19], and the external field aligned with one of the
principal axes, there are different demagnetizing factors for each orthogonal direction; and they
sum to unity when S.I. units are employed. In c.g.s units the individual direction-dependent
factors sum to 47w. Demagnetization factors are known, or have been numerically calculated, for
the following geometries:

5Two current-carrying turns of cable each of radius R placed a distance Az = R apart.
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Ellipsoids|3, [I8], [19]

Cylinders[21], 22} 23, 24) 25| 26], 27] and square rods[26]

Cylindrical cores[29] and related shapes.

Toroids[30] and related shapes

Cuboids (a.k.a rectangular bricks)[31l 32] [33] and cylinder tiles[34]. These works are intended
for finite element analysis (FEA) wherein an object is subdivided into a 3D grid of 3D cells.

A cylindrical core is a solid cylinder with an inner coaxial cylindrical hole. Typically, the authors
assume uniform magnetization. Chen[22] gives an excellent historical account of work on the solid
cylinder, with many references. With the exception of the cuboids, most authors consider axial
magnetization. Chen[28] attempts to calculate a radial demagnetization factor; but the work is
misleading.

The annular torus is an excellent geometry for magnetic permeability measurements. In the
limit of a large number of winding turns about the annular core, H and B are confined entirely
within the winding. In this case, there is no outside field; and there can be no demagnetization
factor in the azimuthal direction. In fact, such is the high degree of symmetry that remarkably
few turns are needed to confine the fields within the annular solenoid. In a configuration known as
the Rowland'® ring, one winding creates the H-field and a second winding can be used to measure
the B-field from the electromotive force (known as back e.m.f) when the current in the windings is
varied.

The condition of uniform magnetization V - M = 0 is unusual and/or artificial. In the general
case, for arbitrary geometry, numerical methods must be employed. The calculation of magneti-
zation is a specialized topic with its own literature. One important tool is finite element analysis:
subdividing the geometry into cells and summing the (Greens function) contribution of each cell.
The book by Wei]20] provides an introduction to this method.

Horseshoe magnet

Over a long period of time, the internal demagnetizing field has a tendency to demagnetize a short
iron bar. The demagnetization factor is much reduced in long, thin bars, but the shape is unwieldy.
However, if the long bar is bent into a horseshoe or U-shape, the magnet becomes more compact
and retains its long-form magnetic longevity. The horseshoe magnet was invented by Englishman
William Sturgeon in 1821. The external B-field appears between the (N and S) pole tips, which can
be quite close together. The magnetization can be retained for many years if an iron keeper is placed
across the poles when the magnet is not in use. With the keeper in place, the geometry becomes
that of an annular solenoid - which has a zero-value demagnetization factor along the azimuth.
Sturgeon (1783-1850) was a founder of electrical engineering, amateur physicist, and inventor of
the worlds first electro-magnet in 1824.

1.4.5 Properties of the demagnetizing tensor

Brown[35] uses the long-range classical dipole interaction energy to explore the ferromagnetic prop-
erties of single-domain particles; and en-passant deduces two properties of the tensor N. The
reasoning is elaborate and reprised and explained in Sec. 1.4.6. Here we state the results:

> Ni=1 and Nj=Nj. (1.17)

'Named for American physicist Henry Augustus Rowland (1848-1901).
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Thus the trace, equal to the sum of the eigenvalues, is unity. Further, the matrix is symmetric,
equal to its transpose. The general 3 x 3 matrix has nine unequal elements; but the symmetry
condition implies only six distinct elements.

We consider now the influence of the geometry of the magnetized object; in particular cylin-
drical symmetry. We may write the magnetization and the H-field either in Cartesian (x,y, z) or
cylindrical polar coordinates (r,6,z). The physical system does not change, but the elements of
the tensor must be transformed. Suppose the tensor is written N in the Cartesian system, and
N in the polar system; they are related by a similarity transform: N = RNR ™. The coordinate
transform has the property that the inverse is equal the transpose R™! = R”. The matrices are

- Ni1 Nig Nis cosf sinf 0
N = |Noy Ny Nog and R=|—sinf cosf 0
N31 N3z Nsg 0 0 1

In general, the matrix elements of N will contain terms in cos 6 and sin§. However, we may insist
that N is independent of azimuthal angle 8, and this will lead to conditions on the elements of N.
The conditions are

Nog = N11,  Nop = —Ni2, N3p =Nz = N3 =No3=0. (1.18)

The symmetry N;; = Nj; further implies No; = N2 = 0. Hence cylindrical symmetry implies N
must be a diagonal matrix with two elements equal N, = N,,. Thinking of the annulus, the reader
may be wondering why we did not find (and cannot generate) a condition such as Nogo = Ngy = 0.
The answer is simple: Ngg is zero when there is no outside field; but the whole apparatus of
N assumes there is an outside field. To summarise, we have found that when the magentized
sample is immersed in its own external H-field, the components inside the sample are H, = N, M,,
Hy = Ny My and H, = N,,M,. However, there is no guarantee that it is possible to make a radial
or azimuthal magnetization unless the fields are time varying (AC or RF), or there is no outside
field.

1.4.6 Brown’s Theorem

Brown’s theorem is Eq.|1.17. The following derivation uses results deduced by Poisson, Maxwell and
Brown[35]. Poisson tells us how to imagine an electric or magnetic (or gravitational) dipole moment.
Take a 3D body of arbitrary shape and density p. In suitable units, the potential inside satisfies
V2® = p; and outside V2® = 0. Superpose an equal body of negative density, but displaced a small
(or infinitesimal distance) dz from its positive twin. The result is an empty shell with equal positive
and negative halves separated by a contour of zero potential. The density on the shell is not uniform.
For example, if the body is a solid sphere of radius » = a and the radius vector makes an angle
with the displacement vector dx, the density varies as §(r — a) cos f. This surface density gives rise
to a field inside the shell. The potential due to the shell is ¥ = &(r) — &(r + dx) = —V®(r) - dx.
The force on a test charge or particle is F = —VWV or in component form:

ov 62<1>
Fy = 7(97:1,3 N Oxj ZL: 81‘1 Z aajjf)xz

Maxwell'”| re-interprets these results for a 3D body with constant density p of magnetizable
dipoles. This density is the analog of mass density for the gravitational case. Positive and negative
density bodies are offset by a displacement dx to give a shell with equal and opposite magnetic
dipole (surface) density on its two halves, giving rise to a a uniform magnetization (parallel to the
displacement dx) within the interior. Accompanying the surface dipole distribution is an internal

Y7Ref. [I], Vol. 11, Article 437.



1.4. DEMAGNETIZATION FACTOR 19

H-field, which is given by the gradient of the scalar magnetic potential thus H = —VW¥. Maxwell
goes on to find explicit expressions for ® and ¥ in the case of an ellipsoid of uniform density. ®
is a quadratic function and W is a linear function of the coordinates (z,y, z). Maxwell then writes
the matrix relation between the components of the magnetization M and the magnetic force H;
and notes (i) that all N;; > 0, and (ii) that energy conservation demands the elements N;; = Nj;
be equal.

The short-range exchange interaction aligns spins locally, whereas the Weiss domains owe their
existence to the long-range classical dipole interaction energy. Brown[35] uses the latter to explore
the ferromagnetic properties of single-domain particles; and en-passant deduces two properties of
the tensor N. Let u; be the vector magnetic moment of an atom (or spin-lattice) site i. In a field
H, the moment is subject to a couple C' = u; x H = |u;||H|sin ¢ where ¢ is the angle between
the two vectors. This couple can be found by differentiation with respect to angle of the potential
energy W; = —u; - H = —|w;||H| cos ¢; so —dW;/d¢p = C.

The mutual potential energy of two individual dipole moments u; and u; is

i )

Here r;; is the position vector from 4 to j. The total internal magnetic energy Wi, within the
material is the sum of W;; over all individual moments ¢. Thus Wiy = —% >, u; - h; where
h; = 37, h;;. Following Lorentz[36], Brown proposes that h; = H' + iM where H’ is the
demagnetizing field due to surface o, and volume p,, dipole density. The sum over individual
dipoles is replaced by a volume integral over the density of magnetic dipoles (also known as the
magnetization M) within the body.

Wit = — 3wy [H' + M/3] = —/M [E+ M3V
Brown advances arguments that this integral may be written
2Wing z/!H’IQdV + Wy where W= —/M| v . (1.20)

Wy is a constant, and has no influence on orientation. From Eq. [1.20| follows the principle of
pole avoidance: the internal magnetic energy is least when H' = 0 everywhere; that is when the
magnetization varies in such a way that there are no poles (as occcurs in the annular solenoid). If
there is an external applied field Ho, there is additional magnetic energy within the body equal to

Wext = >, ui-Hy = f M -HydV. Let V be the volume of the body. For an ellipsoidal single-domain
particle, the components H] = —N;M; and the internal magnetic energy is

14 / 14 2
Win = Wo = 5 3 MiH{ = Wo+ 5 > NiM;] (1.21)

In zero external field, equilibrium demands that M lie along the direction that minimizes Wipt;
this is the principal ellipsoid axis corresponding to the smallest N;, namely the longest axis. An
external field Hy can rotate M out of this direction. Later, Brown re-writes Eq. 1.21 in a form
that demonstrates greater generality:

Wing — WO_—ZM/HdV_ ZMZM 81:(% ZZN”MM (1.22)

This leads to the identification

1 0%d
Nii=— | ———dV =N 1.23
J \% 8:@8:1;] J ( )
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Independence of the order in which the partial derivatives are formed leads to N;; = Nj;. ® is the
solution of V2® = p = 1 within the magnetizable body. The quadratic form >, > ; NijM; Mj may
be written MTNM. If we transform to a new vector basis, the matrix N may be diagonalised.
The diagonal matrix is generated by a similarity transform: N* = P~'NP where the columns
of the matrix P are the eigenvectors of N. In the new basis, the magnetization vector becomes
M* = P~!M, and the quadratic form becomes Y. N7(M;)?. Further, the coordinate system is
transformed: r* = P~!'r. When the potential ® is written in these new coordinates, we find

| 0?® 1 9
;ijzzi:zvﬁ:v/;wdvzv/v ddV = 1. (1.24)

Evidently, the trace of N is equal to unity. Further, we may conclude that as far as Wiy is
concerned, the single-domain particle of arbitary shape is equivalent to an ellipsoid. A case in
point: the sphere and (spatial average of) the cube have equal demagnetization factors

1.5 Permeability and Hysteresis (DC)

It is customary to begin a description of magnetic materials with their properties in the quasi-static
or near-DC regime. Permeability is a measure of magnetization produced in a material in response
to an applied magnetic H-field. Susceptibility, notated y, gives the relation between magnetization
M and H-field. Permeability, notated u, expresses the relationship between the magnetic induction
B and the magnetic field H inside the magnetic material. Defined that way, the permeability
depends only upon the material properties but not on its shape/geometry. Trivially, u = 1 + x.

1.5.1 Measurement of permeability

Suppose for the moment that the relation between magnetization M and (interal) magnetic field
H is near linear; and we may write B = pou,H where the relative permeability p, is constant.
Let Hs be the applied external field. B and Hy may be measured, but not H. Inside the material
H = Hy — vM where 7 is the demagnetization factor for a particular orientation of the specimen
with respect to the applied field.

Hence inside B = po(H + M) = po(He —yM + M). B may be eliminated in favour of the
magnetization M, and this substituted back into B, yielding a relation between B and Hs.

= 1HQ(“T1), oy = BW_l) . (1.25)
+y(pr — 1) (VB — poHz)

If B and Hy are measured values, then knowing -, for the particular geometry of the sample, we

may calculate first u,, and finally the magnetization M. There will be measurement errors in B

and H; and + is imprecisely known. The relative fractional error Apu,/u, in the derived quantity

y is minimized when v — 0; in which case pu, — B/(uoH2).

In practise, the relation between M and H is neither linear nor single-valued. The linear
coefficient p, loses utility. In its place we write the functional relationship B = B (H) where B is
found by measurement and B, H take their values inside the material. Now H = Hy — yM. Hence
we may write the equivalence:

B(H) = po(H + M) or B(Hy—vyM) = po[Hz + (1 —v)M]. (1.26)

If v can be made zero then the inside and outside fields are equal: H = Hs. Thus we may
measure and record the relationship B (H). From that result we may construct the magnetization
M(H) = B(H)/uy — H. Further, by solving the second nonlinear equation 1.26/ we may find
the magnetization of an object with different geometry and known (non-zero) demagnetization
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factor. Thus it is essential to choose a geometry for the magnetic-material sample for which the
demagnetization factor 7 is very small or zero in some particular direction. For that reason, needle-
like objects (long and thin cylinders) or rings are employed.

Figure 1.3: Hysteresis curves. Left: B(H) main loop shown blue; virgin magnetization shown
green dashed; two minor loops shown red. Right: B(Hs) shown blue and M (H2) shown gold,;
demagnetization factor v = 0.2. Hy is the external applied field, and H,. the coercive field.

Eq. 1.26]is a relation between scalars. This may be generalized to a relation between vectors.
The components of the demagnetizing field Hy is found from the magnetization M via a tensor N.
However, M depends on the prior history of the external magnetizing field Hy. Let H = Ho+H, =
H, — NM. Hence formally:

B(H)/uo = (H+M) becomes B(Hy — NM)/uo = [(Hy — NM) +M]. (1.27)

1.5.2 Hysteresis curves

The relation between B and H for ferro- and ferri-magnetic materials is neither linear nor single-
valued; and depends on the prior magnetisation of the sample. This effect is called hysteresis, and
the trajectory B(H) is an [ [-shaped loop; often called a B-H curve. Example hysteresis curves
are shown in Fig. 1.3. Hysteresis is a complicated phenomenon, that presupposes that the drive
magnetic field is changing, albeit slowly. The essence of the hysteresis is branching: describing the
existence of alternative trajectories depending on the direction of the time derivative dH/dt. We
shall not treat the topic in detail here. However, the dedicated reader may pursue the review[16] by
Morée & M. Leijon of mathematical models for calculating magnetic hysteresis. One of the most
popular is the model of Jiles and Atherton[17].

If there is zero prior magnetization, B(H) will follow the initial (or virgin) magnetization curve
— eventually to saturation. If the applied H-field is now progressively reduced, and reversed, the
sample follows an [-shaped curve into negative saturation. Likewise, increasing H can drive the
sample back to positive saturation, but along a different/companion [-curve. Thus by varying H
between (symmetrical) positive and negative extremes, the sample may be cycled around its B-H
loop. The loop can be considered as two branches: one for rising and another for falling H-field.
All variations are assumed to be slow, or quasi-static.

But the behaviour is radically different if we stop the H-field variation part way through the
cycle, and start to reverse the variation. The magnetic induction B will trace out one branch of
a different hysteresis loop. If the H-variation is again stopped and then reversed, the B-field will
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trace out the other branch of what is called a minor loop. Minor loops are sketched in Fig. 1.3.
This effect is called incremental permeability, and the precise shape of the minor loop has to be
measured for each starting point on the main B-H curve; it cannot easily be predicted. It is this
type of incremental loop that is exercised when an AC or RF magnetic field is applied to a ferrite
material that has been biased by a DC magnetic field into a state of prior magnetization.

The main hysteresis trajectory (B, H) is called the major loop, and is usually characterised by
four values. (1) The intercept (0,+H.) where H. is the coercive field (or “force”). (2) The intercept
(£B,,0) wher B, is the residual magnetization. (3,4) The two saturation limits +(Bs, Hs) where
B, is the saturation flux density, and H is the saturating field.

Note! Commercial hysteresis loops are usually displayed using CGS units. In the CGS system
the fields B, M, H all have the same units, although for historical reasons the units of B,M are
called Gauss whereas the units of H are called Oersteds. The conversion from CGS to MKS units
is relatively simple: 1 Tesla= 10* Gauss. 103/(47) = 79.58 Amps/m = 1 Oersted. M in Amps/m
= [4m M(in Gauss)] x 79.6. In the CGS system B = H + 4w M. The relative permeability is the
same for both systems.

1.5.3 Hard versus soft magnetic materials

In hard magnetic materials, the applied field resulting in magnetic saturation is only a few times
larger than the coercive field H. which is itself considered large. Likewise, the saturation value
of induction Bg, is only a few times (at most) larger than the remanent induction B,. Hard
magnetic materials are initially resistant to magnetization, but once magnetized they retain their
magnetization. The hysteresis loop of a hard magnetic is shown in the left side of Fig. 1.3l

In soft magnetic materials, the applied field resulting in saturation is many times larger than
the corecive field which itself is considered small. Likewise, the saturation value of induction
is usually many times larger than the remanent induction. Soft magnetic materials have large
permeability, but a tendency to loose their magnetization over time (sometimes quickly). The
hysteresis loop of a soft magnetic is shown in the right side of Fig. 1.3l Soft materials are easy
to magnetize and demagnetize; indeed, very soft materials may spontaneously demagnetize due to
the internal demagnetizing field. Hard magnetic materials make good permanent magnets. The
ferrites employed to tune RF particle-acceleration cavities are soft magnetic materials.

The ratio of the remanent to the saturation induction Byem/Bsat (both taken in the same
quadrant) does not follow immediately from hard versus soft material. Rather it arises from the
interplay of the coercive field and the initial permeability. If the latter is large, the intercept
(B,H) = (By,0) may lie at a significant fraction of Bsa even if the coercive field is small.

Configuration lag

Magnetization is the configuration of domains. Hysteresis is the reconfiguration lag in response to a
quasi-static variation of the H-field. The magnetization always lags, and this causes a branch; and
if the field is reversed again a backward branch resulting in a loop. Consider the main hysteresis
loop shown in the left hand side of Fig. |1.3. It may come as a surprise, but there is negative (or
reverse) magnetization in a portion of the upper right quadrant. This effect is particularly evident
in hard magnetic materials. Consider first the lower right quadrant of the loop. When H = 0,
the magnetization is large and negative M = —B,/uo but not saturated. When H = H,, the
magnetization is weak and negative (M = —H.) even though the magnetic “force” is positive.
Consider now the upper right quadrant of the loop, and suppose for a moment that the hysteresis
curve is locally linear about H = H.. The magnetization becomes zero when H = Hy ~ B, H./(B,—
uoH:) and H, < Hy < 2H,.. The corresponding value of induction is By ~ B, H.po/(Br—H:pp) > 0;
and depends on the ratio « = poH./B, < 1/2. The magnetization rises from zero as the already
positive H is further increased. In the linear model, a large positive magnetization (+B,) is achieved
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at H = 2H.. Beyond this value, the magnetization response progressively saturates. Contrastingly,
in a soft magnetic material, the saturation magnetization does not arise until many times H. has
been applied.

1.5.4 Using a B-H curve

Manufacturer’s hysteresis data for their magnetic materials relate the magnetic induction B and
H-field inside the material. The cycle presupposes that the material has at some point been driven
into (positive or negative) saturation and that we operate on the major loop of the B-H curve. Let
this functional relation be B = B (H). Suppose a magnetizable object is immersed in an external
field, and the demagnetization factor v is known for the given field orientation. To find the relation
between B and the external applied field Ha, we must solve an equation of the form 1.26 for M (Hs);
and then substitute M to return B(Hz). We shall give two examples of this procedure.

First, for simplicity, let us suppose that the hysteresis curve is locally linear about the coercive
field +H.. B; is the saturated value of magnetic induction. To simplify expressions we define
H} = Bs/uo. The asterisk signifies that this value is a response rather than a drive magnetic field.
Locally, the functional form is B/ug = H* x (H/H, +1). The positive sign gives the branch at
H < 0; and the negative sign gives the branch at H > 0. Now B /o must be equal to the sum of
the magnetization M and H-field inside. Further, we substitute H = Hy — yM.

HQ—’}/M

(H/H,+1)H* = (H+ M) or [ 7

il] Hf =Hy+ (1—~)M . (1.28)

We solve Eq. [1.28 for the magnetization in tems of the applied field Hs.
. —HyH,. + (HQ + HC)H;<

M = 1.29
H(1 =)+ 7H: (129
The magnetic induction is simply B = pg[Ha + (1 — v)M].
Now, consider a nonlinear model for the B-H curve:
B(H)/po = M,tanh(H/H. 1) + H = (M + H). (1.30)

Here Mj; is the saturation magnetization. The tanh(...) term in Eq. 1.30 models saturation and
the coercivity. The second term manifests that “far beyond” saturation, B is proportional to H.
To find the magnetization due to an external field Ho, we substitute H = Hy — vM throughout
Eq. 1.30. The nonlinear equation is solved numerically for M (Hs), for specific values of v, H. and
Mg; say by Newton-Raphson iteration. The right-hand drawing in Fig. 1.3 is the example v = 0.2,
H. =1 and M, = 20. The reader will notice that the magnetization saturates, while the induction
B continues to rise in response to the applied field Ho.

1.5.5 Toy models for B-H branches

There are two types of toy mathematical model commonly employed to sketch B-H hysteresis
branches, and each comes in three varieties. They contain analogs of coercivity and saturation, but
do not necessarily contain any underlying physics. The two types are:

Bl/,uf() = Msat-Fj(e)j:MO'i_H
BQ/,M() = MsatFj(Q) X (1 + H/Msat) .

The functions F} are locally linear around ¢ = 0, but saturate for large values of the argument:
F; — 1. Here § = H/H. £ 1 yields the two branches. The negative/positive sign in 6 gives the
lower /upper branch. Because of the My term, the meaning of Mg, is slightly different between
B and Bs. Note also that magnetization and drive-field H are distinct in Bi, but no so in Bs.
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If My = 0, By has the wrong value at H = +H,.. If My = H., B; is discontinuous between the
upper and lower branches even as H — 4o00; the jump is 2H.. In the case of By, there are four
segments; one for each quadrant. Take the negative sign in (1+ H) for H < 0 and the positive sign
for H > 0. Bj is continuous between the branches at large |H|. However, By is discontinuous in
derivative dB/dH at H = 0.

There are three varieties typically encountered for the functions Fj:
Fi(0) = tanh(a10)

F»(0) (2/m) arctan(ag6)
F3(0) = [coth(asf) —1/(asf)] .

F3 is called the Langevin function, and has a physical basis in the statistical mechanics explanation
of paramagnetism. a1, as,as are scale parameters. The functions may each be arbitrarily stretched
or compressed. So to make a meaningful comparison, they have to be normalised. Let us insist
that they have the same first derivative at § = 0. This implies a; = 1 and ag = 7/2 and ag = 3.
If the revised functions are plotted, we find that F> and F3 have very similar shapes, and that F3
may be eliminated from the menu in favour of the simpler F,. Going forward, F; = tanh(f) and
Fy = (2/m) arctan[(m/2)0]. F approaches saturation abruptly with a knee, while F, saturates more
gently. F} is better suited to model hard, and F5 to model soft magnetic materials. Neither F} nor
F5 have enough free parameters to model/display the variety of saturated hysteresis curves that
may be found in nature. For example, the remanent induction B, cannot be chosen independent of
Mot or H.. However, the flexibility can be increased by resetting the argument of tanh and arctan
to be a 8+b63 where a, b are adjustable constants. For example 0 < a < 1 will reduce the remanent
value B, without changing H. or Mg,t; and the rapidity of full saturation may be increased if b > 0.
The gradient at larger values of H cannot be greater than at smaller values of H > H.. Therefore,
physicality demands that the third derivative d®F/df? be less than or equal zero as § — 0.

For the By type function and Fy(ax0), the remanent valus are Byem = £(2/7) Mgat arctan|(mw/2)al;
and the discontinuity in gradient across H = 0 is A[0B/0H] = (4/n) arctan[(7/2)a]. For the Bs
type function and Fy(a 6 + b6?), the variable b is limited by 0 < b < a® x (72/12) ~ a3 x (0.8225).

For the B type function and Fj(a x ), the remanent valus are Byey = £ Mgyt tanh(a); and the
discontinuity in gradient across H = 0 is A[0B/0|H = 2tanh(a). For the Bs type function and
Fi(af +b6?), the variable b is limited by 0 < b < a3/3.



Chapter 2

Magnetic Field of Toroidal Coil

“A filament of matter, so magnetized that its strength is the same at every section, at whatever part
of its length the section be made, is called a magnetic solenoid. ...the potential due to a solenoid,
and consequently all its magnetic effects, depend only on its strength and the position of its ends;
and not at all on its form, whether straight or curved between these points.” J.C. Maxwell[I].

