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Electrostatic bender and fringe
fields
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Abstract: I describe the COSY code GES that we have used in the
past 30 years to calculate maps to third order through electrostatic
bend elements. It was always a mystery that COSY’s in-built proce-
dures ES, ESP and ECL disagreed with our own code. Recent investi-
gation finds the issue: the COSY routine does not include the fact of
the orbit curvature changing in the fringe fields. This renders them
incorrect as it is a fundamental source of second order aberration.
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1 Introduction

A long time ago (the 90s), I discovered two things concerning fringe fields
of optical elements. The first is that the nonlinear effects of ‘fringe fields’
are intrinsic to the elements. That is, they are not reducible by modifying
element boundaries. So it was a surprise to me that codes such as GIOS[1] and
COSY[2] (and many others) allowed higher order (beyond linear) calculations
with fringe fields shut off. Those codes still exist, and they still commit the
same sins. Why call it a sin? Because when there is no fringe field, the
fields that are used are discontinuous and therefore non-physical. In effect,
the no-fringe-field options violate the Maxwell equations.

What is the cost? It is that non-specialists tasked with designing a beamline
for example design without these effects at the start, thinking that they can
deal with their complicating effects later, or not at all. Further, that the
elements themselves are somehow at fault, and that there is a way of shaping
elements to reduce these effects.

The second discovery was that the irreducible effect of the fringe field is in-
dependent of the shaping of the fringe field falloff. This is a general result
and applies to all beam optical elements[3]. For solenoids, this effect is in first
order so is correctly handled by all transport codes. But in dipoles, the effect
is in second order and for quadrupoles in third order[4, 5].

But this makes it even less forgivable that the major transport codes do not
include the effects. The default mode of operation should be to have the
irreducible effect built in. Then the motion would always obey all conservation
laws, even with the details of the fringe fields turned off. This is the way in
which TRANSOPTR operates, but it is only a linear code, so these effects are
used only to estimate the rms emittance growth, to be used in optimization
calculations.

In COSY, “bending magnets can be computed with their fringe fields or without,
which is the default”[6] (and the same is true for electrostatic bends), even
though this violates Maxwell. The second order map of fringe fields is simple
and uses negligible computing time as compared with Runge-Kutta integrating
through an Enge function, and gives most of the effect needed for designing
the optics of a transfer line matching section for example.
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2 Theory

To find the transfer map of a fringe field, one must find a canonical transform
that eliminates the terms in the expanded Hamiltonian that become singular
in the limit of hard-edge fringe fields. I have done this for quadrupoles and
in the particular case of electrostatic bends[7]. But the hard-edge limit is not
given explicitly there so will be amplified here.

For the general toroidal bend, note from [7, eq. 17], there is only one term in
the series expanded Hamiltonian that becomes signular in the limit and it is
h′′x3/6. h = h(s) = 1/ρ(s), ρ being the radius of curvature of the reference
trajectory. This results in a shift in P ′

x of h′′x2/2. Integrating by parts twice
for entry into the field where h goes from zero to 1/ρ, we find

∆Px = −hxx′ = −xPx

ρ
. (1)

But if Px is to change discontinuously, x must also change. We can find this
from the canonical transformation [7, eq. 20], since we know that while x and
Px suffer shifts in the hard edge limit, the transformed coordinates X and PX

do not. From outside where h = h′ = 0 to inside the field where h = 1/ρ,
h′ = 0, we recover the change above in Px, but also

∆x =
x2

2ρ
. (2)

These two equations (plus of course the first order identity matrix) are the
second order map for entry into the bender field. For exit, the signs are
reversed. Note that since the singular coefficient of the x3 term, h′′, depends
only upon the electrode curvature in the bend plane, this second order shift
applies to all toroidal cases.

3 GES: the COSY code

Writing a subroutine (aka ‘procedure’) for the electrostatic bender element is
a straightforward application of the general element GE, in which the curvature
h and the electric potential V are given on a grid of s values. (s is the inde-
pendent variable, the path length along the reference trajectory.) Crucially,
one must supply a function upon which the variation of h and V are based in
the region of the fringe fields; in the body of the bender, both are constant.
The approach is to simply specify h(s) and derive V (x, s) from it according to
[7, eq. 3] as below:

V (x, s) = hx− 1

2
h(k + h)x2 +

1

6

[
2h

(
k2 + kh+ h2

)
− h′′

]
x3 (3)
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It is natural to simply use the Enge function already available in COSY, but
for the limiting cases discussed below, a simple polynomial (based on COSY’s
INTPOL) is more stable.

This approach is ‘kludgy’ in the sense that it interpolates using a grid of data
even though the analytic formulas for potential and curvature are known.
Better would be to write it directly in the same way that magnetic bends are
written. I am not sufficiently proficient in the fox language and the low level
COSY code to do this.

GES has been written as a general toroidal electrostatic bend. Inputs are, in
order, radius/m; angle/degrees; aperture/m (as usual, given as half the D
parameter in the Enge mode; kind, the bend-plane radius divided by the non-
bend-plane radius of the ground surface e.g. 0 for Cylindrical, 1 for Spherical.

As a first test for the spherical bend, the code GES was run with fringe fields
omitted. This gave a transfer map identical (in all 7 displayed digits) to that
from using COSY’s routine ESP, with the setting FR 0;.

But with fringe fields, the two codes disagreed in second order. The case shown
is where ρ = 1 metre, aperture radius 1 cm, bend angle π/4. For the ESP case,
the fringe field option FR 3; was used.

GES

0.1014558E-09-0.4112887E-09 0.000000 0.000000 -0.1964926E-09 000000

0.7100503 -0.7014841 0.000000 0.000000 -0.7083172 100000

0.7071161 0.7097656 0.000000 0.000000 -0.2928924 010000

0.000000 0.000000 0.7071060 -0.7070988 0.000000 001000

0.000000 0.000000 0.7071146 0.7071077 0.000000 000100

0.000000 0.000000 0.000000 0.000000 1.000000 000010

0.2928942 0.7081986 0.000000 0.000000 0.1180495 000001

-0.3947180 -0.8518621 0.000000 0.000000 -0.7267119 200000

-0.2069099 -0.7031506 0.000000 0.000000 -0.4576240 110000

-0.4336389E-01-0.2038682 0.000000 0.000000 -0.3307033 020000

0.000000 0.000000 -0.2041606 0.7109454 0.000000 101000

0.000000 0.000000 -0.2076406 0.2922510 0.000000 011000

0.1054571 0.1481579 0.000000 0.000000 -0.2295844 002000

0.000000 0.000000 1.208664 -0.2935368 0.000000 100100

0.000000 0.000000 0.5009565 -0.1055730E-02 0.000000 010100

0.2065751 0.7072377 0.000000 0.000000 -0.4229213E-01 001100

0.7874654 1.353561 0.000000 0.000000 0.4000934 100001

-0.1468671 0.7059128 0.000000 0.000000 0.1653692 010001