2.1 Introduction

In modern times, the terms “magnetic solenoid” and “helical coil” of wire are (almost) synonymous.
However, in the time of Maxwell the solenoid was a uniformly magnetized iron bar or ring. The
cause of magnetization was a current carrying coil, or the pole of another magnet. In the case of
the ring, no combination of N-S bar magnets can induce a circuital magnetization in the ring. Only
a current carrying coil wound around an azimuthal segment of the ring can produce a circuital
magnetization. Such an arrangement is shown in Fig. 2.1. Often the winding has many turns and
completely encloses the ring; and often no distinction is made between the solenoid (the core) and
the coil. And we may have the situation that there is no iron core, and only the annular winding.

Figure 2.1: Circular iron-core solenoid with helical coil winding. The 16-turn winding, with rect-
angular cross-section, is show blue. The annular core is shown orange.

In many physics text books! on electro-magnetism it is stated that the magnetic field inside a
toroidal solenoid is purely azimuthal, has no dependence on azimuth, and is given by Hy = n I /(27r)
where n is the number of turns of the winding, I is the current in the winding, and r is the radial

'For example, Refs.[4} [6, [9].
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(perpendicular) distance from the axis of revolution z. This statement is based on Ampere’s
circuital law § H-dl = I and a circular (azimuthal) path with centre at the rotational symmetry
axis, such that the integral is fozﬂ Hy(r)rd¢ = 2mrHy = I. The assertions are correct for the
magnetic solenoid as conceived of by Maxwell. (For Maxwell, the solenoid core and the winding are
completely distinct objects.) However, what about the toroidal coil alone? Does its magnetic field
have the same properties? The text books make no statement on this; and many students believe
the field of the coil is essentially the same as that of the solid ring. In fact, this is not the case; the
azimuthal field is not uniform. Nevertheless, Ampere’s circuit law is satisfied — because the integral

027r Hy(r,¢)rd¢ can have precisely the same value I. This article is about the field properties of
the toroidal coil.

2.2 Field Within Cylindrical Can

A toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through
the hole and so does not intersect the surface. The cross-section perpendicular to the azimuth
may be circular or rectangular, or otherwise. Usually cylindrical polar coordinates [r, ¢, z] being r
radius, ¢ azimuthal angle, and z axial distance, are employed.

Figure 2.2: Cylindrical conducting shell (or can) with conduction currents (indicated by red arrows)
flowing in the shell.

Going forward, we consider an air-core type circular solenoid with rectangular cross section.
The usual derivation? begins by considering a cylindrical conducting® shell (or can) with the axis
of rotational symmetry z vertical. The geometry is shown in Fig. 2.2. There is an axial upward
current I, along the centre line; this current spreads out into radial current sheets on the upper
disc, flows (down) as cylindrical current sheets on the side walls, and returns as a converging radial
current sheet on the lower disc. The divergence, curl and gradient operators can be written in any
orthogonal coordinate system. The perfect rotational symmetry suggests they all be written in
cylindrical coordinates. Let u,, us and u, be radial, azimuthal and axial unit vectors. Everywhere
within the can, V-H = 0 and V x H = 0 — except on the vertical axis z where Vx H =J =
Jz(r)uy. The curl is also non-zero at the radial-directed current sheets on the top and bottom
discs, and the axial-directed current sheet on the cylindrical side walls. Application of symmetry
and Ampere’s circuital law tells us that there is no magnetic field outside the can. Therefore, the
field is discontinuous on the walls of the can. Let the radius of the can be R and the height be 2L.

*For example, Zangwill[I3] Chap. 10.3.
3The material is unimportant. The shell is a structure to enable/support the current sheets.
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The curl equations imply:

OHy

OH, O0OH, 10
— =0
0z

G o ;E(quﬁ):Jz(raz)' (2.1)

Jr(r,2),

Let §(z) be the Dirac delta function. The localized current distributions are
FJp(r)o(z+ L) and J,(r,z)=1.0(r) — I./(2rR)0(r — R) . (2.2)

Let Hy = I/(2mr) The solution of these equations has two parts: (1) H = ugHy inside; and (2)
H = 0 outside the can. Given that Hy appears to be independent of z and rH, indepednent
of r, it is not obvious that H satisfies the components of the curl Eq. 2.1. Note, the field is
discontinuous at r = R and z = +L. The Heaviside or unit step function is ©(x) such that
O(r > 0) =1 and O(z < 1) = 0. The derivative of © is the Dirac delta function §(x) such
that §(0) — oo and é(Jz] > 0) = 0 and [d(z)dz = 1. So we write the field more carefully as
Hy(r,z) =1/(2rr)O[R — r|O[L — z]O[L + z]. Forming the derivative at the locations where Hy is
discontinuous results in the form Eq. 2.1.

Another way to understand that ugsHy really is the solution, is to think of integrating the field
across the discontinuity. The change in Hy; must be equal to a surface current. This also happens
to be the boundary condition normal to the surface:

How — Hijy =J xn  where n is the ouward normal. (2.3)

The current density on the upper and lower discs is J4+ = fu, Hy, and that on the cylindrical wall
is J. = —u,I/(27R). The matching conditions on the end discs and side wall are the identities:

0—- Hyuy =J4 x (+u,) and 0— Hyuy,=J.xu,, respectively. (2.4)

The field Hy is the gradient (in cylindrical coordinates) of the scalar potential Hy¢. For a cylinder
field that is uniform in the axial direction between planes at z = 4L, there must be an axial variation
at those planes. But the scalar potential functions do not contain an explicit z-dependence — unless
we choose to write them with unit step functions O[L — z]©[L + z]. Nevertheless, implictly, the
unit steps are always there.

2.2.1 Confined radial currents

The next step is to propose replacing the can by a series of rectangular current loops. Each loop
consists of two axial segments (of length 2L) placed at r = p and r = R, and two radial segments
(of length R — p) placed at z = +L. Here 0 < p < R. The n loops are arranged uniformly in
azimuth, with an angle A¢ = 27 /n between them. It is then suggested (in a typical text book) that
the arrangement of current loops continues to have cylindrical symmetry, and that the magnetic
field is purely azimuthal with value Hy = nl,/(27r). Some text books concede that this occurs in
the limit of a large number of current loops.

However, the geometry of the current loops has only radial symmetry. The rotational invariance
is broken, as may be seen from the expressions for the current densities:

FJ-(r)d(z£L)d[p—2m(m/n)|, J.(r,z) = d[¢—2m(m/n)|x[[.d(r—p) — I,/(2rR)6(r—R)] . (2.5)

Here the integer m runs form 0 to n — 1. The solution for the magnetic field must respect the n-fold
symmetry of the field sources (the currents).
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2.3 Field With n-Fold Symmetry

We continue with the circular solenoid and suppose the solenoid winding is composed of n discrete
rectangular current loops. Suppose the axial height is very much greater than the radial width of
the loops. To simplify matters, we consider field sources to be line charges and line currents: charge
Q on long straight insulating filament, and current I in a straight conductive wire of infinite length.
In such a case, the radial currents are moved to infinity and have no effect; and electro-magnetism
becomes two-dimensional (2D); with spatial variation confined to the plane perpendicular to the
lines sources. (The three-dimensional case will be returned to later.) In 2D, the electric (E) and
magnetic (H) force laws become E o Q/r and H o I/r respectively.

We adopt cylindrical coordinates r, 6, z. The magnetic scalar potential is multi-valued: V =
—Hy0 where Hy = I/(2m). V satisfies Laplace’s equation. The magnetic field vector is H =
—GradV = [H,, Hy, H,] = [0, Hy/r,0]. The same field in Cartesian coordinates x,y, z is [H,, Hy, H.]
= [~Hoy/r?, Hyz/r?,0] where 22 + y?> = r2. The axial component H, will always be zero. Go-
ing forward we shall omit H,, and write H as a 2D vector. Suppose we move the origin to
(r =acos¢,y = —asin@). The components in the cylindrical system become:

B aHysin(6 — ¢) Hy[r — acos(0 — ¢)
a? +r? —2arcos(0 — @) a? + 12 — 2arcos(6 — @)

[H,, Hy| = : (2.6)
If the Cartesian radius vector is oriented locally parallel to the cylindrical radius vector, then ¢ = 0
and [Hr, Hg] = [0, Ho/(’l” - a)]

We now consider the case that there are n line currents all set at radius a with respect to
the cylindrical origin, and equally spaced in azimuth at angles ¢,, = m x (27/n) with integer
m=20,1,2,...,n— 1. The sum of the contributions is given by

—nsinnf n(p™ — cosnb)

H(r,0,p) = [H,,Hy| = [ ]HO with ng. (2.7)

rlp™" + p* — 2cosnb]’ r[p=" + p* — 2 cos nb]

In the case r > a and p" > 1, the limiting form is:

nsinnd n  ncosné n
(H,, Hy) = [_ o n] = [0, f} (2.8)
rp r rp
In the case r < a and p" < 1, the limiting form is:
7
(H,, Hy] = — [sinnb, cosnb] — [0, 0]. (2.9)
r

To complete the picture we must include the effect of distant field sources; and for the annular
solenoid they are essential to the description. There are n return line currents at radius r =b > a
also equally spaced in azimuthal angle. The return currents are oppositely directed to those at
radius r = a. These currents contribute a field of the form Eq. 2.7, but with p = r/b and a negative
sign applied. The total field is H(r,0,r/a) — H(r,0,b/r), the sum of the contributions from the
opposite (and equal) line currents arranged at » = a and r = b. In the region r > b the contributions
almost cancel. In the region 0 < r < a, both contributions are individually very small, and they
add together. In the annular region a < r < b, the field is dominated by the contribution from the
lines sources at r = a; but, nevertheless, there is a portion due to the sources arranged at r = b.
Figure 2.3 shows magnetic field in the (z, y)-plane. The coloured contours correspond to the field
strength modulus, and the field lines (shown red or blue) indicate the direction of the field. Where
the arrow heads are reversed, the field strength is actually negative. The left figure represents
the field from eight line currents alone (all set at radius a = 1). The right figure shows the
superposition of fields from 8 positive and 8 negative line currents set at radius r = a = 1 and
r = b = 3 respectively. The field cancellations at » > b and r < a are quite obvious. As the number
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Figure 2.3: Magnetic field. Left: field due to 8 line currents at » = 1. Right: field of circular
air-core solenoid due to 8 positive line currents at » = 1 and 8 negative currents at r = 3.

of line currents is increased, the cancellations become more complete; and in the limit of n — oo
there is no field beyond r = b and no field within r = a.

In a practical situation, the magnetic field is more uniform than this analysis suggests. First,
it is typically the case that instead of separate current loops, there is the helical winding of a
single conducting filament; this yields a slight improvement in uniformity. Second, and far more
effective, a ferro-magnetic annular core is placed inside the current winding. The material becomes
magnetized and concentrates the field lines parallel to its own azimuthal axis. And, of course, the
winding has a large number of turns n. The geometry of an iron-core solenoid with helical winding
solenoid is sketched in Fig. 2.1, We note that Mirin[I5] et al have found an analytic expression for
the interior magnetic field due to a helical winding on an air-core torus.

2.4 Ampere’s Circuit Law

Let the vector element of length be dl. Ampere’s circuital law concerns the vector path integral:
§H -dl = I. Applied to the circular path (centred at r = 0) in the region a < r < b, the
integral is expected to yield § Hordf = nI. How is this to be reconciled with the field appearing
in Eq. (2.7) ? The path integral looks formidable, particularly so because Hy has contributions
from both H(r,8,p=r/a) and H(r,0, p=r/b). But, consider the sources at r = a and r = b one
at a time. If we think of x and y as being directions in the complex plane, then the field due to
sources at 7 = a is the sum Hy Z"m_l 1/[r — aexpi(0 — ¢,)]. Thus we may use the methods of
complex analysis[37]. Cauchy’s residue theorem tells us that if the integration path r > a encircles
all the singularities, then the integral is the sum of residues equal to 27n; and if the path is taken
at r < a the integral is exactly zero. Likewise, the contribution from current sources at r = b to a
path integral at r < b is identically zero. Now Hy = I/(27), and so the contour integral performed
at a < r < b is precisely n x I. If the circular path is taken at r > b, the residues from the positive
and negative line currents cancel exactly; and the integral is zero.

In fact, complex analysis tells us something even more surprising and wonderful. The integration
path does not have to be circular, it can be any path we choose in the (x,y)-plane — and the result
will be the same. The value of the integral depends only on whether it includes singularities (called
poles) of the form 1/(r — ro).
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2.4.1 Fields from short straight wires

Now we return to the case of a three dimensional geometry: the rectangular current loops each
have height 2L and width b — a. The magnetic field due to a finite length wire is smaller than
that from an infinite straight wire. As before, we take a cylindrical coordinate system with the z
axis coincident with the wire. We consider a source element Idz located at z in the wire; and an
observation point (7,6, (). The vector from source to point is r = [r,0, z — (] and the parallel unit
vector is I = r/(r - r). The Biot-Savarat law gives the field contribution from the source to the
observation point:

I dzu, x1 I dzr
dH= —————=—|0 0 2.10
A7 r-r 47T|:7[7"2—|-(Z—C)2]3/2’ ] (2.10)
This element is integrated over z from —L to +L. The result is
I L+ L—
Hy(r,z=() = — ¢ + ¢ . (2.11)
dmr |2+ (L+0)? Vr?+ (L —()?
The field at middle and ends of the wire is:
1 L I L
Hy(r,z=0) = Hy(r,z==+L) = (2.12)

2mr VIZ 4 2 2mr JALT + 12

In the case L > r, these become Hy(z =0) = I/(2nr) and Hy(z = +L) = I/(4nr). How are
these fields to be reconciled with Ampere’s circuit law? Once again, we must apply to the fields
from distant sources. Each current loop has radial-directed segments at heights z = £L above the
mid-plane; and both these (additively) contribute field to the observation point. When these fields
are included, the circular path integral at radius r is exactly equal I independent of axial position
C.

The rectangular loop is an example of a more general understanding of the relation between
the Biot-Savarat law and the Ampeére law. Consider a current loop of any shape, and the contour
integral formed on a plane perpendicular to the wire’s local direction. Provided the contour encircles
the wire, the integral of H is always the current I. The contour can be taken anywhere (around
the current filament) because the field is contributed from current elements everywhere (along the
current filament). The filament must, of course, close on itself to form a loop. The infinite straight
current-carrying wire is a special case. The field integral around the wire at any axial location is I
because we have summed contributions to the field from everywhere along its (infinite) length.

2.5 Cylindrical Harmonics

Text books often contain artificial examples. The annular shell with a harmonic (sine or cosine)
current density in its surface is artificial, but serves the purpose of demonstrating that (in general)
two types of scalar potential function are needed: (1) the multi-valued* type around a line current,
and (2) the usual, single-valued (conservative) potential functions. Consider the annulus with
rectangular cross section, and height 2L as before. There are cylindrical inner and outer side
walls at radius » = a and r = b respectively; where a < b. These walls carry current densities
Jo = +1[14cosnb]/(2ra)d(r—a) and J, = —I[1+cosnb]/(2wb)d(r —b) with integer n = 1,2,3,. ...
These axial currents are uniform within z = L and zero outside. There are annular discs at top
and bottom which carry radially directed current density also with the azimuthal dependence
[1 4 cosnd] and radial dependence 1/r.

To account for that part of the axial currents which do not vary with azimuth, we need the
multi-valued potential #. To account for the azimuthal variation of fields and sources, we use

Maxwell Article 606 is vehement that the magnetic scalar potential for a line current is multi-valued, accruing a
fixed increment (27) for each turn about the current.
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cylindrical harmonics: solutions of the Laplace equation in cylinder coordinates. Within the can,
fields are axially uniform; so we set the partial derivative (0?V/9z2) — 0. Thus the harmonics are
V(r,0) = F,(r)[cgcosnf + c4sinnf] where F,(r) = c17™ + cor™", and the constants ¢y, ca, 3, ¢4
are chosen to fit geometry-dependent boundary conditions. In regions where r — 0, co = 0; and
where r — oo, constant ¢; = 0. Both potentials, § and V (r,0) satisfy Laplace’s equation, and
generate vector fields with zero curl and divergence.

To match the two concentric current densities, we take the following combination of functions:

Vo = 1" [As+ Ap]sinnd 0<r<a (2.13)
Vo, = [r"Cy + r"Ap]sinnd — B, a<r<b (2.14)
Vs = r "Cysinnf + By — B,0 r>b (2.15)

where the constants A, p, Bgp, Cop will be determined. We form the gradient to find the corre-
sponding fields H,, H,, H;. The next step is to consider boundary conditions at the inner and
outer cylinders. The radial component is continuous, so

u, - [H,(r=a) — Hy(r=a)] =0 and wu,-[Hy(r=>b) — H,(r=0)]=0. (2.16)

The azimuthal component is discontinuous, with a jump equal to the current density on the cylin-
drical wall; thus:

ug - [Hy(r=a) — Ho(r=a)] =J, and wug-[Hy(r=>0) — Hy(r=0)] = J . (2.17)

Because there are constant terms and sinusoidal terms present in Eqs. 2.16/and 2.17, these constitute
six linear equations for the unknowns. The solutions are: B, = B, = I/(27), as may have been
guessed, and

A,=a"1/D, Ay=-b"1/D, Co=-d"I/D, Cy=@0"—a")I/D, D=4nm. (2.18)
These values are substituted in V, ,, and H, ,;. For example,

(bnbnan)(r/a)n’ -V, = 10 +x[(a/r)"+(r/b)"], Vi = XM, = Isinnf

2T rn

Va=x . (2.19)

Inm
The field is dominant in the region a < r < b; but a small residual (or fringe) extends into the
regions r < a and r > b. The moduli of the fringe fields are:
I " —a™) I

B = [1 - (a5 ](r/a) o ana )= Co L (2.20)
Due to the power law dependence (r/a)™ for r < a and (b/r)" for r > b, the fringe fields diminish
extremely quickly as the harmonic number n is increased. Figs. 2.4,2.5 show an example for n =6
and a =1, b= 3.

The fringe fields also extend above and below the planes z = +L. In these regions, there are no
axial currents; and so the magnetic potential is a purely conservative function. However, finding
this function and matching the coefficients across the boundaries z = +L is extremely difficult. In
the case of infinite line currents, Sec. 2.3, this difficulty was avoided by moving the boundary to
infinity.

2.6 Vector Potential

The magnetic field in Sec. 2.3|was derived from a scalar potential V' that satisfies Laplace’s equation.
The same field Hy = I /(27r) appeared in Sec. 2.2, where we found the treatment of surface currents
is not straight forward. Some readers may be aware of the magnetic vector potential, and wonder if
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Figure 2.4: Magnetic field lines and modulus. Left: region r > a; and in region r < b field lines
only. Right: region r < a.
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Figure 2.5: Magnetic field line and modulus for six-sector current can. Left: region a < r < b.
Right: region 0 < r < (2/3)b field lines only.

it simplifies the effect of surface current; it does not. The vector potential is used in regions where
there are volume currents, that is a finite volume sufficiently large that the observation point may lie
inside the volume. These currents may be due to flow of charge or displacement currents resulting
from time-varying electric fields. We compare the scalar and vector potential for the cylindrical
magnetic field. We define the vector potential A by

V-H=0, VxH=J, H=VxA, V-A=0. (2.21)

The last condition is called the Coulomb (or transverse) gauge; this constraint is not essential. We
begin with some simple single-component potentials.

A =u, A (2)/r leads to H = ug(dA,/0z)/r and CurlH = —u, (9?4, /02%)/r.
A =u, A,(r,0) leads to H = [(0A,/00)/r,—(0A,/0r),0]

and CurlH = —u,[0%A,/00%/r?* + (0A,/0r)/r + 0*A,/0r?]. The two examples suggest that if
we want radial and axial current densities, we should consider a two component potential A =
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w-A, +u,A,. If we insist that axial field H, = 0, azimuthal current Jy = 0, and Hy is single-
valued and independent of z, then the choice of potential is narrowed to u,A,(r) + u;A,(r). Thus
V-A=A4,(r)/r+ (0A,/0r) =0 and H = Curl A = uy(0A,/0r). There are two scenarios. First,
if field varies with radius Hyp = G/r the components are A, = ¢1/r and A, = co — G In(r); yielding
H = uyG/r and CurlH = 0. This is the same field, as was given by the scalar potential; and
the arbitrary constants of integration c¢1,co may be set to zero. Secondly, if Hy is independent of
radius, then A, = ¢1/r and A, = —Hpr + co; yielding H = upHy and CurlH = u,Hy/r. This
solution maybe used inside a hollow cylinder of volume current density.

2.7 Complex Analysis

Complex analysis is perfectly suited to the description of electro-magnetic fields in two dimensions.
Following Morse & Feshbach[37] Chap. 4.1, let us state the main results. Let i = v/—1. Let x,y be
Cartesian coordinates, and define the complex variable z = x + iy and its conjugate z* = z — iy.
Rotation by an angle € in the x — y plane is performed by the operator exp(ifl). Let there be
a complex function with components along the real and imaginary directions: f = u 4+ iv and
g = s +1t. The sums and product of functions f*g obey the usual axioms for real numbers. In
vector language, there is the analogue f = [u,v] and g = [s,t]. Comparing products we find:

ffg = (us+vt)+i(ut—vs) = f-g +ifxg. (2.22)

Thus f*g contains both the scalar and vector product of f and g. We introduce the complex
gradient V, whose operation immediately gives both the divergence and curl of a complex function
(or its equivalent vector form):

0 0 0
i— =2—, and V*¢g=Divg + i Curlg, (2.23)

VE%—F y 0z

where Div and Curl are 2D versions of the vector calculus operators.
Consideration of V(u + iv) yields the Cauchy-Riemann conditions:

Ou/dx = +0v/dy and Ou/dy = —(0v/dx) . (2.24)

Any function which satisfies Eqs. 2.24] is called an analytic function of the complex variable z =
T+ 1y.
Suppose that some field E is derivable from a potential V' (z,y), both being complex, such that
E =VV. Then we can write E = 20V /0z*, and since 0F/0z = 0, we have Laplace’s equation:
0%V o’V 9%V

= =0. 2.2
020z* Ox? + Oy? 0 (2.25)

Given that the potential may be written V = ¥ (z,y) + i®(x,y), it is clear that ¥ and ® are each,
individually, solutions of the 2D Laplace equation.
The fundamental field due to a unit line source is

F = —2In(z) = —In(2® +y?) — 2iarctan(y/z) = —2In(r) —2i0 = —2In[r x €] . (2.26)

If this field is due to a unit/length electric line charge, then ¥ = —In(z? + y?) = —In(z2*)
and —OF*/0z = 2/z* is the electric intensity vector, pointed along the radius vector z and in-
versely proportional to |z|. If the magnetic field is due to a unit/length charge current, then
® = —2arctan(y/x) = —26 is the magnetic potential, ¥ = constant gives its lines of force, and
10F*/0z = —i(2/%*) is the magnetic intensity, pointed perpendicular to the radius vector in the
clockwise direction for a positive current.
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We may integrate a complex function along a path in the complex plane (z,iy). The geometry
of the path has to be specified. If the path closes on itself, the result is called a contour integral
and denoted by § f(z)dz. We shall use, but not prove, Cauchy’s theorems for contour integrals
of complex functions. Suppose that f(z) is analytic everywhere inside and on a closed contour C,
then § f(z)dz = 0. Suppose that (complex) a is a point within C, then f(z)/(z — a) is singular at
z = a. Cauchy’s integral formula states:

£(2) 1; if a within C
?{ C—a) dz = 2mif(a) x ¢ 3; ifaon C (principal value) (2.27)
0; if a outside C.

Cauchy’s integral theorem is a statement, in the notation of analytic functions, of Gauss’ theorem
for electrostatics or Ampére’s theorem for magnetostatics.

2.7.1 Two-dimensional electric fields

In the absence of charges, Maxwell’s equations for electric field E state that Div E = 0 and Curl E =
0. These statements are equivalent to (0E/0z) = 0; which implies £ = E(z*) = u—iv. Contrarily,
E* = E*(z) = u +iv.

Concerning the path integrals. If the region is devoid of charge, then § E*dz = 0. If the region
inside the contour includes a line charge, ) per unit length, perpendicular to the (z,y)-plane, then
f E*dz = 4wQ. In general, there is a field Ej(z) due to sources outside the contour, and a field
Ef =2Q/(z — z1) due to the line-charge inside the contour. The total field is Ej + Ef.

2.8 Conclusion

The superficially simple case of the toroidal coil serves very well to exemplify the magneto-static
physics of current carrying wires. In particular, the implications of vector fields that have every-
where zero curl and divergence except at field sources where locally the field posses rotation. To be
clear, there is rotation about the current-density vector and yet (nevertheless) the field has zero curl
at all points in space except those within the current. The current loops also cause us to recognize
that distant currents are important and crucial to the sanctity of Amperé’s magnetic circuit law.
Moreover, the physics of current loops and magnetic field demonstrate to us that the Ampere law
and the Biot-Savarat law are inextricably linked.



Chapter 3

Ferro- and Ferri-Magnetism

3.1 Introduction

Ferro-magnets have a subatomic crystal lattice with a single type of (nett) electron spin site. Ferri-
magnets have two or more types of spin site. With the obvious exception that ferro-magnets are
conductors, while ferri-magnets are insulators, the ferro- and ferri- magnetic materials have many
properties in common and which share a common explanation. The (simpler) theory of ferro-
magnetism, was developed (in the 1930’s) before that of ferri-magnetism. There are many modern
text books[54 [55] on magnetic properties and detailed calculation thereof. But for an introductory
account of the underlying principles, it suffices to adapt material from a historic collection of
papers[38, B39, 40, 41] that marks the moment that “ferrites arrived” in communication electronics.
The story of magnetism is essentially that of four kinds of energy: (I) the Zeeman, (II) the magnetic
dipole, (IIT) the exchange, and (IV) the anisotropy energy. By far the most important of these is
the exchange energy, which is the underlying cause of magnetism; and so we begin with that.

3.2 Exchange Interaction

The exchange interaction' (EI) is one of the most singular and surprising predictions of quantum
mechanics (QM). The EI is a purely quantum property with no classical analogue. The EI is subtle
and fundamental. The manifestations of EI are confirmation that the physical world is “quantum”.

The EI and exchange energy is a consequence and manifestation of four of the postulates of
quantum mechanics: (i) that there is a wave function; (ii) that it obeys the mathematical operation
of linear superposition; (iii) that what we call “observables” are expectation values; and (iv) the
phase of the wave function is not a physical observable (i.e. only the modulus leads to an expectation
value). The EI is an embodiment of QM and testament that the tenets of QM are not merely “just
postulates” but an underlying component of physical reality. Superposition is an axiom of quantum
mechanics, and it applies to the joint state of two quantum objects.

The wave function of indistinguishable particles[44] is subject to exchange symmetry. Let ¢(1,2)
be the wave function of two indistinguishable particles, indexed 1 and 2. Because the particles are
identical, an equally valid wave function is ¥(2,1). We introduce the exchange operator P which
acting on a state interchanges all coordinates (space and spin) of particles 1 and 2. (The operation
is also called permutation, which is why we use the symbol P.) Hence P1(1,2) = (2,1) and
P24)(1,2) = (1,2). Thus the operator has eigenvalues 1. The corresponding eigenstates are
the superpositions ¥ 7v2 = 9(1,2) +1(2,1) and ¥~v2 = (1,2) — ¥(2,1). Now Pyt = ¢+
is symmetric and Py~ = —~ is anti-symmetric with respect to the interchange operator. The
operator P commutes with the Hamiltonian, and so the permutation symmetry P is a constant of
motion. Note, this symmetry is an intrinsic property of the particles, not of the system preparation.

'Postulated (i.e. discovered mathematically) independently by Heisenberg and Dirac in 1926.

35
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To summarise, the joint wave function either (i) changes sign or (ii) remains unchanged when two
identical particles are exchanged. We call property-(i) objects fermions; and we call property-(ii)
objects bosons.

In a simple one-dimensional system with two identical particles in two states v, and 3, the
joint wave functions are

V29~ = o (1) Py (22) £ Ya(@2)Ps(21) - (3.1)

¥*(1,2) is the joint probability amplitude for finding a particle at location z; and another at
position xo. The probability density is 1 x ¥* where * denotes complex conjugate. Exchange
symmetry alters the expectation value of the distance between two indistinguishable particles when
their wave functions overlap:

(21— 22)%)x = (2)a + (%) — 2z)ala)s F [(2)a]” -

For fermions the expectation value of the distance increases, and for bosons it decreases (compared
to distinguishable particles). Two indistinguishable fermions cannot be in the same state, because
the only mathematical quantity that is unchanged by sign/polarity reversal is zero - which is the
absence of a quantum object. Bosons and fermions both have an additional quantum property:
spin. That bosons have integer spins, and fermions have half integer spins (2n + 1)/2, does not
have a simple explanation.

The symmetric ™ and antisymmetric 1~ combinations in Eq. 3.1/ did not include the spin
variables (« = spin-up; 3 = spin-down); there are also antisymmetric and symmetric combinations
of the spin variables: v/2 ¢* = a(1)5(2) £(2)3(1). To obtain the overall wave function, these spin
combinations have to be coupled with Eq.|3.1. The resulting overall wave functions, for fermions,
are anti-symmetric under interchange of particle index. Hence: When the orbital wave function
is symmetrical, the spin function must be anti-symmetrical; and vice versa. For the same reason
that electrons in the same position within an atom cannot have the same spin, the electrons of
neighbouring atoms in a solid ferromagnetic object must have the same spin. The electron spin
carries a magnetic moment. The exchange interaction stabilises the aligned elementary magnets,
i.e. the atomic spins, in magnetic materials. This is the only reason why the parallel alignment of
the elementary magnets in ferromagnets is so stable.

There are two combinations of the wave functions of two indistinguishable particles: symmetric
and anti-symmetric. Nature did not have to furnish examples of both types, but it does: bosons
and fermions. And the implication of the EI is that these fundamental objects are truly indistin-
guishable. Quantum field theory supplies an explanation for this: that they are excitations of an
underlying quantum field. Quantum fields are matter. As concerns “identity”, one excitation is
the same as another. In a quantum field theory, what we perceive as particles are excitations of the
quantum field itself. The quantum field is a complicated object. In part this is because it contains
all of physics: the field can describe vast numbers of particles, interacting in a myriad of different
ways.

3.3 Theory of Ferro-magnetism

The story of ferro- (and ferri-) -magnetism is essentially that of four kinds of energy.

(I) The Zeeman is the magnetic energy of elementary magnets in an applied field H: =235, H-S;
where (3 is the Bohr magneton and S; is the spin angular momentum vector of atom i measured in
units of Planck’s constant/2m = h.

(IT) The classical magnetic dipolar energy, of mutual interaction between elementary magnets:

29352 s 5. _ 3T Si)ry-S))
el A 2
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Here the electron g-factor g. &~ 2. Despite being long range, the coupling is too small by a factor
10* to align the spins in a ferromagnetic material. The dipolar energy involves the angles between
the spin vectors S;,S; and a given direction r;;, and so is not spatially invariant.

(III) P.A.M. Dirac wrote the exchange energy in the form —23%. , J;;(S; - S;) where the factor
Jij is the quantum mechanical exchange integral connecting atoms 7 and j. The Dirac potential
simplifies calculation, but hides how uncanny and bizarre is the exchange interaction (EI). This
interaction is very short range, a few atoms at most. The exchange energy is responsible for two
key conditions: (i) the electron spins in filled atomic orbitals are anti-parallel pairs (resulting in
no net spin); and (ii) if there is an incomplete outer shell (such as d or f orbitals) then neighbour
atoms have parallel spins, leading to large net spin angular momentum. A purely quantum effect,
the EI is responsible for the alignment of spins in a ferromagnetic material. Because the scalar
product S; - S; of two vectors is invariant under a rotation, the EI is isotropic; it cannot explain
why most ferromagnetic materials are more easily magnetized along certain directions than others.
(IV) The anisotropic exchange energy is the modification to (III) that arises from spin-orbit cou-
pling. This coupling makes the spin feel the anisotropy of the charge distribution which is not
spherically symmetric in high orbital levels or excited states. The anisotropy energy explains pref-
erential magnetization along certain directions in a crystal.

3.3.1 Free Energy of Magnetic Material

The whole problem of magnetism is simply to determine which spin configuration gives the lowest
free energy, in the thermodynamic sense, when one includes simultaneously the four energies I, II,
III, and IV (or IV’). These energies have roughly the following orders of magnitude: I ~ 107%,
IT ~ 0.1, IIT ~ 103, IV ~ 10. The estimate (IV) applies only to non-cubic crystals. With cubic
symmetry, the relevant estimate is IV’ ranges 0.1 to 1.

The first simplification is to study the energetic and alignment behaviour which results when
exchange coupling alone is present, and the action of the other atoms on a given atom 7 is ap-
proximated by an effective field Heg. (III) is replaced by > —gef8Y;Si - Heg. Weiss assumed
that the effective field was linear in the magnetization M. Quantum mechanics furnishes a real
foundation for this assumption of linearity, since (III) implies that the mean exchange potential
coupling a spin ¢ to its surroundings is proportional to the expectation value of the spin angular
momentum of neighbouring atoms. This model may be used to find the temperature dependence
of spontaneous magnetization and the saturation value at T=0 kelvin. The next step is to include
anisotropy. The anisotropic exchange mechanisms give the proper directional dependence of the
energy of anisotropy dictated by the crystal structure.

3.3.2 Weiss domains

The interactions (III & IV) which we have included so far are able to explain the existence of mag-
netization and preferential directions, but they are completely inadequate to describe the hysteresis
and other phenomena associated with aligning the magnetization parallel to the applied field. Irre-
versible processes are found even in very weak fields. The difficulty is that with the mechanisms IIT
and IV alone present, (along with the energy I due to the applied field) there is no reason why the
average positions of all the elementary magnets should not be parallel throughout the entire crystal.
A mechanism is needed which will provide small domains of magnetization, called Weiss?| domains
(discovered in 1906). The requisite mechanism is provided by (II) the classical magnetic interaction
between dipoles. This is a long range coupling; and as a result it is energetically unfavourable for
dipoles to be aligned perpendicular to the bounding surfaces of the specimen. In consequence, a
lower energy is achieved when the direction of magnetization is different in different small regions,
called domains. This subject was first properly investigated by Landau and Lifshitz[45] in 1935.

2Pierre Ernest Weiss (1865-1940) was a French physicist who developed the domain theory of magnetism.
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The domain structure seems to account46] quite well for the various phenomena of hysteresis,
remanence, etc. When an applied field shifts the direction of magnetization, this readjustment can
be achieved in either of the two ways: rotation of the magnetization in a domain of given size, or
by expansion of the domains. The second of these processes is usually the more important, and of
course involves migration of the domain boundaries. The transition region between two domains is
named a Bloch wall or domain wall. The wall is not a barrier, rather it is an interface (about 100
atoms wide) shared by two domains. Roughly speaking, domain walls can move at (upto) the speed
of sound in the material. It is the growth and/or rotation of domains in response to an external
applied magnetic field that is responsible for hysteresis and the [ [-shape of the magnetization
curve in the B-H plane. The behaviour is cartooned in Fig. 3.1.

S O

— H — H

(©) (D)

Figure 3.1: Progress of magnetization. Cartoon adapted from Philips Ferroxcube Handbook. Do-
main walls movement is dominant at lower bias, with domain rotation becoming dominant at higher
bias. (A) Unmagnetized state with 9 domains. (B) Some domains grow at the expense of others.
(C) Three partially aligned domains. (D) Magnetic domains aligned in saturation.

3.4 Theory of Ferri-magnetism

A positive exchange integral is a necessary condition for ferro-magnetism (in order to minimize free
energy). This stipulation, however, is only essential as long as all atoms have the same spin. If
two (near-neighbour) atoms of unlike spin are antiparallel, there can be a net resultant magnetic
moment. Thus an exchange coupling which favours an antiparallel short-range order can lead to
an overall /residual magnetic moment. Neel[47] first proposed this type of mechanism, wherein
magnetism can occur even when the exchange integral has the (normal) negative sign. He also
suggested the name ferri-magnetism, a felicity as the ferrites are the prototype case. The various
general energetic considerations presented for ferro-magnets apply perfectly well to ferrites.

In the case of ferri-magnetism the two (or more) magnetic subsystems are coupled strongly by
their mutual exchange interaction. They are not separated in space as in the domain problems but
are interspersed as inter-penetrating lattices throughout the ferrite crystal. In a two-component
system, the two types of spin site are referred to as A-sites and B-sites. Since the exchange coupling
between the two subsystems is so strong, it may be expected that in many respects it will behave
as one single (ferro-magnetic) system. This expectation is borne out by experiment and for many
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applications the discussion in terms of a single net magnetization is adequate. However, there
are effects where the two-component character of A and B sites is manifest; and these are called
specifically ferri-magnetic. One such example is discussed in Sec. [3.5.6L

3.5 Magnetic Resonance in Ferrites

Thus far, we have considered the DC or low frequency properties of magnets. But what happens
if the material is subject to an electro-magnetic (EM) wave? One particular effect, among many
that a ferrite can display, is the ferro magnetic resonance (FMR). Thin, plate-like samples of ferro-
magnetic material were probed with radio-frequency (RF) waves in the early 1900’s. The samples
display resonant absorption phenomena, now called FMR. The metallic samples must be thin,
otherwise the EM wave does not penetrate into their interior. Contrastingly, ferrites are insulators
and EM waves pass freely into and through them. Ferrites also display resonant absorption, and
have become the exemplar of FMR.

Magnetization arises from the alignment of individual electron spins with respect to one another
(spontaneous magnetization) and with respect to an externally applied DC field. Landau[45] real-
ized that the spins will precess (rotate or gyrate) about the applied field, and wrote a semi-classical
equation of motion for the spin magnetic moments. Landau also realized that in the presence of an
applied RF field, there will be resonance effects if the field oscillation frequency is equal to the spin
gyration frequency. Before we can write Landau’s equation, we must introduce the gyromagnetic
ratio.

3.5.1 Gyromagnetic ratio

Suppose that we have a uniformly rotating sphere of uniform charge density and uniform mass
density. This sphere will have a magnetic moment M, having units of current x area, and an
angular momentum L having units of mass x area divided by time. The ratio v = |M|/|L| is called
the gyromagnetic ratio, and has the units of electrical charge divided by mass. For a classical
sphere, v = ¢/(2m) where g, m are the total charge and mass of the object, respectively.

Consider now the electron which has intrinsic spin. The electron is a diffuse quantum object, not
a classical sphere. Nevertheless, the electron does have a gyromagnetic ratio 7. = ge[—ge/(2me)]
where the subscript e denotes “electron-value”. Here g., called the electron g-factor, accounts for
the quantum nature of the electron. g, is computed by Quantum Electro-Dynamics (QED) to have
the value 2.002319... The deviation from 2 is due to loop corrections. The gyromagnetic ratio is
sometimes written v, = —g.[(8/2)/(h/2)] where h/2 is the spin angular momentum of the electron
and [3/2 is the electron magnetic moment in terms of the Bohr magneton (/). The “natural unit”
of atomic-level magnetic moment () has the value 9.27401 --- x 10~2% in SI units.

3.5.2 Motion of spin magnetic moment

The response of an electron spin angular momentum s to a torque T is ds/dt = T. Now the
magnetic moment m of an electron is related to the spin s by m = +.s. The torque exerted on
a magnetic moment by a magnetic field B = ygH is T = m x B. Combining the relations, the
equation of motion for the magnetic moment of an electron spin is

dm/dt = ppyem x H. (3.2)

Now, if the electron spin is in a constant state of precession wg about H, it follows that T = wgs
and wp = poYe |H| is the Larmor angular frequency.

Note that in the frequently employed CGS sytem, B, M, H all have the same units; and therefore
the pg pre-multiplier is absent from the equation of motion. Note also, there is some inconsis-
tency between authors whether the gyromagnetic ratio is a signed quantity or a modulus. And
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this introduces minor discrepancies (sign changes) between different presentations of the Landau-
Lifshitz (LL) equation (3.2). For example Bloembergen[40] and Gilbert[57, 58] take v < 0, whereas
Shapiro[61] and Tsutaoka[l104] take v > 0.

Eq. 3.2 is summed over all atoms in a crystal to find the net spin and magnetization:

M = (1/AV) 3N m where AV is the volume of the atomic spin site. In this summation, it becomes
clear that H is the sum of any externally applied field and all the internal magnetic fields due to
each of the atomic spins; in other words the effective field. Typically we first look for a steady-state
solution dM/dt = 0 that is consistent with minimizing the magnetic free energy; and then consider
the evolution of deviations of the magnetization. Eq. 3.2 summed over all atoms is the core of the
Landau-Lifshitz theory[45] of ferromagnetic resonance. If all the spin sites are aligned, the sum
yields the uniform mode. Alternatively, if the alignment (of spin sites) varies periodically in space
and time, the sum permits spin-wave modes (called magnons).

If in addition to the applied DC magnetic field, there is a radio-frequency magnetic field he®*
then this field may drive the spin gyrations to large amplitude if w is equal to the Larmor frequency.
The resonance can be found/graphed either as a function of applied field (at fixed RF) or a function
of radio frequency at fixed magnetic bias. The DC bias creates a preferred direction about which
the spins precess; and thus the response to an alternating magnetic field depends on whether the
RF magnetic component is parallel or perpendicular to the bias. The effect is described by the
Polder[49] complex permeability tensor®. Lax & Button[54], Appendix 4-1, outline the derivation
of effective susceptibility components including loss and demagnetizing factor.

3.5.3 Conditions for FMR

When a homogeneous bias magnetic field sufficient for uniform magnetization to saturation is
applied, the ferrite becomes a single domain, uniform precession of its magnetic moment is possible,
and the conditions for FMR are ideal. If the bias field is insufficient and significantly inhomogeneous,
and if a ferrite sample is comparatively large, then there could be many domains in the ferrite
sample. Magnetic moments in different parts (domains) of the sample will have different orientations
with respect to the crystallographic axes and the bias field (if the latter is applied), and therefore,
the magnetic resonance conditions will be different in different parts of the sample. This leads
to a weaker and broader resonance with less specificity concerning the relative orientation of bias
and RF wave. There is a theory[89, 90, OI] of FMR in partially saturated ferrites, but it is more
complicated.

Natural FMR

The crystallographic anisotropy field is the cause of an internal bias field (or fields) with specific
directionality. This field sets conditions for a natural FMR. However, the gyration (resonance)
frequency is typically very high; in the tens of GHz range.

3.5.4 Demagnetizing factor

Shortly after the experimental verification of the Landau theory of FMR by Griffiths[48], the
researcher Kittel[5I] pointed out that the effective field may be very different from the externally
applied DC magnetic field because of the demagnetizing field as discussed in Sec.|1.4. Subsequently,
Kittel[52] introduced the RF demagnetizing field, and asserted the DC and RF demagnetizing
factors are equal. This might be true, but it is not self-evident. Clearly, the field equations are
different between statics (DC) and dynamics (RF). The field solutions are different. It is possible
that the fractions of the solutions outside versus inside the sample are the same for DC and RF,

3The tensor depends only on direction and not on position and so reduces to a matrix relation (double index
rather than triple index).
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but needs to be demonstrated. Because V x H # 0 and V x E # 0 when fields are time varying, it
follows that field shapes change. Whereas the scalar potential is suited to static irrotational fields,
the vector potential is suited to time-varying fields with non-zero curl. Nevertheless, the fields share
some of the geometric symmetries of the material object. So equal DC and RF demagnetization
factors cannot immediately be ruled out.

3.5.5 Importance of damping

Damping is essential to align the spins with the external field, and is discussed in Chap. 4. Damp-
ing is introduced in a phenomenological way through several possible models, such as those of
Landau, Gilbert and Bloch*. The Landau and Gilbert models conserve the magnitude |M]|; the
Bloch model[53] does not. The damping factor is difficult to estimate, and so is obtained from
experiment. In the 1950’s efforts to clarify the basic damping mechanism led to experiments at
high microwave power level in order to study the dissipation of absorbed magnetic energy. Two ef-
fects were discovered: frequency doubling, and saturation of the magnetization due to nonlinearity.
Contrastingly, a decline of permeability may occur at surprisingly low RF power levels: spin-wave
modes having the same frequency of precession as the uniform mode can grow at the expense of
the uniform mode.

3.5.6 Ferri-magnetic resonance

In ferro-magnets there is one type of spin site repeated throughout the crystal lattice. In ferri-
magnets, there are two (or more) types of spin site. Thus it is proper to introduce two magnetiza-
tions (with different g-factors, anisotropy fields, etc.) into the summation over A and B spin sites.
There is one low frequency mode in which the ferrite behaves apparently as a simple ferromagnetic
system. In that mode, the two sets of spins precess in the same rotational sense and are in phase.
There is one high frequency mode (usually in the infrared) in which the material displays ferri-
magnetic character: the two sets of spins (one for each sub-lattice) precess in the same sense but
out of phase. The resonance frequency is high because it takes place in the internal molecular field,
which is considerably larger than the external magnetic fields normally available in the laboratory.
The matter is discussed by Lax & Button[54] Chaps. 6.1. & 6.2.

3.6 Simple Ferrite Structures

3.6.1 Spinel structure

Consider now the spinel structure. The name spinel comes from the Latin word spinella, a diminu-
tive form of spine, in reference to its pointed crystals. The spinel is a ferrous oxide (FesO4) lattice
with some of the Fe?T substituted by other divalent atoms such as Ni, Mn, Co, Zn, etc. A spinel
unit-cell is made up of eight face-centred cubic (FCC) cells made by oxygen ions in the configura-
tion 2 X 2 X 2, so it is a big structure consisting of 32 oxygen atoms, 8 A atoms and 16 B atoms. In
general, the A and B atoms may differ. The structure is two interpenetrating lattices of tetrahedral
sites and octahedral sites, which we label T and O respectively. In the mormal spinel structure,
all A%t cations occupy the tetrahedral sites, and all B3T ions occupy the octahedral sites. In the
inverse spinel structure, half of the B3t cations occupy the tetrahedral sites and the remaining half
B3t and all A%t cations occupy the octahedral sites. Only this inverse structure has ferri-magnetic
properties. We can think of this more simply as an arrangement as eight molecules each with
chemical formula B3*(A2TB37)0,. There are two sites per molecule which we name O and T. The

4Felix Bloch (1905-1983) was a Swiss-American physicist. He shared the 1952 Nobel prize with Edward Mills
Purcel for the development of Nuclear Magnetic Resonance.
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T site has a single cation, and the O site has two cations per molecule. In the case that the spinel
is a ferrite, the B atoms are iron Fe; and the A atoms may be Fe, Ni, Mn, Co, Zn, etc.

Consider, the particular case of the loadstone molecule Fe3O,4. Neel, proposed the structure,
wherein the T site has a ferric ion (Fe3t), and the O site contains a ferric (Fe3*) and a ferrous
(Fe?*) ion. Neel assumed that the O-T exchange interactions are stronger than those of the O-O
or T-T category. The geometry of the lattice is such that the spins of the atoms on the O sites
cannot be antiparallel to those of the neighboring atoms on the T sites unless the O-site atoms are
all mutually parallel, pointing say North, and those of the T-site atoms all pointing in the opposite
direction, e.g. South.

BH++ A+F B+ttt Bttt A+f ptt+f

T O T (0]
Fet+tt Fot¥ FettF TFettt Fott FettF
T O T (0]

The spins of the Fe?t and Fe?' ions are respectively 2 and 5/2. According to the Neel model
sketched above, the saturation magnetization per molecule of FesO,4 at T=0 should be

5 )
Je [—2 + <2 + 2)] ~ 4 Bohr magnetons, because g, ~ 2.

The observed value is 4.2. All told, the saturation moments of the various ferrites, and the analo-
gous compounds with varying amounts of magnetically inert substituents conform very well to the
predictions of theory.

3.6.2 Garnet structure

Garnets are represented by the general formula R3Fe;019, containing two magnetic ions one being
iron (Fe) and the other a rare earth (R) such as yttrium (Y) or a lanthanide. The unit cell is cubic
and contains 8 formula units i.e. 160 atoms, quite complex. The cations are located in three sub-
lattices: dodecahedral (D), octahedral (O) and tetrahedral (T). Such structure can be described
by the general formula of {Rs}[Fes](Fe3)O12, where { }, [ ] and () brackets indicate the positions
in the D, O and T sub-lattice sites, respectively. As a rule, R3* occupies the D sites and Fe3* ions
occupy the O and T sites in the ratio of 2:3. The spin configurations (of Fe atoms) at O and T
sites are anti-parallel, while the spins (of R atoms) at the D sites are parallel to those at O sites.
In garnet ferrites, the orbital contribution of iron is quenched leaving only the spin contribution.
The rare earth ions contribute both orbital and spin magnetic moment. Each Fe3* ion contributes
spin 5/2, and each rare earth ion contributes spin Sg = (2n + 1)/2 with n = 0,1,2,3. Although
the lattice sites are three-dimensional, the magnetic moments are either parallel or anti-parallel; so
we can sketch a linear diagram to sum the nett contribution.

3R3+ 3Fe+++ 2Fe+++
D T O

The saturation magnetization per molecule should be:

5 5
ge | -3 x Sp +3 x 3~ 2 x 5l = 5 —3(2n + 1) Bohr magnetons, because g ~ 2.

Of course, this is a gross simplification. Modern studies[56] show that YIG may display multiple
ferro-and ferri-magnetic phases. Here phase means state of matter. Y3Fe;012 or YIG is the most
typical of the garnet-ferrites. In the fields of microwave electronics, materials based on YIG are
widely used owing to their low magnetic damping, controllable saturation magnetization, high
electrical resistivity, and large magneto-optical Faraday rotation.



Chapter 4

Landau-Lifshitz-Gilbert Equation

4.1 History

This chapter presents nonlinear solutions of the Landau-Lifshitz-Gilbert Equations 4.1 and 4.2.
Although the Landau and Gilbert versions of the spin equation of motion happen to be algebraically
equivalent, they have somewhat different roots and physics perspective. The significance and
historical context of the Landau version is discussed by Bar’yakhtar[59]. Landau introduced the
effective magnetic field to be the sum of several physical contributions which result in the field
energies (LILIILIV) introduced in Chap. 3. The triple-product relaxation term in the Landau
equation is specifically identified (by Landau) as a (small) relativistic correction term, though
details are not given. The rich range of physics that can be included in the effective field, and the
consequent beautiful and complex varieties of nonlinear motion, is described by Lakshmanan[60].

Contrastingly, Gilbert set out to recast the spin equation of motion in a Lagrangian form and
to introduce viscous damping effects while retaining the spin-modulus conservation property. Thus
the physics underlying the parameter a appearing in the vector triple-product of Landau, and the
dissipation parameter a pre-multiplying M x M in the Gilbert equation have completely different
motivation. If, however, we view a as a purely phenomenological parameter, whose value is found
from measurement, these distinctions may become lost. We shall consider only the most elementary
(and simplest) form of the effective magnetic field.

4.2 Effective magnetic field

A modern account of the five!| terms in the effective field is given by Wei[20] Chap. 2.3.1. The
minimalist effective field contains three terms: an applied field, the dipole-dipole field, and the
exchange field. The corresponding field energies are the Zeeman (I), the classical dipolar energy
(IT), and the exchange energy (III). In addition to aligning domains the dipole-dipole field (II) is
responsible for the demagnetizing field.

The ferro-magnetic resonance (FMR) occurs when the magnetic material has DC and RF applied
magnetic fields. Authors vary in the precision with which they define the applied fields. Some
treatments[63], 64, [12] of the FMR assume that the magnetic material is an infinite medium; in which
case, there is no distinction between inside and outside the material. When the magnetic medium is
infinite in extent, any surface density of magnetic dipoles (such as occurs at the poles of a magnet)
are moved to infinity, and are therefore inconsequential. In such a case, there is no demagnetizing
field. However, a more practical and realistic arrangement has a magnetic material of finite size
immersed in an external applied field. In this set up, there is definitely a distinction between the
fields inside (the material) and outside (in vacuum); and there will be a demagnetizing field present

IThe fifth term is due to the magneto-elastic effect: the energy associated with the change in a material’s magnetic
properties due to mechanical stress or strain.

43



44 CHAPTER 4. LANDAU-LIFSHITZ-GILBERT EQUATION

(inside) related to the magnetization of the material. The importance of this demagnetizing field
was first recognized by Kittel[51l, [52], and is taken up in the text books by Lax & Button[54] and
Koledintseva & Tsutaoka[l104].

4.3 Spin-Magnetization Equation of Motion

The Landau-Lifshitz and Gilbert versions of the spin relaxation equation of motion are identical,
in the same way that the left and right sides of the vector triple product identity p x (q X r) =
(p-r)qg — (p-q)r are equal. The Landau and Gilbert equations have precisely the same solutions.

Although the Gilbert variety was conceived in the context of permalloy?, which has a com-
paratively large value of «, both mathematical versions have the same range of validity for the
relaxation parameter c.

In writing the spin relaxation equation, we follow the conventions employed in Refs.[40), 43| [58],
61]. H will be the effective field. For brevity, we write the time derivative dM/dt = M and the
modulus M = [M| or M? = M - M. The Landau-Lifshitz equation:

M:ngM—i—g%Mx(HxM) (4.1)

The Gilbert version: _ o .
M =g(1+a*)HxM + 4 MxM (4.2)

Here g = pov.. All quantities appearing in these equations are those inside the material. We shall
demonstrate the equivalence of these two forms. Following Baartman[65], we understand that it
is slightly easier to go from the Gilbert version to the Landau form. We form the vector cross
product of Eq. 4.2 with M. The left side becomes M X M. We use the triple product identity
M x (M x M) = (M-M)M — (M- M)M to expand that part of the right side which contains M.
Now it is a fundamental property of the Landau-Lifshitz equation that the modulus of the magnetic
moment is conserved, because forces are always perpendicular to motion; and so M - M = 0. Hence:

M x M = g(14a*>)M x (H x M) — aMM (4.3)

We now substitute expression (4.3) into the right side of Eq. 4.2. We move the term in M to
the left, divide throughout by (1 + «?) and recover the Landau form Eq. 4.1. It is a matter of
choice whether to use the Landau or Gilbert forms of the spin-magnetization equation; we shall
employ the former. The LLG equation admits steady-state solutions, but does not generate them.
For the steady-state, we must apply the equations of magneto-statics. We assume the bias field is
sufficiently strong to align all the magnetic domains into a single domain; so the material is near/at
saturation. Because of the demagnetizing field, both the DC and RF fields inside the material differ
from the outside applied values. The following discussion and formulae concern the fields inside.
We denote static values by upper case letters, and dynamic values by lower case.

The demagnetizing field is H; = NM with magnetization M and tensor N. However, M
depends on the prior history of the external applied Ho which penetrates into the interior. The
DC internal field is H = Ho + Hy; = Hy — NM. Hence formally

BH)/pp=H+M) becomes B(MHz—NM)/po=[Hs —NM) +M]. (4.4)

The steady-state M and Hy are self-consistent solutions of Eq. |4.4. The steady-state quantities are
substituted in the LLG equation, yielding the condition (Hy — NM) x M = 0.

2Permalloy is a nickel-iron magnetic alloy, with about 80 % nickel and 20 % iron content. Invented in 1914 by
physicist Gustav Elmen at Bell Telephone Laboratories, it is notable for its very high magnetic permeability, which
makes it useful as a magnetic core material in electrical and electronic equipment, and also in magnetic shielding to
block magnetic fields. Commercial permalloy alloys typically have relative permeability of around 10°, compared to
several thousand for ordinary steel.
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In order to find the dynamics, we add an AC/RF term hjy to the external H-field. This will
apply an alternating torque to the spins, causing them to precess. Summing over all the spins
leads to a gyrating magnetic moment m. In general, this gyrating internal moment will lead to an
alternating bound surface current, or equivalent surface dipole density; and this is the source of an
alternating demagnetizing field hy = —nm. Here n is the AC/RF demagnetization tensor, which
may differ from the DC tensor. The AC internal field is h = hy — nm. Hence, with respect to the
LLG equation, we make the substitutions:

M—-M+m and H— (Hy—NM)+ (hy —am). (4.5)

The steady-state condition is used to set some of the product terms to zero, yielding the nett
dynamical equation:

m = ghx(M+m)—(dm)x M+ H x m] (4.6)
+ (ga/M)m x (h x m)+m x [h x M — (Am) x M + H x m]
+ (ga/M)M x (h x m) + M x [h x M — (im) x M + H x m]

H = H, -NM - am. (4.7)

In explicit component form, this equation contains a large number of terms; and, moreover, non-
linearity up to cubic terms. This complexity is dealt with by taking single-component forms for
H> and hy; and assuming that the coordinate axes are taken parallel with the symmetry axes of
the magnetized object or sample, in which case, the matrices N and n take diagonal form. The
diagonal elements are (N1, No, N3) and (nq, ne, n3) respectively.

We adopt a locally orthogonal coordinate system, which could be Cartesian (x,y, z) or cylindri-
cal (r, ¢, z) or spherical (r,6,¢), depending on the shape of the material and shape of the applied
fields. The form of the spin equation of motion is invariant when the coordinate system is changed
because the spin motion does not contain translation. For example, the equation of spin motion in
cylinder coordinates is identical in form to that of the Cartesian components; m = [m,, m,, m.] is
simply substituted by m = [m,, mg, m;]. Thus, without loss of generality, we may take a Carte-
sian system and the DC bias aligned with the z-axis such that Hy = [0,0, H,]. We assume the
bias field is strong, so the magnetic material is near saturation with domains aligned. The static
magnetization is M = [0, 0, M.,].

4.4 RF Parallel to Bias

We consider the case that an external RF magnetic field is applied parallel to an external DC
magnetic bias field. The angular frequency of the RF field is w. h = [0,0, h, cos(wt)] and m =
[ma(t), my(t), m;(t)]. The combination g x H has the dimensions of angular frequency.

4.4.1 Linearized solution

Suppose that product terms of the form m;m; and h.m; are set to zero, with 7,j coordinate
indices. In this case, the drive term cos(wt) disappears; and the LLG equation is much simplified.
For brevity, we define H, = H, + M,(ny — N3) and H, = H, + M,(ny — N3); and M, = pM. The
LLG equation becomes:

My = —g(Hgymy + Hymgop) (4.8)
+g(Hpymy — Hymyap) (4.9)
M, = 0 (4.10)

@SO
I
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The solution of these equations is a damped precession of the moments m,, m, at frequency wo,
and m, a constant.

mg(t) = exp(—Pt/2)[c1 coswot — (9/wo)(c1(Hp — Hy)ap/2 + caHy) sinwpt] (4.11)
my(t) = exp(—pt/2)[cacoswot + (g/wo)(ca(Hp — Hy)ap/2 + c1Hp) sinwpt] (4.12)

wo = 9\/Hqu + (Hp — Hy)?(ap/2)? B=g(Hy,+ Hg)ap . (4.13)

The constants of integration ci,co are chosen to match initial conditions. Note that typically
0<a<1land0< p<1,and so the damping rate g is usually small. The full nonlinear equation
also has a damped precession of m,, m,, but the axial component m_ relaxes to a final value greater
than the initial.

4.4.2 Near-linear solution

Suppose that product terms only of the form m;m; are set to zero. Further, suppose the magnetized
object is in the form of a cylinder (or bar of square cross section) with symmetry axis along z, such
that ny = ng. (Because the fields are both applied along z, it is not essential to set N; = Nj.) The
DC internal field becomes H, = H, + (n1 — N3)M,. The LLG equation is simplified:

me = —g(H,+ h,cos wt)[Mmy + am,M.,)]/M (4.14)
1ty = +g(H, + h,coswt)[Mmy — am,M,]/M (4.15)
M, = 0 (4.16)

For the purpose of brevity and compactness, we define R and r by the relations (w/g)R = H, and
(w/g)r = h,. Further, set p = M,/M; and s = wt and m’ = dm/ds; and x(s) = Rs+ rsins. The
approximate equations have an exact solution:

mg(s) = exp(—apx)cicosx — cosiny]
mg(s) = exp(—apx)cicosx — cosiny]
my(s) = m,(t=0)

The constants of integration ¢y, co are chosen to match initial conditions.

4.4.3 Nonlinear solution

We now address the case that all product terms are retained. However, a simplification is needed
to make the system of equations tractable. We take the case of a sphere or cube with equal
demagnetizing factors Ny = No = N3 and ny = ny = ng. However, we admit the possibility that
AC and DC factors are not identical; and that ny # N3. H and M are substituted in the Landau
Eqn. 4.1, leading to equations of motion for the three components of magnetization:

iy = —g(H,+ h,coswt)[Mmy, + am,(M, +m,)]/M (4.17)
1y = +g(H, + h,coswt)[Mmy — amy, (M, +m,)]/M (4.18)
m, = +ga(H,+ h,coswt)(m? + mf/)/M (4.19)

It is noteworthy that almost the same set of equations arise if ny = ny = ng =0 and Ny = Ny =
N3 = 0. Thus the symmetry of the sphere makes its response almost like an infinite medium. If
n1 = N3 then H, = H, is the externally applied field, and the sphere behaves exactly like an
infinite medium.

As before, we make the definitions (w/g)R = H, and (w/g)r = h.; and s = wt and m’ = dm/ds.
When R = 1, the drive frequency becomes w = gH, which can be considered the resonance
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frequency, or more correctly the gyration frequency. The ratio r/R = h,/H,. This is the most
economical notation; but if we wish to keep the fields H,, h, fixed while the drive frequency is
varied, then R and r must be updated. In terms of these reduced variables, the equations assume
a briefer form:

ml, = —g(R+rcoss)[Mmy,+ am,(M, +m,)]/M (4.20)
my, = +g(R+ h;coss)[Mmy — amy(M, +m.)]/M (4.21)
m, = +ga(R+rcos s)(mz +m2)/M (4.22)

The magnitude of the magnetization is preserved by the LLG equations, and so we may replace
(mg +m2) by M? — m?2 in the equation for m/,. When the bias and static magnetization are both
zero (H, = 0, M, = 0), Eq. [4.25 has solution m,(s) = M tanh(Mc; + arsins). This guides us
toward the general solution Eq. 4.25. The solution m, is then substituted in Eqgs. 4.20, 4.21, and
these solved for the time-varying magnetizations:

my(s) = sech[Mecy + ax][cacos x — czsin x| (4.23)
my(s) = sech[Mecy + ax)][e3 cosx + casinx] (4.24)
my(s) = Mtanh[Mc; +ax] — M, (4.25)

As before, x(s) = Rs+ rsins. The constant of integration ¢; is chosen to yield the initial value
of m,. Thus tanh(Mci) = m.(0)/M. At large times m, — (M — M,) and my, my — 0. The
reader may recognize that cos(rsins) and sin(rsins) are representations of the Bessel functions,
and may be Fourier analysed into a spectrum with frequency components at multiples of w (the
drive frequency). The form of m,, m, indicates a precession of the spin, with fundamental frequency
proportional to H,/g and modulations whose amplitudes are related to h,. The case of an infinite
magnetized medium has the same equations and solution, with the exception that H,=H..

4.4.4 Magnetization equations for cylinder

In the case of a cylinder (or square rod), the demagnetization factors Ny = Ny # N3 and ny =
ny # ng. When all product terms are retained, the components of the magnetization become
Eqs. 4.17-t0-4.19 with (H, 4 h. coswt) replaced by [H, + h. coswt 4+ (n1 — n3)m.(t)] throughout.
We remind the reader that the equations in cylindrical-polar form (m,, mg, m;) take the same form.
Unfortunately, there is no closed-form solution.

4.5 RF Perpendicular to Bias

We consider the case that an external RF magnetic field is applied perpendicular to an external DC
magnetic bias field. The DC bias aligned with the z-axis such that He = [0,0, H,]. The angular
frequency of the RF field is w. h = [0, hy cos(wt), 0] and m = [m(t), my(t), m.(t)].

4.5.1 Linearized solution

The linearization conditions are m; x m; = 0 and hy, x m; = 0 where ¢, j are the coordinate indices.
The solution of the linearized LLG equation is well known as the Polder[49, 50] tensor®. But in fact,
Polder himself references Kittel[51, [52] as the originator; and, moreover, neither author considered
a damping term in the form of a triple-vector product.

Usually hy(t) is written in complex form h, exp(iwt) and the solution for [m,, m,, m.] given as
complex amplitudes. However, we shall write the drive as hy(t) = hy cos(wt), and the solution in

3This is a tensor of rank 2, usually called a matrix.
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pure real form. As above, we define H, = H, + (n1 — N3)M, and H, = H, + (np — N3)M.; and
M, = pM. The linearized LLG equation is:

My = g(hyMZ coswt — Hymzap — quy) (4.26)
my = gHpmg + gap(hyM, coswt — Hymy) (4.27)

The solution is the sum of a complementary function, which decays, and a particular integral that
is the steady state. For brevity we set s = wt and § = ap; typically § < 1. We substitute the trial
solution

(Mg, my, m;] = [Ag cos s + By sins, Ay coss + Bysins, 3] . (4.29)

The coefficients of cos s and sin s must all be zero. This leads to a system of algebraic equations,
two for each of the magnetization components. The particular integral is:

my = ghyM,wlg(H,+ Hy)wdcoss + (w* — g°HyHy(1 + 6?))sins]/D (4.30)
my = ghyM, {g[g2H§Hq(1 +0%) + w?(H 6% — Hp)]coss + wilw?® + g2H§(1 + 6%)] sin s} /D
D = w'+(¢®HyHy)* (14 6%)° + w’g*[—2H,H, + (H} + H7)6?] (4.31)

D is a resonant denominator, and the gyromagnetic resonance condition is w? = gQHqu(l + 462).
When driven at that specific frequency, the response is:

hy M cos wt
_  [fyMcoswi 4.32
ma(t) (H, + Hy)a (4.32)
hy M, cos wt hy M sin wt 5
_ 4.
() = Ty T s e VH/H) (14 62) (4.33)

Evidently, the in-phase component of m, and the quadrature component of m,, are boosted by 1/«.
m, = c3 is constant. Note as follows: both m, and m, are perpendicular to the bias; h, drives
precession in the x,y plane; an applied RF component h, would also drive precession in the z,y
plane. If the split |n; — n2| < 1 is small, the amplitude of the spin precession at resonance is

\/m2 +m = hy M, /[(H,+ Hy)d].

The susceptibility is m,(t)/hy(t). The in-phase (quadrature) component of m,/h, is the real
(imaginary) part of complex susceptibility x,,. Thus at resonance, the material becomes very lossy;
and the incremental permeability pa = 14+ M. /(H, + H,). Likewise the components of m,/h, are
related to the complex cross-susceptibility xzy.

4.5.2 Magnetized cylinder

In the case of a magnetized cylinder aligned with z, the factors ny = no and H, = H,; and so the
expressions simplify. As above, we define (w/g)R = H, and s = wt and M, = pM. The general
solution is the sum of a complementary function exp(—Rsap)|c1 cos(Rs)+cz sin(Rs)], which decays,
and particular integral that gives the steady state. For brevity we set 6 = ap. Further, we introduce
the scaled drive frequency S by w = ¢gH, S /1 + 2. The resonant denominator becomes

D= (gH)*1+6) xE with E=[1-5%%+ (1+5%%?. (4.34)

m; = c3 = 0. The other magnetic moments are:

M
my = h}’ EZ’ [252(5coswt — S(1—5%)v/1+ 62 sinwt} (4.35)
m, = hf’MZ 1—S%)+ 621+ SH]coswt + S(1+ S5V 1 + 82sinwt| . 4.36
Y H.E
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When the drive frequency equals the gyration frequency, S — 1, the moments are boosted:

hy M. hy M
my(t) = 2y~ “coswt and  my(t) & 2% “ sinwt . (4.37)

z z

Typically § < 1; and so the in-phase component of m, and the quadrature (lossy) component of
my rise to large amplitude. In the limit of low frequency S — 0, the components become m, = 0

and my, = (hyM,/H,).

4.5.3 Polder tensor

We now discuss the elements of the susceptibility tensor. Evidently, we may write Eqs. 4.35 and 4.36
in the form:

ma()/hy = Rixaye™]  where  xay = (Ms/H:) [y, +iX5) (4.38)
my(t)/hy = R[xye™] where xy, = (Mz/HZ)[X;/y + iXyy ] (4.39)
mo(t)/hy = R[x4e™] =0. (4.40)

Xxys Xyys Xzy are the complex elements of the Polder susceptibility tensor. There are corresponding
elements for an excitation hye™?. Fig. 4.1 shows the in-phase (real) and quadrature (imaginary)
components of the complex susceptibility m, /h, and cross-susceptibility m, /h, versus (normalised)
frequency at fixed bias field. S = w/wy is the ratio of applied frequency to the gyromagnetic
resonance frequency wy = ¢H,v/1 + 02.

X cross-x
10+ 10l
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Figure 4.1: Complex susceptibility components of m, (left graph) and m, (right graph). § = 0.05
The in-phase (real) component x’ shown blue; the quadrature (imaginary, lossy) component x”
shown gold. The bias field is fixed, as is the scale parameter between angular frequency w and S.

Remarkably, the incremental permeability pa = 1+ x due to my/h, may become negative for
S = w/wy > 1. This means that the spins lag the RF wave in such a way that m, opposes h,. This
surprising behaviour is confirmed experimentally be several authors[106].

Xyy is of the form: scale factor (M. / H_.) multiplied by pure functions Xyy (S) and xy,(S). Tt is
instructive to consider particular values of S in the limit § < 1.

Xy 1/2 4(3+50%)/(9+250%) ~ 4/3 | 1
Xo, | V1+62/(26) = 1/(26) | 106v/1 4 6%/(9 + 256°) =~ 105/9 | 0

Evidently for S < 1/2, the real part of x,, is essentially independent of 6 = a x (M./M). The
maximum of x” occurs at precisely S = 1. The zero of x’ occurs at S = V1 +62/V/1 -2 ~
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1+ 62. The minimum and maximum of y’ occur at S = /1 —6/v/1+6 and S = /1 +6/v1 -6,
respectively. The corresponding value of \’ are (1 + 6)2/(49) and —(1 — §)%/(46).

Bias varied at fixed RF
When the bias is varied at fixed RF, the expression for magnetic moments becomes:

My gM.,

h—y = F [2Ré coswt + [1— R*(1+ 6%) sin wt] (4.41)
Mo M) 8 B ) coswt + O+ BX(L4 )] sinet] (442
Yy w
E = 1-2R*(1-6*)+R*1+6>)%. (4.43)

We may examine the in-phase and quadrature components to find the complex susceptibility. We
may plot these components (Y, x”) as a function of bias field at fixed frequency. In this case, the
abscissa is R = gH, Jw. Because R = 1/S, the inversion of “above versus below” flips the plots
(Fig. 4.1) about the line S = R = 1, and distorts the curves. Note, the incremental permeability
(I4+my/hy) is negative for R = wp/w < 1. Thus bias values must be selected above the gyromagnetic
resonance value Hyes = w/g. This places the RF drive frequency below the gyromagnetic resonance.

4.6 Sphere with RF perpendicular to bias

The linearized equations of motion 4.26-t0-4.28, and their solution, do not conserve the magnitude
of the magnetization. The full nonlinear LLG equation is so complicated that single-component
forms for Hy = [0,0, H,], M = [0,0, M,] and h = [0, hy(¢), 0], and diagonal forms for N and n, are
insufficient to make the problem tractable. Additional symmetries are needed.

4.6.1 Nonlinear solution for sphere

In the case of the sphere or cube ny = ny = n3, and assuming the DC and AC factors are equal
n1 = N3. Hand M and m = [mg(t), my(t), m.(t)] are substituted in the Landau Eqn. 4.1, leading
to equations of motion for the three components of magnetization:

= 1y — (g/M)[—(Mmy +am,U,)H, — (amymy — MU,) hy coswt] (4.44)
= 1y — (g/M) [+(Mm, —am,U.)H, + a(m2+ UZ) hycoswt] (4.45)
= 1, —(g/M) [—l—@(mi + mz)HZ — (Mmg + amyU.) hy, cos wt]| (4.46)
Here U,(t) = M, 4+ m,(t). These equations do not have an exact analytic solution. However,

the method of harmonic balance may find an approximate Fourier series steady-state solution.
Unfortunately, except by numerical solution of the LLG Eqns., we cannot address the nature of the
transient that may precede the steady-state conditions. We take the trial solution:

m(t) = [Az cos(s + pz), Aysin(s +py), mo + A.sin(2s +p;)] with s=wt. (4.47)

Here A; are adjustable amplitudes and p; are adjustable phases, both to be determined; and the
index j = x,y,2. Note that we have included a DC term, mg, and a frequency doubling in the
third component m,(t). We must foresee that products of terms in coswt and sinwt will generate
sub-harmonics and super-harmonics.

The exact solution conserves the magnitude M?. However, the trial solution may introduce
periodic modulations — which must be minimized. Hence in addition to the three equations for 7,
there is a constraint equation for the modulus of the magnetization: 0 = [M + m(t)]? — M?2. We
call this the zeroth equation.
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The trial form is substituted into the zeroth Eqn. and the three LLG Eqns.; we label this set
0,1, 2,3 respectively. Given that all expressions are equal to zero, it follows that all the harmonic
components must equal zero. The four equations are Fourier analyzed. Let [cos s, sin s] be funda-
mental components; and [cosns,sinns] be n'! harmonics. We label the n'" harmonic cosine and
sine components of Eq. number j as Cj, and Sj, respectively. When performing the analysis, we
must replace powers of cosine and sine by their Fourier components. For example:

[cos s 4 sin s]? = (cos s)? + 2cos ssins + (sins)? = (1 + cos2s)/2 + (sin2s) + (1 —cos2s)/2.

The trial form has seven (7) adjustable parameters. In principle, Eq. 0 contains harmonics upto
n = 4, and Eq. 1 harmonics upto n = 3, and Eq. 2 harmonics upto n = 5, and Eq. 3 harmonics
upto n = 4. Hence there are more equations than unknowns. The strategy is to minimize (in fact
make equal to zero) the lowest harmonics, and push the error into more rapidly oscillating higher
harmonics®. Hence, we shall solve the system of equations

Coo=0, C11 =0, S;1 =0, Co1 =0, So1 =0, C32=0, S32 =0, (4.48)

for the vector of unknowns x = [mg, Ay, Pz, Ay, Dy, Az, pz]. The remainder harmonic components
Cjn and Sj, are considered to be errors, which we hope are small. The only way to reduce the
errors is to add additional Fourier harmonics to the trial solution. For example, at the next order of
precision we must add to Eq. 4.49 the increment [B, cos(3s + ¢;), Bysin(3s +qy), B.sin(4s + g¢.)]
with six more adjustable parameters.

The expressions for Cj, and Sj, are long and complicated; their details are presented in
Sec 4.6.2L The set Eq. |4.48 are a system of coupled, nonlinear algebraic equations. They are solved
numerically, by Newton-Raphson iteration, for given values of the parameters M, M., H., hy, o It
is convenient to use reduced quantities. g x H, and g x hy have the dimensions of Hz, and so we
write them as frequencies. The most economical notation is that they be written in terms of the
drive frequency w. Thus gH, = wR and gh, = wr. Evidently /R = h,/H,; and this ratio is a
measure of the degree of nonlinearity. When R < 1, the resonance frequency is below the drive
frequency; R = 1 corresponds to resonance; when R > 1, the resonance frequency lies above the
drive frequency.

The behaviour of the system is investigated by setting R fixed, and then systematically varying
r over the range [0,1]. The process is repeated for R > 1, R = 1 and R < 1. Typically, A,, 4,
initially rise linear with r, but then plateau® at surprisingly small values of 7/R. Contrastingly, A,
initially rises quadratic with r, but then rises linear. myq initially varies quadratic, then changes
sign (opposes M. ), then varies steeply with r, and then plateaus. In the plateau® region of r, all
amplitudes vary slowly and linearly.

These predictions have been confirmed by direct numerical solution of the LLG equations for
the same parameter values. In all cases, the Gilbert damping o = 0.05. The numerical integrations
were continued until the transient response is completed and the steady-state periodic response
emerges. Data from the periodic regime was then Fourier analyzed. Fig. 4.2 for the case R = 1.2
compares the analytic values of A;, Ay, A., mg against those extracted from numerical simulation.
Fig. 4.3/ makes a similar comparison for the case R = 1.0; note that amplitudes A, and A, are
indistinguishable and therefore become overlayed. In both these cases, R = 1.2 and R = 1, the
analytic solutions provide good predictions of the response across the entire range r = [0, 1]. Fig. 4.4
compares analytic and numerical predictions for the magnetization amplitudes when (R = 0.8) the
drive frequency is above the resonance frequency; the agreement is good upto r = 0.8, but diverge
thereafter.

4With the hope that error amplitudes diminish increasingly with harmonic number.
5“Plateau” is here used as a verb.
S «Plateau” is here used as an adjective.
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Figure 4.2: Magnetization components (A;, Ay, A,, mg) versus drive amplitude r. Blue = A, gold
= A,, green = A, coral = mg. Resonance frequency (R = 1.2) above drive frequency. Left: values
found by harmonic balance. Right values from numerical simulation.
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Figure 4.3: Magnetization components (A, Ay, A, mg) versus drive amplitude r. Blue = A,,
dashed gold = A,, green = A, coral = mg. Resonance frequency (R = 1.0) equal to drive
frequency. Left: values found by harmonic balance. Right values from numerical simulation.

The reader will recall that solution of the linearized LLG Eqn. showed the components m;, m,
to be proportional to h,, and to be boosted at resonance. In the nonlinear theory m;, m, saturate
at surprisingly low values of h,/H.; and m, (which is zero in the linear theory) slowly increases
parallel to the magnetic bias field. This has a simple explanation: there is a finite quantity of
spin-sites available to be gyrated by the RF drive; when they are all used up, there can be no
further increase in the magnetization m.

Note that at resonance, Fig. 4.3, saturation sets in at r = 0.1; whereas when the drive frequency
is below (Fig.|4.2), or above (Fig. 4.4) resonance, saturation does not emerge until r = 0.6 or greater.
This is straight forward to explain. For given excitation r, the response is greater at resonance;
and so saturation will set in at lower values of r. Contrastingly, the zero response (A; — 0 and
Ay — 0) displayed in the numerical simulation for R = 0.8 (Fig. 4.4 Right) is mystifying.

Magnetized cylinder

The cylinder has lower symmetry than the sphere, and so the equation of motion for the magnetic
moments is more complicated because there is less opportunity for cancellation between the de-
magnetiztion terms. It is appropriate to take n; = no. If in addition we insist that the AC and
DC demagnetization factors ng = N3, the system of equations for the cylinder is 4.44-to- |4.46| with
H, replaced by H, + (n1 — n3)U, throughout. The method of harmonic balance could be used
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Figure 4.4: Magnetization components (A;, A, A,, mg) versus drive amplitude r. Blue = A, gold
= A,, green = A, coral = mg. Resonance frequency (R = 0.8) below drive frequency. Left: values
found by harmonic balance. Right values from numerical simulation.

to find the steady state precession, but we have not done so. But it is evident that there will be
an additional periodical modulation, and that the system will display saturation with respect to
increase of the RF drive amplitude h,,.

Literature

The results of this chapter, Sec. 4.4.2 and Sec. 4.4.4, and also Sec. 4.6, were derived by the author
(Koscielniak) February to April 2025, and not reported elsewhere. Subsequently, it comes to the
authors attention that a team[62] from Lanzhou University, China, has also attempted to find
an analytical solution of the nonlinear LLG equation for the magnetized sphere with microwave
field perpendicular to bias. Their solution contains the fundamental and second harmonic Fourier
components; but does not include the DC term mg which arises as a subharmonic of the product of
1st and 2nd harmonics. This DC term is an essential feature of the saturation phenomemon that
occurs close to and at resonance. In particular, note that that mg displays significant variation,
and even sign reversal prior to saturation.

Conclusion

The electron spins cannot be more than 100% aligned. Hence there is saturation: we may increase
the H-field, but there is no corresponding increase in the magnetization.

4.6.2 Equations for Fourier harmonics
The starting point is Chap. |4.6.1. The LLG Eq. has trial solution:
m(t) = [Ay cos(s + pg), Aysin(s +py), mo + A, sin(2s+p;)] with s =wt . (4.49)

Equation zero

Eq. zero is the constraint of constant magnitude of magnetization: 0 = [M + m(t)]> — M?. Here
M = [0, 0, M,]. We substitute the trial leading to:

0 = [Azcos(s + ps))? + [Aysin(s + py))* + [M, + mg + A, sin(2s + p,)]* — M? (4.50)
We Fourier analyze. The DC component is

Coo = (A2 + AL+ A2)/2 + (M +mq)® — M?* . (4.51)
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The 1st harmonic (or fundamental) and 3rd harmonic content is identically zero. The 2nd harmonic
components are

Coo = [A%cos2p, — Az cos2p, +4A, (M, + myp)sinp,|/2 (4.52)
Sos = 2A. (M, +mg)cosp, +[-Asin2p, + A; sin 2py]/2 . (4.53)
The 4th harmonic components are

Cos = —(A%/2)cos2p, and (A2/2)sin2p, . (4.54)

Equation 1

Eq. one is Eq. 4.44| containing rh,. We substitute the trial solution and Fourier analyze. The
DC, and 2nd and 4th and 5th harmonic terms are automatically zero. The cosine and sine 1st
harmonics, respectively, are

Cii = w[-4AM(M, + mo)r + 4A, (M, + mo)Racosp, — 4A, M sinp, — 2A, Ayrasin(p, — py)
+ 4A,MRsinp, + A, Ayrasin(p, + py) — 24, A, Rasin(p, — p,) —2A, Mrsinp,]/(4M) (4.55)
Sii = w[—4A;M cosp, +4A,MRcosp, + AgAyracos(py + py) + 2A, A, Rocos(pz — p2)
24, Mrcosp, —4A, (M, + mo)Rasinp,]/(4M) (4.56)

The cosine and sine 3rd harmonics, respectively, are

Cis = [w(AzAyrasin(py +py) — 24, Mrsinp, + 24, A, Rasin(p, + p2))]/(4M)  (4.57)
Sis = [w(AzAyracos(py + py) — 24, Mrcosp, + 2A, A, Racos(py +p2))]/(4M)  (4.58)
Equation 2

Eq. two is Eq. 4.45 containing m,. We substitute the trial solution and Fourier analyze. The
DC, and 2nd and 4th harmonic terms are automatically zero. The cosine and sine 1st harmonics,
respectively, are

Oy = w[-2(A2+ A2 +2(M, +mo)*)ra — 4A, MR cosp, + 4A,M cosp,
+ a(=A2rcos2p, +24,A, Rcos(p, — p.) + 4(M, +mg)(A,Rsinp, — A,rsinp,))]/(4M) (4.59)
So1 = wl[d4A, (M. 4+ mo)Racospy —4A. (M, +mg)racosp, +4A, MRsinp,
+  AZrasin2p, — 4A,M sinp, + 2A,A, Rasin(p, — p.)]/(4M) (4.60)
The cosine and sine 3rd harmonics, respectively, are
Cos = —[wa(A2rcos2p, + A,(—A,rcos2p, + 2A,Rcos(p, + p.) + 4(M, +mg)rsinp,))]/(4M) (4.61)
Soz = [wa(AZrsin2p, — 24,7 cosp,(2(M, +mg) + A, sinp,) + 24,A, Rsin(p, + p.))]/(4M)  (4.62)

The 5th harmonic components are:

Cos = +[A%rwa/(4M)] cos2p, and S5 = —[A%rwa/(4M)]sin 2p, . (4.63)

Equation 3

Eq. three is Eq. 4.46 containing 7h,. We substitute the trial solution and Fourier analyze. The 1st,
3rd and 5th harmonic terms are automatically zero. The DC component is

C30 = [w(2A, M7 cos p, + a(—2(A2 + Ai)R + Ay A.rcos(py — p.) + 24, (M. 4+ mo)rsinp,))]/(4M) (4.64)

The cosine and sine 2nd harmonics, respectively, are

Csy = w[AzMrcosp, — AiRa cos 2p; + 4A, M cosp,
+ Aya(AyRcos2py + rsinp, (M, +mo+ A, sinp,))]/(2M) (4.65)
Sza = w[—AzMrsinp, + AiRa sin 2p, + AyA.racosp, sinp,

+ Ayacospy((M; +mo)r — 2AyRsinp,) —4A. M sinp.|/(2M) (4.66)
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The 4th harmonic components are:
O3y = —[AyArwa/(AM)] cos(py +p.) and  Sgq = +[A A rwa/(4M)]sin(py + p.) . (4.67)

Expressions Coo, C11, S11, Co1, 521, C32, S3pare used to determine x = [mq, Az, Dz, Ay, Dy, Az, P2].
Expressions Cyo, Cog, Ci3, S13, Ca3, Sa3, Ca5, So5, C30, C34, S34 are all treated as errors.
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Chapter 5

RF Permeability of Ferrites

In this article we discuss the permeability and hysteresis and saturation properties of ferrites for
applications in the frequency range 100 kHz to 100 MHz. The article on near-DC permeability and
hysteresis in Chap.|1.5|was simplistic and naive; several important aspects were not even mentioned.

The major hysteresis loop (performed near DC) may be taken in a single B-H quadrant
(either upper right or lower left), or taken concentric with the origin (B, H) = (0,0); and
the magnetization changes considerably between them. Likewise, minor loops will differ
depending on the parent major loop. Thus the choice of a unipolar or bipolar current source
for the bias can have an appreciable impact on pa. For instance, pua at the remanent field B,
has a rather different value if the bias is unipolar instead of bipolar. Hysteresis loop models
are reviewed by Morée and Leijon[16].

It is simply not possible for a hysteresis cycle performed in a quasi-static manner to display
resonance behaviour. Therefore relying on the near-DC behaviour can be misleading. In fact,
phenomena such as domain-wall vibration and ferro-magnetic-resonance (FMR) occur when
the magnetic fields oscillate.

Although the energy to drive a magnetic material through a hysteresis cycle is proportional
to the area enclosed by the B-H curve, the dissipative effect is not immediately apparent
for near-DC variation of H. Contrastingly at kHz and beyond, there is obvious heating and
phase-lag when the material is driven hard by a sinusoidal oscillation. The description of this
effect requires the concept of permeability to be broadened to a complex quantity; this was
encountered in Chap. 4.5.3.

Symmetric oscillatory magnetic fields alone, or superposition of DC and oscillatory fields
were not considered. With drive fields of this type, there arises frequency dependence and
the influence of magnetic bias; and also consideration of the relative orientation of DC and
RF field components.

The major hysteresis loops depend on temperature. Thermal agitation tries to randomise the
orientation of the microscopic magnetic domains. At any temperature above absolute zero, it
is not possible to align all the domains. The fraction (which is a statistical quantity) which
cannot be aligned increases with temperature, until at the Curie! temperature the cooperative
effect of interacting magnetic moments is overcome and magnetization is lost. Thus at higher
temperature, the saturation values of M and B are lower.

Permeability depends also on mechanical stress and the RF amplitude.

We now elaborate these more sophisticated aspects of permeability.

!Named after French physicist and radiochemist Pierre Curie (1859-1906), the co-discoverer of polonium and
radium. His collaborator was polish-born Madame Marie Curie, née Marya Sklodowska. In addition, with older
brother Paul-Jacques, he was co-discoverer of piezo-electricity.
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5.1 Incremental permeability

The usual B-H hysteresis curve is measured quasi-DC: the cycle around the loop is taken at kHz
frequencies in automated procedures; and much more slowly if completed manually. But this
measure of permeability B/(uoH) is irrelevant to RF variation of the H-field.

The aspect of permeability that is relevant to the speed of an electromagnetic wave (travelling
in a medium) is the change of the magnetic induction (B) arising from a change in magnetization
(M) in response to a change in magnetic field (H). Because of hysteresis, the relation between B
and H is non-linear. And, therefore, the (DC) absolute permeability ratio B/(uoH) is irrelevant
to calculating the speed of an EM wave in the ferrite. Moreover, the differential permeability
dB/dH taken tangential to the DC hysteresis curve is not precisely the measure of permeability
for calculating the wave speed. Hysteresis is inescapable. There is an energy barrier to changes in
magnetization; and there will be a configuration lag between AH and AM that always leads to a
B-H minor loop when H is made to dither up and down. Thus, a small forward and back variation
+AH leads off the major loop?| of the hysteresis curve onto a minor loop. The minor loop has
the (relative) incremental permeability given by ua = AB/(upAH). This incremental value is the
quantity relevant to computing the wave speed; and it varies with the frequency, amplitude and
polarization (|| or L) of the oscillation. The name reversible permeability is sometimes given to the
incremental permeability in the limit of vanishingly small AC or RF amplitude. The minor loop is
composed of two branches: a lower for dH/dt > 0 and an upper for dH/dt < 0. In detail, the value
of pa is slightly different for each branch. By convention, the incremental permeability is taken
to mean the average of the two branches. At low frequency, for parallel bias, this average value is
approximated by the local value of 0B/0H on the parent (DC) major loop.

If evidence be needed for the disconnect between differential and incremental permeability, it
is the FMR which yields permeability in the saturated regime vastly different from the differential
of the B-H curve, and that depends on field orientation.

5.1.1 Naming and notation

The incremental pa and RF permeability u, are different names/notations for essentially the same
dynamical permeability: it depends on temperature, DC bias, frequency, RF amplitude, respective
orientation of bias and RF components, and can be represented by a complex quantity which
accounts for the dissipative property. The different symbols seem to have arisen from history and
an individual authors wish to stress one dependence over the others. Thus ua tends to be used for
the real part of the parallel-to-parallel component of u, at low frequency < 10 MHz. And often p,
is taken to mean the signal-level value, as if there was no dependence on amplitude AH.

5.2 Magnetic-bias dependence

We remind the reader that in the unmagnetized state, the material is a vast number of microscopic
magnetic domains (of various sizes) randomly oriented. Magnetization proceeds by growth in size
of some domains (at the expense of others) and by their rotation into alignment, which necessitates
the movement and destruction of domain walls. Both mechanisms are always present, but which of
them is more dominant varies with the degree of magnetization. Rotation following growth is the
norm.

Away from saturation, and in the absence of resonance, the same processes (growth and rotation
) occur in an AC minor loop as occur in the next increment along a major loop; and so pa is well
approximated by the tangent 0B/OH to the major loop. In this regime, there is little difference
between parallel and perpendicular biasing. Typically, the range of DC to a few MHz is resonance

2The main loop carries the material from one saturated state to the opposite (in polarity) state.
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free. At higher magnetization, differences between biasing will be come evident. For parallel bias
at low frequency, incremental pa continues to be approximated by the differential 0B/0H. For
perpendicular bias at low frequency, ua is approximated by 1+ M, /H, where M, is the saturation
magnetization. It is for this reason that some authors (e.g. Smythe[07]) suggest the parallel
and perpendicular components of incremental permeability are p = dB JOH and p, = B/H,
respectively. However, it must be understood that the frequency must be low; and further that the
AC/RF amplitudes must be sufficiently small that B(H) can be treated as locally linear.

5.3 Major-loop dependence

The value of uan = AB/(uoAH) depends on the parent major loop, and therefore on the history
of the quasi-DC magnetization. The shape of the major loop differs greatly depending on whether
the current source (producing the magnetizing field) is unipolar or bipolar. The bipolar source is
capable to exercise the hysteresis curve through all four quadrants, yielding full forward (H > 0) and
full reversed saturation (H < 0). The B-H curve, and the corresponding differential permeability
0B/OH is sketched in Fig. 5.1l

aB/oH

40

20

n 1 n n n n n n n o
-10 -5

10 -5 0 5 10 H,

Figure 5.1: Hysteresis and differential permeability for magnetic material with bipolar bias-current
supply. Left: B(H). Right: 0B/0H. The forward path dH/dt > 0 is shown blue. The reverse
path dH/dt < 0 is shown gold.

The unipolar current source cycles the magnetization in a single quadrant only; suppose it is
the region H > 0,B > 0. The upper branch of the major loop emanates from full saturation,
when the time derivative dH/dt < 0, and moves toward the remanent value (B, H) = (B;,0) . The
lower branch emanates from the remanent value, when the time derivative dH /dt > 0, and follows
a different path with slightly smaller magnetization than the upper branch; until finally saturation
is achieved again. In the vicinity of (B, H) = (B,,0), the path from upper to lower branch is
reminiscent of a particle colliding with an object and then recoiling. Thus the B-H trajectory when
the drive speed dH /dt changes sign without the magnetic field passing through saturation is called
a recoil path. Consider now the variation of the differential permeability along the upper and
lower branches. The derivative is continuous (same-valued) at the extreme of saturation. But the
derivative 0B/0H is discontinuous at the recoil point, larger on the descending branch and smaller
on the ascending branch (for this particular quadrant). The recoil point is that at which the time
variation dH /dt changes sign - when the material is not in saturation. The effect is sketched in
Fig. 5.2,

This example of the unipolar major loop reveals that the essence of the hysteresis is branching.
The effect is general, not just reserved for the remanent point. Whenever the sign of dH/dt is
reversed, there is a recoil path; so a path that never enters saturation but cycles through all four
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Figure 5.2: Hysteresis and differential permeability for magnetic material with unipolar bias-current
supply. Left: B(H). Right: 0B/0H. The reverse path dH/dt < 0 is shown gold. The forward (or
recoil) path dH/dt > 0 is shown blue. For comparison, the forward path starting from negative
saturation (and passing through negative |Byen|) is shown green-dashed.

quadrants has two recoil points, at opposite ends of the loop.

5.4 Frequency dependence

Frequency dependence emerges when the magnetization cannot respond sufficiently quickly to a
change in drive field H. The exchange interaction (EI) and crystal anisotropy determine the mag-
netization within a single domain. The EI is essentially instantaneous, and so does not participate
in dynamical/relaxation effects. The crystal anisotropy gives rise to an intrinsic resonance: cer-
tain directions within a crystal having large effective field can provide an axis for spin precession.
However, this occurs at very high frequency, in the tens of GHz.

Magnetization proceeds by rotation of domains and/or the movement of domain walls so that
some grow at the expense of others. These mechanisms are not instantaneous, and therefore we
should expect some frequency dependence when an AC or RF magnetic field is present alone
(without bias). Furthermore, rapid cycling around a minor loop provides the opportunity for
domain wall vibration and resonance. Depending on the ferrite composition, there is a low frequency
regime (a few tens MHz) where the incremental permeability is almost (or roughly) constant,
followed by an intermediate regime (roughly 10-100 MHz) where the permeability begins to drops
rapidly and the material becomes lossy (mostly) due to the domain wall resonance. Thus the
permeability must be described by a complex quantity p, = g’ + iy” whose imaginary part p”
accounts for losses. For the spinel ferrites, the losses start to rise above 0.1 MHz, peak around
10 MHz and then fall again; becoming negligible above 100 MHz. For the garnet ferrites, the onset
of losses is delayed to about 1 MHz. In the absence of bias field, the spinel (Mn-Zn and Ni-Zn) and
YIG ferrites show similar properties - except that both components of u, are about one hundred
times smaller for the garnets. Examples are shown in Figs. 5.3/ and [5.4. The behaviour does not
change much at small values of the bias. Of course, if the material is biased toward saturation, the
FMR will become evident and strong differences between the frequency dependence of | and
will emerge. The spinel and garnet ferrites both display an FMR, but it is more pronounced for
the latter as shown in Fig. 5.5.

The log-log scale and the vast range of frequency in these plots may give the illusion® that
it is the frequency dependence of y!. that limits their use to below (roughly) 10 MHz. However,

3Logarithms compress values greater than unity, but they stretch fractions less than one.
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the variation when plotted on a linear scale is quite modest: ferrites with a near-DC permeability
iy less than a few hundred display a relative change u,.(f)/u-(0) of less than 10 percent over the
first 10 MHz. Actually, it is the rise of p! toward a maximum around 10 MHz, and the resulting
reduction of the magnetic quality factor @, = ¢’/i”, that limits the ferrites use to approximately
10 MHz or less.

Although the losses diminish rapidly towards 100 MHz, two factors curtail ferrite use in that
frequency region: (i) the permeability is significantly smaller; and (ii) cavity size above 100 MHz is
already reasonable. So 10 MHz and below would be the end of the road for ferrite-loaded cavities,
if it were not for perpendicular biasing - which offers high magnetic Q above 30 MHz (but at the
cost of more complicated bias-field geometry).

(b)
6000 S ETENy VUi § FURNEg F FETINN OV TWITRy F RETR 2500 MEMAALLLY LA LLLY B AR ALLY B LR ALY B LAY | MR
- | Mn-Zn Ferrite | . | Ni-Zn Ferrite | |
5000 + . Mno,saznom Fez.oeo A T 2000 | Nio.ZAZno,ssFez.mOA
=2 i
2 = 1500 §
- z
£ 3
s © 1000 .
a 1 o
o
i 500 4
0
EEERTTTY B SERTTTY ST W R TTTY BT W T BT W MEPEETIT BT BT T BTSN YT AT eTITT | PETRETIT
10* 10° 10° 107 10® 10° 10" 10 10° 10° 107 10® 10° 10"
Frequency (Hz) Frequency (Hz)

Figure 5.3: Permeability spectra of spinel ferrites (a) Ni-Zn ferrite and (b) Mn-Zn ferrite under
zero external field; adapted from Ref. [105].
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Figure 5.4: Permeability spectra of YIG under zero external field; adapted from Ref. [106].
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Figure 5.5: Permeability spectra of YIG under 758 Oe external field; adapted from Ref. [106].

5.4.1 Snoek’s law

The shape of the permeability curves versus frequency, in the absence of magntic bias, is similar
across a range of ferrite material compositions and grades. However, the frequency at which the
material’s dynamic magnetic properties start to diminish is in inverse proportion to the static
permeability. This observation is known as Snoek’s law[67]. The law does not describe the material
property, rather it sets an upper bound on the properties a material may posses. Snoek’s law is the
envelope of possible material properties. The law is .. = C'/f where C is a constant and f is RF.
If RF is in MHz, then C' is roughly 10%. In a log-log plot, Snoek’s law is a straight line with slope
equal —1, as in Fig. |5.6. The figure also sketches the individual properties of some hypothetical
materials. These are phenomenological curves of the form p.(f) = A;exp[—B; x (f A)}] where
A;, B;,n; are individual material constants. Obviously A = u!.(f=0) for a particular material. For
the Fig. 5.6, the B; are similar but not identical; and the power law index n = 1.5. (If the index is
varied over the range n = [1,2], there is little change to the plot except the slope as p, — 1.)

101h
1000 -
100
10
11 10 100 1000 10;(MHZ)

Figure 5.6: Snoek’s law, the upper bound, is shown blue. Individual material properties are shown
gold, green and coral.

In fact, if B and n are held fixed, and A is varied this will generate a family of curves such
that their gradient at the knee frequency is equal to that of the Snoek’s curve C/f. The locus of
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the p. values at the respective knee frequencies is parallel to the Snoek curve. Let us demonstrate
this property. Let Y =1In(C/f) = In(C) — In(f) and X = In(f). The log-log gradient of the Snoek
curve is dY/dX = —1 and the intercept Y (f=1) = In(C). Let Z = In[Aexp[—B x (A f)"]] be the
logarithm of permeability. Then the log-log gradient of permeability is dZ/dX = —B(A f)". The
knee frequency fy, is the solution of dY/dX = dZ/dX, namely A x f = 1/(B x n)(/™). This value
is substituted into Z yielding Z(fx) = In(A) — 1/n. The envelope of the points [X (fx), Z(fr)] lies
on a line y(f) = In(c) — In(f) where 0 < ¢ < C' is to be determined. Evidently y(fx) = Z(fx);
and this may be solved for ¢ = exp(—1/n)(B x n)(=1/™)_ Thus the envelope of curves p.(f) with
differing initial permeability A share precisely the same intercept In(c) at f = 1, and the value of ¢
depends only on the family parameters B and n. Although there is no materials science underlying
the form p).(f) = Aexp[—B x (f A)"] where A = u!(f=0), we speculate that curve fitting of the
five grades of Ferroxcube 4A-4E shown in Brockman[77] Fig. 13 would have similar values of B and
n.

5.5 Orientation dependence

The relative orientation of the DC and RF magnetic components plays a role in the incremental
permeability. The B-H curve assumes that all fields (H,M,B) are always parallel. The fields are
vectors, and so the quantities H + AH, M + AM and B + AB must each be added vectorially.
If the fields are parallel, the addition is straight forward. If the fields are perpendicular, AM is
in a different direction to M. If the ferrite is far from saturation, the crystals/domains have a
large variety of orientations and enough them will always follow AH to give a semblance of the
incremental p of the B-H curve. However, near saturation the number of sites available to be
aligned is different for a AH versus a AH. Fortunately, the saturated regime is also that for
which we have a simple theory, the Landau-Lifshitz-Gilbert theory of FMR, which predicts how the
incremental susceptibility and permeability differ depending as the RF magnetic field is parallel
or perpendicular to the bias. In principle, the reversible permeability can be different for parallel
verus perpendicular orientation of the AC or RF magnetic field component.

5.5.1 Approximate dual dependence p,.(H,v)

Although incremental permeability is a function of applied DC field and the EM wave frequency,
it is customary to present is properties as one or the other is varied but not both. However, due
to the behaviour of ferrites (encapsulated by Snoek’s law) it follows that over a limited frequency
range, the dominant variation in pa (v, H) is that due to the bias field. Thus, for parallel bias, from
DC to audio frequencies, permeability is approximated by popua = pl.(v=0)0B/OH where B(H)
is some class of major hysteresis loop. Further, for materials with moderate (i.e. not excessive)
DC relative permeability (say up to several hundred), the roll-off (reduction) in permeability is not
severe; and so the dual dependence upto a few MHz can be approximated by the product

popa = (V)| =0 x 0B /0H],=o - (5.1)

For given DC permeability, Snoek’s law provides an indication of the knee frequency, v, = C/u;(0),
up to which Eq. |5.1]is useful. Better still, given experimentally measured data, the knee frequency
is that at which dIn[u,(v)]/dIn(r) = —1. Above the knee frequency, incremental permeability pua
is not necessarily estimated by the product of the individual dependencies.
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5.6 Measurement of RF permeability

The method of measurement depends on the frequency range. Above 1 GHz, material samples
may be placed inside a terminated waveguide of practical size, and excited by an RF wave of
known polarization. An external large dipole magnet is rotated about the waveguide to produce
parallel or perpendicular bias. The material properties are inferred from reflection and transmission
coefficients. The calculation depends only on the dimensions of the rectangular waveguide and the
spherical specimen, and so the inference is direct. Details of this measurement type are given in
Refs. [54], 65, 104].

Below 1 MHz, waveguide size is prohibitive but a lumped-element approach is possible for high
permeability materials. A ferrite core is wound with excitation and sensing windings*; and the
core may be biased either parallel by an additional winding or perpendicular by placing the core
between the pole pieces of a dipole electro-magnet.

The frequency range of roughly 10-100 MHz, is problematic. Material properties are inferred
from the properties (resonance frequency and quality factor) of full size cavity prototypes with
and without the ferrite; and with the appropriate magnetic biasing. Toward the lower end of the
frequency range, the cavity resonance may be mathematically modeled by an LCR circuit. The
inference of material parameters then becomes model dependent.

5.6.1 Network permeability

Klingbeil [81] develops a simple mathematical model® for the resonance property of a ferrite-loaded
quarter wave cavity. He begins with Maxwell’s equations and ends with a lumped-element LCR
resonator whose element values are related to the components of the complex permeability. In
brief: the capacitance C is dominated by that of the accelerating gap. So large is the permeability,
that the inductance is dominated by the ferrite cores even if they do not fill the entire volume.
So large are the core losses that they dominate over the ohmic loss in the cavity metallic walls.
There are N cores of thickness 7" and inner/outer radius ratio p. The cores are characterised
by I' = [N x T/(2r)]Inp. Klingbeil takes a circuit with two parallel arms, one containing the
capacitance, and the other the inductance Ly and resistance Ry in series. The impedance of the

inductive arm is
Zs = jwLs+ R, where Lg=Tyu and R, =wlyu". (5.2)

Evidently, Rs and Ly are related according to Ry = wLs/@Q where the quality factor of the cores is
Q =/ /" =1/tan(d). The total admittance of the two arms is Y = (1/Z;) + jwC.

It is important to note that when the complex permeability is formed from network mea-
surements, it is the reflection and transmission coefficients that are measured. The permeability
becomes a calculated quantity and ceases to be a bona fide property of the material. The perme-
ability becomes a property of the electrical network; and changes if the network model changes.
Thus, if the series-LCR model is substituted by a parallel-LCR model, the values of the complex
permeability components will change. Klingbeil is aware of this issue, and provides an alternative
formulation for the parallel-LCR impedance. The relations between parallel and series components,
subscripted p and s respectively, are as follows:

R,/Rs = (wLy)(wLs) = R? 4 (wLy)? (5.3)

"

whs _ps _ By _Hp
Ry  pg wLlp

Q= (5.4)

And thus p;, = pi[1+1/ @Q?] and ty = Hs[L+ Q?]. Evidently, formulated this way, the permeability
components and the network model become inseparable; another network would result in different
values.

1Below ~ 1 MHz, it is legitimate to excite the ferrite with a cable winding, but not at much higher RF.
®The same model as Brockman.
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5.6.2 Ferrite data tables

Manufacturer’s data tables (for example Philips[71] [72]) of ferrite properties may contain the fol-
lowing measured magnetic properties/values:

the initial (DC) permeability (i.e. in the virgin or demagnetized state)
the B-H curve measured quasi-DC and at a few kHz
the incremental permeability (as function of H) measured quasi-DC and at a few kHz

the frequency dependence of i/ and p”/ measured either in the virgin state or in the remanent
state. The frequency range is typically DC to 10 MHz (or less).

At the customer’s request, the manufacturer may measure the incremental permeability (at
signal level) as a function of bias for a prescribed fixed RF.

The commercial catalog tables usually contain temperature dependence, the Curie temperature
and other physical properties such as resistivity and dielectric constant. The types of data required
for accelerator applications is so specialist that it is essential to make measurements p,(H,v) for
the specific ferrite variety and intended bias and frequency range; and not to rely on the limited
manufacturer’s data.
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Chapter 6

Magnetically Biased Ferrites
for RF Cavity Tuning

“The practical achievement of modern magnetic ferrites was announced just 10 years ago. They are
ceramic-like materials, with permeabilities ranging up to several thousand combined with specific
electrical resistivities over a million times those of metals. .. It is intriguing to consider this modern
ferrite as a rebuilt version of lodestone, the first magnetic material discovered by man. ..

The advantages of the combined high permeability and high resistivity announced[66] by the Philips
Company in 1946 were apparent immediately to engineers.” C. Dale Owens[41], October 1956.

6.1 Prologue

The behaviour of magnetic materials, and their explanation, is the domain of condensed matter
theory. The detailed properties of ferrites is the speciality of ferrite technology. Neither is the usual
province of accelerator physics, so we have introduced the physical principles that underlie ferrite
properties in the preceding chapters: classical magnetism, demagnetization factors, permeability
and hysteresis in Chap. 1; the magnetic field of toroidal windings mounted on an annular solenoid in
Chap. 2; the quantum explanation of magnetism, including the contributions to the effective field,
and the spinel and garnet lattice structure of ferri-magnets in Chap. 3; the Landau-Lifshitz-Gilbert
equations for the precession of spin magnetic moments in Chap. |4; and the incremental permeability
behaviours of Ni-Zn and YIG ferrites at frequencies up to 100 MHz in Chap. [5. Throughout the
text, there are sprinkled historical references.

6.2 Article structure

We begin with a statement of the problem: the need for tuning and the need to shrink RF cavity
size. In certain circumstances, ferrites answer this problem. We introduce the relationship between
cavity resonance frequency and incremental permeability. Followed by the individual theory of
resonance tuning by parallel and by perpendicular magnetic bias. We describe implementations of
biasing using current carrying coils and windings. After a brief discussion of the conditions under
which Ni-Zn or YIG, and parallel or perpendicular bias, is employed there follow literature reviews
exploring the development of these tuning methods: (i) the use of parallel-biased spinel ferrites
employed at relatively low radio frequency; and (ii) the use of perpendicular-biased garnet ferrites
employed at higher RF frequency. Finally, there is a discussion and explanation of the nonlinear
behaviour observed at high RF field in the presence of perpendicular bias.

67
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6.3 Introduction

Metallic cavities, resonant at radio-frequency, are used to accelerate charged particles such as
electrons and protons. This article contrasts two types of resonance tuning: (1) parallel bias of
spinel ferrites; and (2) perpendicular bias of garnet ferrites. Bias refers to the imposition of a DC
magnetic field that establishes a preferential direction for alignment of the magnetic spins. Parallel
versus perpendicular refers to the orientation of an RF magnetic field with respect to the bias
field. “Tuning” means to bring the resonance frequency into coincidence with the drive frequency.
Although ferrites are employed in both types of tuning, the physics of each is very different. This
article is not about RF cavity design and engineering, rather it serves to contrast the two types of
tuning.

All orientations are equal until the bias field is applied. Therefore, we should say the RF
field is parallel or perpendicular to the bias. However, the technological application usually has a
specific orientation for the RF component; in which case the bias direction becomes the secondary
consideration. Thus the vernacular phrasing has become “the bias is parallel or perpendicular to
the RF field”.

6.3.1 DMotivation

Particle acceleration results in higher kinetic energy and speed. Provided that the orbit in the
synchrotron does not change, both the orbital speed and frequency increase monotonically. The
cavity drive frequency must be perfectly matched to an integer multiple of the particle revolution
frequency. If the particles accelerate, there will be a programme of values drive-frequency versus
time called a frequency law; and the cavity resonance must be tuned to follow this law. Ferrite
offers an electro-magnetic means to tune an RF cavity that is faster and wider ranging than can
be achieved by electro-mechanical tuning (cavity deformation or variable capacitors).

6.3.2 Narrow versus wide band resonator

Narrow-band copper cavity resonators have quality factor in the range ~ 103 to ~ 10*, and can
achieve high fields with moderate power requirements. Wideband resonators have quality factor in
the range ~ 1 to ~ 100, and are very lossy. Tuning of the resonance frequency is a requirement for
narrow band resonators. Contrastingly, a wideband cavity may have resonance sufficiently broad
to encompass the entire frequency law without tuning. Following their successful introduction[68]
at the Japan Proton Accelerator Research Complex (J-PARC), wideband magnetic-alloy (MA)
filled cavities are considered a useful alternative to ferrite-loaded resonators. For example, MA
cavities were employed[69] at the CERN Low Energy Ion Ring (LEIR) to cover the frequency
range 0.35 — 5 MHz without tuning. The very thin magnetic alloy tapes wound into cores offer
permeability ten times higher than ferrites, and lead to very compact cavity designs. However, the
topic of MA materials and cavities is outside the scope of this article.

6.3.3 Transit time factor

If the RF cavity frequency is too high, the electric field may reverse during the transit time of the
particle across the accelerating gap, resulting in no nett acceleration. This effect is quantified by the
transit time factor T = sin(7)/7 ~ 1—72/6 and 7 = wL/(2v) where w is angular frequency, L is gap
width, and v is the particle speed. If the speed is too low, as occurs for non-relativistic particles such
as low energy protons or heavy ions, the frequency must be lowered. The non-relativistic regime
is also that in which increasing kinetic energy is associated with rising speed. So low frequency
and the need for frequency tuning go hand in hand. Contrastingly, for relativistic particles (whose
speed approaches that of light), transit times are quick and there is almost no change in speed. In
this case, high frequency cavities with little or no tuning may be used.
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6.3.4 Ferrites in a nutshell

Ferrites are special materials that have both high magnetic permeability and high electrical re-
sistivity. The magnetic properties of both ferro- and ferri-magnetic materials are due to spin
magnetic moments (SMM). The ferro-materials have one SMM per crystallographic unit cell. The
ferri-materials have two (or more) interpenetrating lattices that result in two SMMs in their (com-
plicated) unit cell; the two magnetic moments are oppositely oriented but unequal, resulting in an
nett SMM for the cell. Ferrites are micro-crystalline ceramics, made by sintering iron oxide with
metals such as Mn, Ni, Zn or the rare earths (Y, La, etc), possessing significant magnetic properties
due to the over-expressed spin magnetic moments of electrons on the external shell of the atoms of
these metals.

Ferrites for parallel bias

The general composition of the Philps Ferroxcube ferrites is MesZn;_sFeaO4 where Me represents
one of the divalent metals magnesium (Mg), manganese (Mn), or nickel (Ni). Ferroxcube materials
starting with digit 2, 3, 4 have Me equal to Mg, Mn, Ni, respectively. We are interested principally in
the series 3 (III) Ni-Zn ferrites. The original papers describing these materials and their properties
were co-authored by Went and Gorter[75, [76]. However, the respective chemical compositions are
not given because this is Philips proprietary commercial information. Although the Mn-Zn ferrites
have permeability of order 10 times higher than Ni-Zn, the Mn-Zn varieties are not suitable because
they have resistivity up to 10% times smaller resulting in dissipation due to eddy currents.

6.3.5 Tuning and shrinking

Actually, ferrite has two possible functions in an RF cavity: (i) to make the cavity tunable, and
(ii) to shrink the cavity size (make it smaller or shorter) by inserting a volume of ferrite inside
the cavity. This second use is particularly important at low RF (a few MHz or less). For a
given oscillation frequency the wavelength in a material with high magnetic permeability is shorter
than in free space (i.e. vacuum). The fundamental mode of an RF cavity resonator coincides
with one quarter (or one half) wavelength fitting exactly inside the cavity. The frequency at
which this occurs varies with permeability (and permittivity) of the material inside the cavity.
Thus we desire materials with high permeability at RF frequencies. Soft/hard magnetic materials
have high/low permeability. Although ferro-magnetic materials (such as iron, nickel, cobalt) have
very high permeability, they are metallic; and the conduction electrons impede an EM wave from
propagating within the material. Contrastingly, ferri-magnetic materials have large permeability
and are insulators; and an EM wave may easily penetrate into the interior and propagate.

The basis for one method of cavity tuning is to vary the permeability of ferrite by applying
a DC biasing magnetic field. Typically there is a region in the cavity where the peak (in time)
electric field is largest, and another region where the peak magnetic field is largest; the ferrite
is located in the latter. Ferrites constitute a large class of materials, but we focus on only two
varieties. So-called nickel-zinc (Ni-Zn) ferrite has a spinel structure; it is a soft magnetic material
suited both to tuning and to shrinking cavity size. Ni-Zn may be the only practical choice to make
a small high-Q RF cavity in the range from 0.3-10 MHz. Ni-Zn ferrite is used across a large range
of (parallel) bias and not toward saturation. The so-called yttrium-iron garnet ferrite (YIG) has
a garnet structure. It is a less-soft magnetic material well suited to tuning, but the shrinkage of
cavity size is less (only a factor 2 to 4) because the permeability is relatively small. YIG has the
advantage of lower RF losses. So YIG becomes useful at higher frequency; say 30 MHz upward.
The yttrium-garnet tuning uses the FMR that occurs at high magnetic bias.
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6.3.6 FMR in a nutshell

The ferro-magnetic resonance (FMR) occurs expressly for materials in the saturated magnetic
state, at the top or bottom of the B-H hysteresis curve, wherein all mechanisms for increased
magnetization are exhausted except spin alignment and precession. When the bias, the spins
and RF-magnetic field are parallel, the spins do not participate in the incremental magnetization;
and so the relative permeability is exactly unity. When the the bias and RF-magnetic field are
perpendicular, the relative permeability is greatly boosted by a resonance because the RF field
exerts a periodic torque on the spins. The resonance frequency is set by adjusting the bias field.
The permeability has a lossy component which is largest on resonance; and so the the RF of the
EM wave is chosen near and below the FMR.

6.3.7 RF waves in media

The speed of a wave is equal to the product of frequency and wavelength. The wavelength of a
cavity mode comes from that of the cavity (internal) dimensions. It would seem therefore, that
the frequency (for fixed cavity size) can be lowered if the wave speed is reduced. The speed of
an EM wave depends on the inverse square root of the product of dielectric and diamagnetic
constants (that measure permittivity and permeability respectively) of the medium that the wave
travels through. Thus, if either or both constants can be raised, the wave speed is slowed and the
resonance frequency falls. This reasoning is correct, but an over simplification.

The wave is composed of photons. Being massless particles, photons always travel at the speed
of light (in vacuum) - with no exception (because their speed is a property of space time). Actually
the wave in a medium is a collective that slows down, even though its constituent photons do not.
The photons are continuously absorbed and re-emitted by the atoms or molecules that make up
the medium through which the wave travels, giving an appearance that the wave speed is slowed.
The same effect can be derived from a Huygens’ construction in which each atom scatters part
of the wave; and when the parts recombine, the net wave-front moves more slowly. Feynman[70]
explains in one of his famous lectures how the wave passage through a material is slowed down by
the collective effect of all the atomic/microscopic fields. He describes the effect for a dielectric, but
the explanation also holds for a diamagnetic. Of course, there are differences: dielectrics typically
do not display hysteresis, and Feynman’s exposition does not include electric or magnetic biasing
(or amplitude dependence). In this simple case, the wave propagation speed is ¢ = 1/,/fiofir€0€;-

6.3.8 Relation of permeability to tuning range

Simplistically, the cavity resonance frequency v o ¢/ where \ is wavelength, and the wave speed is
c = 1/\/fofta€o€, where pi is the incremental permeability, the permeability at RF in the presence
of a bias field. Consider the initial and final values of v before and after particle acceleration. The
required range of incremental permeability is

Max[ua| _ Initial[pa] _ Vgnal -1 (6.1)
Minfpa] — Finallua] 20

Notice that the initial value is greater than the final value; and pa is a monotonic falling function
of time during the particle acceleration. This has implications for the time variation of the bias H.

At each point on the DC hysteresis curve, the incremental permeability (for a minor loop) is
different. Since H-field is generated by currents, one speaks of a bias current that is applied in
order to shift the operating point to higher induction B leading to a lower incremental permeability
and longer wavelength. In order for the wave to fit inside the cavity, the frequency must be raised.
Hence rising bias field is associated with increasing cavity resonance frequency. This is true of both
parallel and perpendicular bias. For the latter, raising the bias pushes the FMR further away from
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the cavity drive frequency thereby moving the operating point into a region of lower incremental
permeability.

6.3.9 Practicalities

A material with (relative) RF permeability range pua = [1,4] has exactly the same fractional tuning
range as a material with permeability range pa = [1,4] x 102 if the material fills the cavity. However,
the cavity volume is much less for the second material. Very large RF permeability is needed only
when cavity shrinking is important. If tuning is the only requirement, then small values of RF
permeability can be sufficient.

The length/diameter L of a vacuum-filled cube, sphere or quarter-wave-coaxial resonator is
roughly L ~ ¢/(4v) for the fundamental resonance frequency v. For v equal 100 MHz and above,
the cavity size is under a metre, which is easily practicable; and there is no strong reason to shrink
it; and a ferrite with ua = [1, 4] would be adequate. Contrastingly for frequency below 1 MHz, the
cavity size would be 100 metres which is impractical. Such a cavity has to be shrunk; it is filled
with a high permeability ferrite ua = [1,4] x 103 (or similar).

In the intermediate regime of 5-50 MHz, one may choose to use smaller/larger volumes of
high/low RF permeability ferrite, or use ferrites with moderate (relative) permeability a few tens
or hundreds. In all cases, the choice is influenced by dissipation; ferrites are lossy and the energy
absorbed in a cycle about a minor or major hysteresis loop is proportional to the area of the loop.

6.3.10 Measured dual dependence pa(H,v)

For accelerator applications, it is essential to make measurements u,(H,v) for the specific ferrite
variety and intended bias and frequency range; and not to rely on the limited manufacturer’s data.
Ideally, the property is tabulated as a function of both variables. Further, the ferrite shape and
bias arrangement of the test object should be the same as that in the final application so that they
share the same geometry-dependent demagnetization factor. The dual dependence is measured by
EM excitation of the ferrite, and sensing of the response as the AC or RF frequency is varied.
Typically a network analyzer is used, and network theory used to extract p, from transmission
and/or reflection measurements. If the procedure is repeated at different magnetic bias, the the
dual dependence of incremental permeability pa (v, H) may be constructed. Studies of this type,
spanning small to large bias, are reported by Vollinger and Caspers|[107, [111] for perpendicular,
and by Klopfer[84] for parallel bias.

Another approach (post-dictive) is to build a mock-up! or prototype of the cavity and perform
signal level measurements in which the cavity resonance frequency and quality factor are measured
as a function of bias field. Measurement of the resonance with the ferrite removed allows to infer
the permeability contributed by the ferrite.

6.3.11 Calculating bias field from frequency

The cavity drive frequency must be perfectly matched to an integer multiple of the charged particle
revolution frequency around the synchrotron. If the particles accelerate, there will be a programme
of values drive-frequency versus time called a frequency law. The magnetic bias field must track a
corresponding program of values. Thus we wish to find the bias field (law) that makes the cavity
resonance frequency wres and drive frequency equal. Now wes is a function of the incremental
permeability, which in turn is a function of the resonance frequency and DC bias. This recursive
relationship has to be found/solved self-consistently. We shall illustrate by a crude example. Sup-
pose w, is the RF cavity resonance frequency without ferrite. If filled with ferrite, the frequency

!This could be plywood or stiff cardboard covered in copper sheets.
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becomes:

Wres = wc/\/ﬂA [H, B(H), Wres] (62)

This is a nonlinear equation that is solved iteratively for bias as a function of frequency, H (wyes)-
The magnetisation is a function of the bias and material history given by the DC hysteresis curve
(B, H), or equivalent DC permeability curve, for a defined history. For compactness, we drop the
subscript “res”, and simply write w.

Eq. 6.2 expresses a relationship between ferrite geometry, biasing field and resonance frequency.
If the ferrite fills a small fraction of the cavity volume, and the in-vacuum cavity fields are known,
then perturbation theory and Slater’s theorem may be used to give an improved estimate.

6.4 Magnetic biasing

Suppose DC bias and RF magnetic fields are applied to a ferrite material; these fields penetrate to
the interior. In addition there is an interior field due to magnetization of the ferrite. Suppose the
DC bias magnetic field and that of the applied RF electromagnetic wave have the same orientation
in space; this is called parallel bias. Contrastingly if the RF magnetic field is orthogonal to the
DC bias, this is called perpendicular bias. Usually it can be assumed that the magnitude of the
bias is much larger than that of the RF field. In the context of tuning an RF cavity resonator as
follows. For parallel biasing, we use the properties of the B-H hysteresis curve and incremental
permeability that occur well below saturation. For perpendicular biasing, we use the dynamical
properties of the ferrite that occur on the B-H hysteresis near (or at) saturation. Parallel biasing
and the properties of spinel-ferrite limit their use to the frequency range around 0.1-10 MHz,
appropriate to synchrotrons with low harmonic number. Perpendicular biasing and the properties
of garnet-ferrites limit their use to frequencies above 30 MHz. The upper limit is in the GHz range,
because the FMR is moved by the bias. However, the demand for tunable cavities above 100 MHz
is limited. The transit time factor implies that high frequency can only be employed for relativistic
particles, for which no frequency swing is needed.

6.4.1 Bipolar versus unipolar bias current supply

The choice of bias current supply and major hysteresis loop go hand in hand. The tuning range
achieved under parallel bias relies on the large incremental permeability that occurs far from sat-
uration. Unfortunately, this happens to be the region where the ferrite is most lossy; the energy
dissipation is much reduced in saturation. The largest range of permeability occurs when the ferrite
is exercised between the full negative and positive saturation; and demands a bipolar current source.
For synchrotrons with a relatively low injection energy, such as those described by Brockman[77],
this bipolar cycle may be a necessity. However, an acceptable range of permeability may result
from cycling B-H (in a single quadrant) between the remanent and saturated inductions; and this
may be achieved with a unipolar current source - which is simpler and less expensive. Klingbeil[81]
advocates for this type of B-H cycle. In this case, a lower remanent field is an advantage. Mod-
ern machines, having higher energy injection (linear accelerators), can perform adequately with a
unipolar source. In either case, uni- or bi-polar, passing through saturation is essential to making
the B-H cycle repeatable. For the bi-polar case, the requirement for 0B/0H to be monotonic
increasing, implies the particle acceleration occurs above the coercive value H..

The tuning range achieved under perpendicular bias relies on the FMR, which occurs near and
at saturation. The saturated portion of the B-H curve differs very little whether a uni-polar or
bi-polar current source drives the bias field. Economy suggests to use the uni-polar source.

Although only a portion of the B-H curve is used to tune the cavity while the charged particles
are accelerated, nevertheless the ferrite must be exercised through the entire B-H loop in order to
prepare the initial condition for the next acceleration period. This has two implications: (i) the
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bias current supply must be capable to source the entire range of H; and (ii) the ferrite variety is
chosen to have a sufficiently small saturation value of H that excessive demands are not placed on
the bias current source.

The current carrying coils and windings that produce the bias field and the ferrite cores comprise
large inductances. There is a back-e.m.f V' = LdI /dt that opposes changes of the bias field. Whether
or not the current variation is bipolar, the over-voltage from the power supply must be bipolar
because the field is made to rise and then to fall. In the case of fast-cycling booster synchrotrons,
with tens of Hz repetition frequency, the demands for over voltage can be challenging.

6.5 Theory of parallel bias tuning

The mathematical analysis of cavity tuning with parallel bias is model dependent. Moreover, there
is no simple model for the major hysteresis loop when the bias winding is driven by a uni-polar
current source. Therefore, we cannot state a generalised theory. Instead, we have an illustrative
example that relies on a symmetric bipolar current source.

We assume that the vacuum-filled RF cavity has resonance angular frequency w.. We now
suppose that the cavity volume is filled with ferrite, and that we wish to find the H-field that will
give the new resonance frequency w < w.. In the regime of parallel bias, we may approximate
the permeability by the product of the bias dependence (at low frequency) and the frequency
dependence (at zero bias) from DC to a few MHz. We take the frequency dependence to be
linear: g, (w)/pr(0) = [1 — fw/w.] where 0 < 8 < 1 is a normalised dimensionless variable. § =
K/(pr(0)/w.) where K = (Ou,/0w) is the ferrite material property as w — 0. For the magnetic
bias, we assume operation on the major hysteresis loop cycled by a bipolar current source between
full negative and positive saturation. The charged particle acceleration takes place while the ferrite
magnetization is in the the upper-right quadrant of the B-H curve. The dependence of permeability
on bias field is modeled by the By type, F> variety mathematical model of Sec. 1.5.5, namely:

Bi/uo = Ms(2/7)arctan[(7/2)a(H/He —1)] + (H — H,) . (6.3)

M is the saturation magnetization. The value of a adjusts the remanent field
B, /puo = £[H. + Ms(2/7) arctan(an/2)]. F» is chosen because it has a simple derivative.
The incremental permeability is

. 1 0B . aMs/Hc
wa = (S2Y (= pofon = [14 e - pupe) . G

Eq. 6.4] is substituted into Eq. 6.2, and solved for the drive field H in terms of the resonance
frequency which we shall write in the form w = aw.. The equation is a quadratic in H with

solution:
H 2 aM; a?(1—ap)
mﬁ‘+m¢4+<m>h—@u—wﬂ' (69

The radicand, the contents of the square root operation, must be greater than or equal zero for
real solutions. If the frequency dependence is small, § < 1, we may find the limits on the tuning

range:
H,
S e < 1. .
o taM, = ¢ < (6.6)

Evidently, the range is large if a x My > H.. This implies two desirable conditions: first My > H,,
and second that the remanent field B, /ug is a large fraction of My, because a and B, are related.
In fact, this is not surprising - because if B, is large, the initial permeability is larger.

The shape of the curves H(«) changes from concave to convex according to the value of 8. The
gradient 0H /O« is zero at a = 2/(33). This stationary point may be moved outside of the range
a = [0, 1] by selecting 5 < 2/3. If 3 exceeds this value, then H(«) becomes dual valued.
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Ferrite fractional filled cavity

If the ferrite fills only a fraction 0 < F' < 1 of the cavity volume, the tuning equation becomes
Wres = We/ \/ (1—F)+4+ F x pa(wres). Again we substitute Eq. 6.4, and solve for the required bias
field:

2
14 2 (

H aF M a?(1—apf)
o )|

H. 1-a?(1—aBF)|" (6.7)

When S — 0, the tuning range becomes Eq. 6.6 with aM, replaced by aF' M;.

6.5.1 Example

Suppose that we wish to both tune an RF cavity and shrink its size. Suppose the tuning range is
1 — 2 MHz. Further suppose there is an existing geometry for a relatively compact vacuum-filled
cavity with 10 MHz resonance frequency. We intend to load the interior volume, excluding the
vacuum/beam pipe, with ferrite to achieve a ten times lower resonance frequency. Imagine there
are seven types of ferrite available with v = M,/ H, values ranging from 50 to 3200. Which of these
ferrites is acceptable? The left-hand plot in Fig. 6.1 shows the result of evaluating formula |6.5| for
a=1,8=0.1 as a function of @ = w/w, for seven values of 7. Focus on the range o = [0.1,0.2].
1 MHz can be achieved for v > 200. However, some of the H/H, values are very close to one; which
corresponds to zero magnetic induction. Such an operating point is subject to slight variability,
cycle to cycle, and to stray magnetic fields from other sources. Therefore, a larger value of H/H,
is required, suggesting v > 103.

The choices a = 1 and particularly 8 = 0.1 were somewhat arbitrary. Greater realism can be
introduced for S. From Snoek’s law, we know that the knee frequency (signalling steep decline)
is inversely proportional to the static permeability, which in turn is roughly proportional to v =
Mg/ H.. Hence we may construct (). Using realistic material properties for the range 0-10 MHz,
B(7) =~ 2.6 x 10~*y. The right-hand plot in Fig. 6.1 shows the result of evaluating formula 6.5 for
a =1,5(v) as a function of « for the seven values of v. It does not change the previous conclusion
to adopt a ferrite with v > 103. However, it does suggest that the required bias range H/H, is
slightly smaller. The effect would be more important if we had selected a 1-4 MHz (or higher)
tuning range. Incidentally, it is noted that 5(y=3200) = 0.8364 which exceeds the critical value
B =2/3, above which H(«) back-bends into a convex arc.

H H

H, Hc

20| y=3200 20! P y=1600
y=1600 Y y=800
y=800 y=400

15¢ y=400 15¢ y=200
y=200 y=100

10} y=100 10} y=50
y=50 y=3200

5} 5}

0 : : : : s q 0 : : : : - a

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.1: Parallel bias tuning program H/H,. versus fractional frequency a = w/w, for a variety
of v = M,/H,. Left: Adjustable constant § = 0.1. Right: Linear frequency coefficient g = (7).
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6.6 Theory of perpendicular bias tuning

In the particular regime of perpendicular bias, we may appeal to the LLG equation to give the
frequency dependence of pa = 1+ R[my/hy]. We remind the reader that the LLG equation and
the form of the effective field Heg used here assumes that the material is near saturation (M almost
independent of H) and that the static values H, and M, are mutually self-consistent. Note also
that the ratio of M, /H, is different for an H up-sweep towards saturation versus an H down-sweep
away from saturation; the latter is larger because M, lags. In Chap. |4.5.3 we encountered the
(linearized) incremental susceptibility for a cylinder or sphere aligned with H,. The formulae are:

Inphase[my/hy] = Rlxy,) = ¢° M. H.[w* (=14 6%) + g°HZ(1 + 6°)%]/D (6.8)
Quadrature[my,/h,] = S[xyy] = gM.wdw?® + g*H2(1 + §2)]/D .
D = w4 2(gH.w)*(—1+ %) + (¢H.)* (1 + 6%)%. (6.10)

Here H, is the effective field including the demagnetization factor. Even though the LLG equation
was formulated to explain a resonance at multi-GHz frequencies, the formulae work quite well down
into the kHz range. ua — 1+ M,/H, as w — 0. This may be larger than the initial permeability
(i because p; is taken on the virgin magnetization curve in the vicinity of (B, H) = (0,0) rather
than on a major loop passing through (—B,,0) and (0, +H,).

Eq. 6.8 is substituted into Eq. |6.2. In principle, this leads to a quartic equation for the bias
H,(w). We know that § < 1. Suppose for the moment that we set 6 = 0. The bias equation
simplifies to a quadratic:

© _ [H(H. + M) — (w/g)*]

We H? = (w/g)?
Remember that g x H has the dimensions of angular frequency. We could rewrite the field values in
terms of equivalent frequencies; but it is better to express the frequency in terms of an equivalent
H-field value. The natural reference for frequency is w,, and for field it is M,. Choosing the cavity
frequency as a reference leads to M, becoming a variable. But the saturation magnetization is
a material property, a constant. So M, is taken as the “standard unit”. We set w = aw. and
we = B X (gM). The ferrite loaded value is less than the vacuum-filled value; and so 0 < o < 1.
The solution of the quadratic is:

(6.11)

H, _ &®[1+/1+4(1 - a?)?(8/a)?]
T 2= o) . (6.12)

The cavity operation frequency must be below the gyromagnetic frequency, and so aSM, < H,;
this implies o < 1/v/2. Suppose there is an upper limit on the bias H, < yM, where 0 < vy < 1.
We may find an upper limit on the vacuum-filled cavity frequency w. = (¢M.)p.

1 1 ol

The tuning range is progressively limited to smaller values of « as 3 rises or ~ falls. The properties
of ferrite imply v < 1.
Ferrite fractional filled cavity

If the ferrite fills only a fraction 0 < F' < 1 of the cavity volume, the tuning equation becomes
Wres = We/ \/ (1=F)+ F x pua(wres). Again we substitute Eq. 6.8, and solve for the required bias
field:

H,  &F[1+/1+4(1 - a?)?p%/(aF)?]

M, 2(1 — a?)
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Suppose there is an upper limit on the bias H, < yM,. The upper limit on the vacuum-filled cavity
frequency, w. = (gM.)S3, is given by

[ 7 F Y
—_— d —1 .
I<a< Fin an O<5<\/v[a21+a2]

6.6.1 Magnetic quality factor

The magnetic quality factor Q,, of the ferrite material is the per cycle energy stored divided by
the energy dissipated; and is given by

_ W 1+ Ry [(gH.)? — w?|[g*H.(H, + M) — w?]

Om = = T Syl ~ x [(H)? = 2 T gM.{(gH)? & oPleod (6.13)

Strictly speaking € = 0; however, the need for it will be come apparent. Q,, evaluated in the DC
limit w — becomes (1 + M,/H.)/e. Thus € regularizes @)y, to evade the singularity at w = 0. In
practise, the ratio of measured values of i/, i’ at low frequency is very large; and therefore ¢ < 1
and can be omitted (set to zero) when @, is evaluated in the MHz range and above. The quality
factor becomes zero at two values of angular frequency w equal gH, and g/ H.(H, + M,).

6.6.2 Example

Suppose we employ a garnet ferrite with saturation magnetization 800 Oersted (63662 A/m). The
equivalent frequency gM,/(2m) is 2.24 GHz. Suppose that we wish to use a vacuum-filled cavity
with 200 MHz resonance frequency. The equivalent field is H. = 71.4 Oersted (5682 A /m). Suppose
that we fill the cavity with ferrite, and wish operate it over the range 40-100 MHz. What is the
range of bias field required? We evaluate Eq. 6.12/ with 5 = H./M, = 0.08925 and « ranging over
[0.2,0.5]. The results are plotted in Fig. 6.2.

{IJA, (0/:':,Hz, S(%), X;", 55 Qm}
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Figure 6.2: Perpendicular bias tuning program versus fractional frequency o = w/w.. pa shown
blue; H./M, as percentage shown gold; S = af/(H./M.) as percentage shown coral; xy,/(d)
shown green; and 5 X ),,0 shown purple.

The parameter S was introduced in Chap. 4.5.3. For values S < 1/2 the real component of the
complex susceptibility x is almost independent of the loss parameter § = ag x (M, /M) where ag
is the Gilbert damping factor. Thus the calculation has been self-consistent: we presumed ¢ = 0,
and we have found a solution regime where a non-zero value of § would make no difference to the
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solution values. This is always the case when § < 1. Contrastingly, if 5 ~ 1 or larger, as is the
case if we had chosen a large value for w,., the permeability, bias field and S-values and FMR power
losses all grow to large values.

It is noteworthy that the magnetic quality factor appears to rise with cavity resonance frequency.
Contrastingly, at fixed bias field, we know Q,, to be largest at low frequency. The explanation is
that we have plotted Q,,(«, H); and both o and H,(«) vary in order to satisfy Eq. 6.12.

6.7 Geometry of ferrite and bias current conductors

Suppose the cavity resonator is of the coaxial type formed of concentric metallic cylinders with disc
shaped end plates. The length of the cylinder is a quarter wavelength. The charged-particle beam
travels through/along the inner cylinder. The inner cylinder stops before one end plate leaving a
(accelerating) gap where the electric field is largest. The magnetic field encircles the inner metallic
tube. The concentric ferrite load is usually made up from several cores?. Ferrite cores (dough-nut
shape) encircle the inner cylinder and are immersed in the EM-field. The cores look like thick discs
penetrated by a central hole. The cavity geometry and ferrite load is sketched in Fig. 6.3.

Current-carrying conductors generate a DC magnetic field which biases the cores. For parallel
bias, the conductor links through all the cores and is wound about them forming a toroidal surface.
This configuration drives an azimuthal magnetic field which encircles the inner metallic tube; this
field is parallel to the RF magnetic field. Contrastingly, for perpendicular bias the conductor is
circumferential about the core (as in Fig. 6.4) and drives a DC magnetic field that is parallel to
the beam-tube axis, and is perpendicular to the (azimuthal) RF magnetic field.

Figure 6.3: Coaxial Cavity with ferrite loading. The metallic, evacuated pipe is shown red with an
acceleration gap. The concentric ferrite load is show blue. The remainder empty interior volume
is shown grey. Depending on the application, the ferrite may fill the cavity volume.

6.7.1 Parallel bias of concentric core

As described above, the metallic cavity is concentric with the (metallic) vacuum pipe that transports
the charged particles. The ferrite volume (within the cavity) is an annular region also concentric
about the pipe. By far the simplest way to bias the ferrite is to wrap turns of a current-carrying
conductor about the annular ferrite cores. In consequence of this, the bias field is azimuthal. It is
desirable that there not be too many turns, otherwise the RF wave is impeded (by the conductor)

It is difficult to maintain material uniformity in a single large disk. Further, the subdivision into cores provides
the opportunity to introduce cooling.
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from entering into the ferrite interior. Fortunately, as demonstrated in Chap. 2, even a relatively
small number of turns (roughly 6, or more, equally spaced) is sufficient to confine the bias field
within the annulus. This has two beneficial consequences: (i) the bias field does not extend into the
vacuum pipe, and cannot deflect the charged particles; and (ii) the DC azimuthal demagnetizing
factor can be made nearly zero. In practise, the bias electrical current tends to be very large and
so more turns are used. In the cavity fundamental EM resonance mode, the electric field is parallel
to the cavity cylinder axis, and the magnetic field is azimuthal about the cylinder axis. Hence, it
is automatic that the RF magnetic field is parallel to the bias field.

6.7.2 Perpendicular bias of concentric core

The implementation of perpendicular bias demands far greater technological complexity than par-
allel bias. Fig. 6.4 sketches the geometry. A ferrite core encircles the vacuum pipe. The core (or
cores) are encircled by azimuthal current carrying coils that drive a solenoidal bias H-field through
the ferrite. There result north and south poles on the end faces of the ferrite. The magnetic circuit
is completed by an iron yoke that encloses the ferrite and that is contact with ferrite poles. In
practise[99], the configuration is complicated by the need to cool both the ferrite and the con-
ductors; so there are cooling tubes with coolant flowing. Further, electrical connections to the
conductors must pass out of the yoke. If the bias current is changed rapidly, to follow the frequency
program of a fast cycling synchrotron, there will be eddy current heating of the yoke - requiring
additional cooling. Eddy-current heating in the ferrite itself is negligible because of the very high
resistivity.

Despite the yoke, a small fraction of the magnetic flux will escape from the ferrite; so there will
be a solenoidal magnetic within the vacuum pipe (that transports the charged particles). The field
component parallel to the cylinder axis has zero effect (because the velocity and field are parallel),
but the radial component at the ends imparts an azimuthal rotation. The impulses at either end are
oppositely directed, and almost cancel. But the residual field error cannot be forgotten, because the
particles pass repeatedly through the cavity; and there may be a resonant effect. This is suppressed
if cavities are placed at locations of relative m phase advance of the transverse betatron oscillations.
Alternatively, the particle-beam dynamics effect is completely eliminated if the tuner is moved
off-axis via a transmission line connection.

Figure 6.4: Cut-away view of ferrite tuner with perpendicular bias. The upper half of the ferrite
core is show yellow. The concentric conductors are shown red and pink. The rear half of the
magnetic yoke is shown blue, and one of the end-disc poles is shown complete. The other yolk
end-disc pole is omitted in order to show the interior of the tuner.
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6.8 Parallel or perpendicular, Ni-Zn or YIG?

At low frequency and without magnetic bias, Ni-Zn and YIG have dissimilar but overlapping
properties. Nickel-zinc ferrite is magnetically softer and more lossy. Yttrium-iron-garnet (YIG) is
a harder magnetic material, that is much less lossy. Ni-Zn ferrites have very large permeability
(=~ 1000) upto a few MHz; this drops rapidly at a few tens of MHz; and over the same region the
material becomes rather lossy. The precipitous drop is due to domain wall vibration. Yttrium-
Iron-Garnet (YIG) has large permeability (~ 100) upto 10 MHz; this drops to ten at around 100
MHz; over the same region the material becomes lossy - but much less so than Ni-Zn.

Both Ni-Zn and YIG may be parallel biased. But in the niche range of frequency upto a few
MHz, shrinking cavity size is a major consideration; and this makes large ua very desirable. The
larger 0B/OH associated with pa (v =0) gives a clear advantage to Ni-Zn despite it being more
lossy. If there were applications in the region 10-20 MHz, and cavity size was less important, YIG
could be useful in that range.

When parallel biased and driven to magnetic saturation, the incremental permeability of Ni-Zn
and YIG is unity (the same as free space). When perpendicular biased, the behaviour in saturation
is completely transformed. Spinel and garnet ferrites both display the ferro-magnetic resonance,
leading to a large complex permeability. Both Ni-Zn and YIG may be perpendicular biased. But
in the band of frequency 30-110 MHz, the low RF power loss properties of the YIG garnet are
superior to the Ni-Zn spinel.

6.9 Parallel biased Ni-Zn ferrite

Low RF applications requiring the most dramatic reduction of RF cavity size employ Ni-Zn ferrite.
We suppose the B-H major loop includes saturation, and that the material has previously been
driven (i.e. biased) into saturation; this guarantees reproducibility. Prior to acceleration, the
operating point is moved toward B(~ H.) > 0 for bi-polar bias, or toward Byeyn > 0 for uni-
polar bias. If an RF magnetic field =AH, small compared with the bias, is now introduced, the
magnetization will follow a local, minor hysteresis loop; as explained in Fig. |1.3. The minor loop
has the incremental permeability given by p = AB/AH. This value is (potentially) much larger
than the free-space value; and so the EM wave is slowed down in the ferrite and the wavelength
is shortened leading to resonanant excitation of the cavity. As the particles accelerate, so the
resonance frequency and bias rise in unison.

6.9.1 Literature Survey

The literature of parallel-biased RF cavities spans from the mid 1950’s to the present time.

Brockman

The primary reference for Ni-Zn ferrite loaded RF cavities is Brockman, van der Heide and
Louwerse[77]. This comprehensive article from 1969 celebrates the triumph of Philips Feroxcube
utilised in six proton synchrotrons at national laboratories in the US and Europe. These machines
were constructed between 1959 and 1963, and were operated with RF ranging over 1-10 MHz.
The companion article by Gouiran[78] describes the design, technology and construction of these
accelerators. Brockman begins with a lucid account of the magnetic properties of ferrite, including
the incremental permeability and frequency dependence of the complex permeability. There are
many types of Ni-Zn ferrite with varying composition and properties. For example, the original
Ferroxcube types have chemical formula Ni(;_;)Zn,Fe;O4 with x ranging from 0 to 0.64. A ferrite
with the highest permeability is not necessarily the best material. The magnetically softer vari-
eties have higher permeability and also losses; their properties also vary more quickly with bias
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and frequency than the magnetically harder varieties. The Curie temperature, that at which the
permanent magnetization disappears, is significantly higher for the magnetically harder materials.
Brockman discusses the factors (and compromises) leading to the best choice of ferrite variety for a
particular application, using five synchrotrons as examples. Thermal management, heat dissipation
and cooling are an important consideration. Brockman also discusses the role of the current supply
for the bias field: whether it is bipolar (and able to cycle through the complete B-H loop); or
unipolar (capable to cycle only between Byep and Bgyg in the upper-right quadrant); or a specialist
current source® that can supply large positive and small negative values. This has a strong influ-
ence on the range ua. Brockman’s Fig. 14b is in error; it shows the derivative u, o 9B/9H to be
continuous at the remanent field. However, this is a recoil point; so the differential permeability
differs between the branches at H = 0. The correct variation is shown in Fig. 5.2.

Kerns

The article by Kerns[82] et al (1965) describes preparatory design for the Ferrmilab Main Ring
RF cavities[83] that began operation in 1971. The cavity is a A/2 structure with two accelerating
gaps. Between 1965 and 1969, the design was revised: moving the gaps from the ends to the centre.
Significantly, these are 53 MHz cavities, a departure from previous designs; and that benefit from
the experimental fact that the product paQv rises with frequency v to a peak in the region 20-
50 MHz. The tuning range is small: vy —1v; = 0.3MHz. Kerns presents a systematic design
procedure for this new frequency regime. For similar cavity dimensions, but higher RF, a much
smaller volume of ferrite is required; and in this design the two tuners are side-coupled and pushed
off the cylinder axis. In this application, the ferrite is primarily used for tuning the resonance
frequency; and not shrinking the cavity size. Kerns states “the use of salient ferrite parameters
are (among) the prime considerations of the design example” and graphs measured values of ua
and ferrite () versus bias magnetic field at the operating frequency 50 MHz. No description is
given of the measurement procedure. However, it appears that the tuner alone is modeled as a
ferrite-loaded transmission line terminated in a short, and that network theory is used to calculate
ua from network measurements.

Gardner

There are more modern articles by Gardner[79] (1991) and Klingbeil[8T] (2010). Both draw heavily
on Brockman and reproduce some of his ferrite property graphs. Gardner? illustrates the ferrite
applications with more modern synchrotrons, and ferrite varieties from Philips and Toshiba. Gard-
ner concludes with technical descriptions (including the bias windings) of the accelerating stations
at the CERN PS, Fermilab Booster, PS Booster and CERN LEAR. These illustrate quarter-wave
and half-wavelength structures, and also a side-coupled off-axis ferrite load. The article by Gardner
was updated and expanded by Schnase[80] in 2005.

Klingbeil

After introducing incremental and complex permeability, Klingbeil[81] develops the simple mathe-
matical model, summarised in Sec.5.6.1, for the resonance property of a ferrite-loaded quarter-wave
cavity. The impedance, quality factor and filling time are derived. There follows engineering as-
pects such as RF power amplifier, cooling, biasing, etc. Klingbeil concludes the CAS article with
a technical description of the SIS18 ferrite cavity[85] at the GSI Helmholtz Centre for Heavy Ion
Research in Darmstadt Germany.

3Such as that designed (PPAD-464-D) by Graham Rees in 1962 for the Princeton-Pennsylvania Accelerator. Many
years later, Dr Rees was my mentor at Rutherford Appleton Laboratory UK.

“Tan S.K. Gardner designed and constructed the 2nd harmonic and main/fundamental accelerating cavities for
the Rutherford Laboratory Nimrod and ISIS proton synchrotrons.
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Klopfer & Klingbeil

The three preceding references are all reviews. The most modern article, by Klopfer et al[84],
present measured properties of the specific ferrite used for the parallel-bias tuning of RF cavities at
the SIS-18 and SIS-100 synchrotrons at the FAIR complex at GSI. The material is a Ni-Zn ferrite
(Philips Ferroxcube). The frequency dependence of the complex permittivity is experimentally
investigated (and graphed) for several values of the biasing field that span the operation range.
The toroidal ferrite cores, in addition to the bias winding, are wound with a primary coil for RF
excitation and a secondary coil for sensing/pick-up allowing to perform transmission and reflection
measurements. The bias and RF fields are necessarily parallel. The Klingbeil series-LCR model
is analytically inverted for y/ and p” in terms of the input impedance of the network (electrical
circuit) and excitation frequency. The Polder tensor for partially saturated ferrite is very difficult
to calculate. Using a fit to data, the authors propose a simple empirical model for the excitation-
parallel-to-bias component of the tensor. Notably, in the working cycle of the GSI SIS 18 cavity,
the bias current is varied only in the range from zero to its maximum value without changing its
polarity. The reversible permeability®| is tabulated as a function of bias field for a fixed 0.5 MHz
RF.

In contrast to Brockman who favoured bi-polar current supplies and four-quadrant hysteresis
curves, Klingbeil® advocates convincingly for uni-polar supplies and a single-quadrant hysteresis
major loop.

In my [Klingbeil] opinion, the unipolar supply (even though it is technically simpler)
has some practical advantages: In this case, the minor hysteresis loops are always located
on the upper path in the first quadrant. Therefore, the incremental permeability should
be rather reproducible (compared to bi-polar supplies). And if I take the SIS18 ferrite
cavity as an example, it nevertheless allows large tuning ranges. The maximum resonant
frequency is about 5.4 MHz, the minimum about 0.8 MHz. Therefore, the tuning range
is almost a factor of 7 in spite of the unipolar supply. The monotonic dependency of
the incremental permeability /the resonant frequency on the bias current furthermore
makes the closed-loop resonant-frequency control less complicated.

Because we regarded the old SIS18 solution as a very reliable and robust one, our
new accelerating cavities[86] for the FAIR synchrotron SIS100 (with a smaller tuning
range) are based on almost the same ferrite material and on the same unipolar supply
operating principle.

6.10 Perpendicular biased YIG ferrite

6.10.1 Influence of bias orientation on tuning

As early as 1956, researcher C.E. Fay[42] made an exploratory comparison of bias orientations.
He took a closed (air-filled) rectangular waveguide TEjp;-mode cavity, with mode frequency v..
A slab of Ferramic’ was placed inside the waveguide, and the resonance frequency v, and quality
factor in the X-band measured as a function of the bias field strength. The ferrite occupied ~ %0 of
the cavity volume. His Fig. 3 shows the results for perpendicular bias. When the spin-precession
frequency vy is close to v, the resonance frequency is raised above v, and the quality factor drops
by a factor ~ 3.7. The conditions correspond to negative susceptibility as occurs when v, > vy.
(This condition is not suitable for cavity tuning in a charged particle accelerator.) The RF field

5The limit of zero amplitude. i.e. signal level.

SPersonal communication 2025.

"Trade name (in the 1950’s) for an iron-magnesium ferrite purchased from the General Ceramics and Steatite
Corporation. Incidentally, steatite (also known as soapstone) is a talc-schist type of metamorphic rock. Steatite is
used industrially to make electrical insulators.
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excitation vector was held fixed, while the bias orientation was changed. His Fig. 4 shows results
for parallel bias: the resonance frequency falls below w. and the quality factor falls by a factor
~ 4.4. The falling frequency under parallel bias is not consistent with the FMR.

6.10.2 Literature survey

The review by Poirier[88] in 1993 lists the literature on particle accelerator applications of perpen-
dicular biased ferrite. As was mentioned above, the influence of perpendicular bias on a ferrite
loaded waveguide resonator was observed as early as 1956. But a laboratory bench experiment is
far from a technological realization.

LANL-TRIUMF-SSCL

In 1982-83 Earley[92] and collaborators made a crucial observation that has been influential until
the present time. He proposed to perpendicular bias the ferrite and set the bias-field such that the
FMR is above the RF cavity frequency. The incremental permeability is large® at frequency close
to the FMR resonance, and the power losses are also large; see Fig. 4.1. RF electromagnetic energy
is transferred to the electron spins and dissipated through (partially understood) mechanisms that
are described phenomenologically by the Gilbert damping. Both the permeability and losses decline
steeply either side of the resonance, but less so the permeability. This results in a regime where
the permeability has a useful value, and the losses are negligible. Indeed, the ferrite losses are so
small that the cavity quality factor is dominated by the ohmic loss in the copper cavity walls. The
idea was demonstrated[92] in a quarter-wave cavity loaded with Ni-Zn or Mn-Zn or Ca-Va garnet
ferrite. The ferrite occupied roughly 1/6 of the volume of the resonator. For all the materials,
variation of the DC bias resulted in a tuning range of about 4 MHz about 50 MHz. For all the
materials, the power loss in the ferrite became negligible above 49 MHz.

The LANL collaborators of Earley were determined to build a 50 MHz cavity with a 10 MHz
tuning range and high accelerating voltage suitable for a rapid-cycling booster synchrotron. The
watershed paper[96] by Smythe et al in 1985 contains several advances. Using a quarter wave
cavity with dual-orientation magnetic bias, they demonstrate the dramatic reduction of ferrite
power loss, and enhancement of quality factor, that arises when the bias is switched from parallel
to perpendicular. They report the magnetic Q versus permeability pa for three type of Mg-Mn-Al
spinel ferrite and three types of Y-Fe garnet. In the range pa = [1,4] all have Q in the range
10%-10%. The TDK Y1 type garnet” was the most promising. They present a prototype 50 MHz
cavity design, that became the basis for more than a decade of development. The tuner is coaxial
with a quarter-wave cavity, and the power tetrode is capacitively coupled to the inner cylinder
of the coax. The tuner cores, azimuthal conductors and iron yoke are all coaxial. In 1987 the
engineering prototype demonstrated[98] gap voltages between 130 and 140 kV over a tuning range
of 50 to 60 MHz.

Deriving from the booster ring, the LANL team began work on a prototype Main Ring (MR)
cavity design with higher gap voltage and much smaller tuning range (1 MHz). At this time
TRIUMF (Canada) adopted the LANL booster and MR cavity designs for its KAON Factory
proposal. In 1989 LANL and TRIUMF collaborators presented[I00] the MR design: a half-wave
structure with the tuner taken off axis. The LANL booster cavity was transferred to TRIUMF,
equipped with a ramping bias supply, a power tetrode, and rudimentary RF controls; and in 1991
the TRIUMF team demonstrated[101] a tuning range 46-61 MHz, upto 65 kV gap voltage, and rapid
cycling (50 Hz) of the complete system. In 1991 the Superconducting Super-Collider Laboratory
(SSCL) adopted the LANL/TRIUMF design for their booster RF cavity. In 1992 work ceased at
LANL & TRIUMF, and was transferred to SSCL along with the prototype booster cavity. In 1993

8Possibly extremely large if the Gilbert factor « is sufficiently small o < 0.01.
9The chemical composition is not given.
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Friedrichs[102] and Goren[I03] reported high-power tests of the booster cavity with large amplitude
RF, including its nonlinear behaviour as a hardening resonator. Work was abandoned in 1995 when
the SSC project was cancelled. There followed a hiatus.

Figure 6.5: TRIUMF Booster cavity test stand (to the left) and ferrite tuner with bias coils and
steel yoke visible (to the right). Photographs courtesy of Roger Poirier.

CERN & DESY

The response of the accelerator community to Earley’s 1983 paper was immediate. The CERN PS
designs'¥ and constructs[93] a 114 MHz cavity with an off-axis perpendicular-biased tuner. The
AECL-DESY collaboration builds 52 MHz RF systems for HERA[94] and PETRA-II[95]; the cav-
ities are tuned by-off-axis perpendicular-biased ferrite. In both examples, the tuning range and
volume of ferrite is small.

Renewed interest in perpendicular biased ferrite arose at the CERN in 2012-2015. The CERN
studies led by Vollinger[I07] and Caspers were directed toward a booster cavity with high quality
factor and large tuning range: 20-40 MHz. A continuing theme was the development and perfection
of RF transmission and reflection measurements to quantify the complex permittivity as a function
of frequency (0-100 MHz) and of perpendicular bias field (0.01-0.1 Tesla). The first step[I07] was
the selection of a YIG ferrite, G-510 manufactured by Trans-Tech, followed by refinements[108] 109]
of the measurement techniques (in particular the 1-port reflection), and leading toward a design[110),
[I11] for a quarter-wave coaxial resonator with coaxial ferrite load and orthogonal bias. Although
the frequency could be swept from 18 to 40 MHz, the quality factor is large (upto 5000) only above
30 MHz. The small magnetic quality factor occurs because the large ' needed to achieve lower
resonance frequency is associated with large 1 due to the energy dissipated in driving the electron
spin precession. This effect is evident in Figs. |4.1 and 6.2.

FNAL

There was also strong interest in perpendicular biased ferrite at the FNAL in 2014-2018. The
FNAL studies[I12] were directed toward replacing the aging RF cavities in the Booster ring and
the addition of second-harmonic cavities. The LANL/TRIUMF /SSCL cavity was modeled in the

10See CERN-PS-RF-Note-85-3 A ferrite tuner for the 114 MHz Cavity.
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CST! | computer software. No details of y, are provided. During 2015-2018 the FNAL Collaborators
focused on the 2"4 harmonic cavity, whose tuning range is 77-105 MHz. Significant attention has
been paid to the precise material properties of the AL800 garnet ferrite rings that form the tuner.
The DC permeability as a function of H-field was measured[I13] in 2015-2016 in order to supply
self-consistent values for the ratio of saturated magnetization to driving field M, /H,. Further, the
incremental permeability was measured in 2017-2018. Construction of the FNAL prototype cavity
was completed[I14] in 2018.

6.11 RF hardening resonator

The six chapters of this text were inspired by the desire to understand Vloden Shapiro’s explana-
tion of why the LANL/TRIUMF /SSCL prototype booster-ring RF cavity behaves as a hardening
resonator. That the work was inspiring does not imply the analysis is wholly correct. Nevertheless,
Shapiro[61] identifies all the factors involved: the ferrite in a near saturated state behaves almost
as a single domain; the weakly damped FMR described by the LLG equation; damping is needed
for the spins to relax into alignment with the bias; the importance of ferrite shape and demagneti-
zation factors; that neither the bias or the RF field are uniform across the entire ferrite; and that
other processes may be present, such as spin waves. As noted in the introduction, the physical
phenomena involved are not the usual province of accelerator physics; and so they were outlined in
the preceding five chapters.

The sinusoidally driven anharmonic oscillator[I16] has the equation of motion
&+ 20+ za+ Bz = yeoso(t) .

Here «, > 0. For such an oscillator, the resonance curve has a different shape for each value of
the drive amplitude 7. If 8 > 0, then the resonance frequency rises with |y| and the system is
described as a hardening resonator. If 8 < 0, the system is a softening resonator. In either case,
above a threshold value of v which depends on (3,6, the resonance curve becomes triple-valued.
Over a certain range of excitation frequency, there are three distinct values for the amplitude of
the steady state response; but only one of them is stable (at a particular frequency) for small
perturbations. Hence the system may jump from one state to another as the drive frequency is
swept up or down. Friedrichs[I02] and Goren[l03] reported observing this hardening-resonator
instability in 1993. Suppose the RF permeability is known as a function of the DC bias, ua(H>),
from signal-level measurements. Then for large amplitudes, Friedrichs states the cavity resonance

frequency behaved as if the permeability were pa(y/H2 + h%/) Friedrichs shows a resonance curve

calculated from that relation, while Goren shows the experimental curve from oscilloscope traces
taken at 7kV and 70kV voltages on the accelerating gap.

Suhl

This was not the first time nonlinear behaviour was reported for perpendicular bias. Suhl[43]
proposes a mechanism by which the FMR is weakened and broadened at larger drive amplitudes.
The resonance peak is the manifestation of the imaginary (dissipative) part of the susceptibility £,
and Suhl argues it may behave as a softening resonator with respect to variation of the bias H,.
However, the RF cavity resonance frequency is not the FMR frequency! So we must look elsewhere
for the explanation.

ST Studio Suite is a high-performance 3D EM analysis software package for designing, analyzing and optimizing
electromagnetic (EM) components and systems.
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Rakowsky

Rakowsky[115] reports the behaviour of a parallel-biased RF cavity as a softening resonator at the
Brookhaven AGS in 1969. The Ferroxcube ferrite loads were replaced by high-Q ferrite (unspecified)
from Toshiba, enabling the cavity to be driven at high RF power. The AGS operated over the
frequency range 1.4-4.5 MHz. The frequency program varies very slowly. So we may consider
the cavity frequency response (resonance curve) over a small range (+5%) about a fixed centre
frequency. In such a small range (~ 0.1 MHz) the variation of permeability versus frequency
(Snoek’s law) is insignificant. At small RF amplitude the incremental permeability follows the
differential 0B/0H as a function of bias field. Suppose the ferrite is near the saturated region.
The RF excitation extends over £AH,. At larger amplitudes, the negative value —AH,, pulls the
magnetization increment away from saturation; leading to a larger increment —AB,; and hence the
incremental permeability becomes greater at larger amplitude. This means the resonance frequency
will fall. Of course, this mechanism does not apply to a perpendicular-bias hardening resonator.

Goren

Goren[103] attempted to explain the hardening resonator behaviour in 1993. Despite the cylindrical
symmetry of the tuner, Goren uses Cartesian coordinates'?| as if it were a cube. Goren takes the
Landau-Lifshitz equation without damping, and uses the principle of harmonic balance to find
a steady state solution for the fundamental component of the magnetization amplitude m, in
response to an RF drive h, and DC bias H.. Little or no account is taken of the DC component
of magnetization, of other frequency components, or of cross-coupling due to the demagnetization
factors. The susceptibility x’, the ratio m,/h,, is found to contain an additional term proportional
to —h?/ /H? such that the permeability (ua = 1+ x’) falls and the resonance frequency (o< 1/\/fa)
rises with RF amplitude. Despite the gross simplifications, the notion that the permeability falls
because the incremental magnetization m, does not rise in proportion to h, is correct. This is an
indirect way of saying the ferrite saturates.

Shapiro

Shapiro[61] is critical of the shortcomings in Ref.[I03], and addresses them all. The Gilbert loss
factor a quantifying the FMR resonance width is restored. Non-uniformity of the DC and RF
magnetic fields is accounted for by a range of FMR frequencies that further broadens the peak.
The cylindrical tuner and LLG equation are taken in cylindrical coordinates. [The form of the LLG
equation does not change; because each spin precesses about a point in space without performing
any translation.] Shapiro takes the ferrite tuner to be composed of several thin discs, each with a
longitudinal demagnetization factor V,, =~ 1 and transverse factors equal to zero. Although this is
correct for a single, isolated!3| disc, it is not clear that this continues to be so when the discs are
closely spaced in a stack. Nevertheless, the disc model is used. The DC and RF demagnetization
factors are taken equal N,, = n,,, leading to additional mathematical simplification. Shapiro finds
an approximate solution of the nonlinear LLG equation (for the magnetization components) by time
averaging over the fast varying Fourier harmonics. The susceptibility m,/h, is found to be M, /H,
plus a term quadratic in the magnetizations m, and m,. Later he writes m, o h, and hence the
permeability is quadratic in the RF amplitude; similar to Goren’s conclusion. Surprisingly, Shapiro
does not identify this effect as exhaustion of the supply of electron spins (i.e. saturation).

Shapiro reports data for @Q,, and pa versus cavity resonance frequency, from the LANL-
TRIUMF-SSCL prototype. The values are inferred (by calculation) by Smythe and other authors
from other measured quantities. The trend is that @, rises and ua falls. Shapiro expects pa to

12He seems not to understand that the SMM equation does no change form when expressed in cylindrical or other
orthogonal coordinates.
13The derivation assumes the body is immersed in an infinite vacuum medium with no other bodies present.
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fall, and @, to be roughly constant; and he concludes that there must be another energy loss mech-
anism at play at lower frequency. Shapiro proposes to solve this (supposed) mystery by making
the Gilbert damping factor frequency dependent, say o o< 1/w. However, the reasoning is in error.
There is a hidden variable: the bias field. The joint variation of the resonance frequency and bias
field, according to Eq. 6.12 cause the magnetic quality factor to rise. Therefore, the Gilbert factor
« is constant over the tuning range. The true resolution of the mystery is manifest in Fig. 6.2.
Moreover, measured permeability spectra shown in Figs. 5.4 and 5.5 is supportive of there being
no additional magnetic energy loss at low frequency. After the a(w) detour and remarks concern-
ing the relation between cavity and magnetic @), Shapiro goes on to describe several ferrimagnetic
processes that may occur around the cavity resonance frequency and compromise its performance.

Koscielniak

In Chap. |4 of the present work, the author has solved the nonlinear LLG equations for biasing of a
cylindrical'* body into a magnetized state near saturation, and application of a RF magnetic field
(a) parallel and (b) perpendicular to the bias. The mathematics is complicated, but the results are
simple to understand. In case (a), a spectrum of response frequencies emerges. In case (b), the
incremental magnetization with respect to the RF field eventually saturates. The latter behaviour
is illustrated in Figs. 4.2 to 4.4. The effect is most dramatic when the EM wave frequency is equal
to the Larmor frequency, as in Fig. 4.3, but also prevalent when the Larmor frequency (also called
FMR frequency) is above the RF drive (Fig. 4.2) or below the RF drive (Fig. 4.4). In the favoured
cavity tuning scenario, the RF drive is below the FMR, frequency, as in Fig. 4.2.

There is no need to solve for the detailed EM-field geometry/distribution within the cavity to
conclude that the cavity must behave as a hardening resonator. After all of the electron spins have
become aligned, there can be no further change in the incremental magnetization. This being so,
the permeability deviates from the linear, Polder theory and tends to unity. Consequently, the
resonance frequency of the cavity must rise with the amplitude of the applied RF field. Unlike
the Duffing resonator, this system will not display a strong third harmonic of the RF drive. Low
harmonics of the cavity fundamental resonance are absent because they do not receive a permeability
boost from the FMR and therefore do not fit inside the cavity. In this chapter, Sec. 6.6, the author
reports a simple theory of perpendicular-bias cavity-tuning that explains the apparent dependence
of quality factor on the operation frequency. There is no need to invoke a fictitious dependence of
the Gilbert loss parameter on frequency.

Thermal limitation on observing nonlinearity

In principle, the hardening resonator behaviour could be observed in cavities loaded with either YIG
or Ni-Zn ferrite. However, there is a crucial question: “can the system survive strong dissipation?” If
the material is thermally stressed beyond what the cooling can take away, then you might not be able
to access the strong nonlinear regime. The Ni-Zn ferrites have an intrinsically lower magnetic quality
factor (than YIG); material heating and insufficient cooling (or impractical cooling requirements)
may prevent observation of the rise of resonance frequency with amplitude or “snapback” behaviour
when Ni-Zn (and perpendicular bias) is employed.

6.12 Conclusion

These chapters have pedagogic and research components.

M Technically the ferrite load in an RF cavity is not a simple cylinder; rather it is a hollow cylinder. Nevertheless,
the same mechanism of saturation will apply.
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6.12.1 Pedagogy

In Chap. 1] we introduced the classical explanation of magnetism: Ampérian current loops. These
currents do not participate in conduction. We also attempted to de-mystify the de-magnetizing
factor. In Chap. 3 we introduced the quantum explanation of magnetism: electron spin magnetic
moments. In certain materials, the uncanny and bizare exchange interaction aligns these spins
parallel. Of all the chapters, Chap. |2 is the most pedagogic in flavour; in it we emphasized aspects
of cylindrical arrangements of current carrying wires not usually addressed, and the connection
between line currents and two-dimensional fields and complex functions. In Chap. 5| we discussed
(at length) the many dependencies of incremental permeability. In Chap. |6 we gave an account of
the use of ferrites for cavity frequency-tuning and size-shrinking, including literature surveys for
parallel and perpendicular bias variants.

6.12.2 Research

The derivation of the symmetry properties of the elements of the demagnetization tensor for a solid
cylinder, Eq. [1.18] is the authors own. In Sec. [1.5.5| we critiqued toy models of hysteresis branches,
pointing out the discontinuity in value or derivative. In Chap. 2 we discussed toroidal windings
mounted on an annular solenoid. Contrary to text book accounts, we emphasized in Secs. [2.2
to 2.5/ that the magnetic field is not uniform and that the azimuthal variation depends on the
number and symmetry of the windings. In passing, Sec. 2.4, we emphasized the deep connection
between Ampere’s circuit law and the Biot-Savarat law of field from a conductor. Chap. 4] was
written before all other chapters. In Chap. 4| we discussed the Landau-Lifshitz-Gilbert equations
for the precession of spin magnetic moments. Here (for the first time) the LLG equation is solved
analytically in the strong nonlinear regime to give dependence of permeability on RF amplitude.
For RF parallel to bias, a spectrum of response frequencies emerges. For RF perpendicular to bias,
magnetic saturation occurs. In Sec. 5.4.1] we introduced phenomenological functions that satisfy
Snoek’s empirical law for RF permeability of ferrites. In Secs. 6.5 and 6.6 we introduced (for the first
time) simple mathematical models to calculate magnetic bias field from cavity resonance frequency.
The former uses the dual-dependence model ua (H,v) appropriate to parallel bias. The latter uses
the FMR, appropriate to perpendicular bias, and explains the apparent fall of magnetic quality
factor at lower frequency. This effect is reported by Smythe[96] Fig. 2, and Shapiro[61] Fig. 3, and
Vollinger[110] Fig. 5. In Sec. 6.11 we use the results of Chap. 4 to explain why the perpendicular-
biased cavity behaves as a hardening resonator at large RF amplitude: magnetic saturation of
the ferrite causes the resonance frequency rises with amplitude leading to the hardening oscillator
“snap-back” instability.

6.12.3 Unresolved

It is an open question whether Kittel’s assumption, that the DC and RF demagnetization factors
are equal, is correct; and further if Brown’s theorem for the trace of the demagnetization matrix
is unchanged when the magnetizing field oscillates rapidly. These questions could be investigated
both by mathematical analysis (starting from Maxwell’s equations and the vector potential) and
by experiment. A related question concerns “what are the radial and azimuthal demagnetizing
factors?” for oscillating EM fields. These are complicated questions.
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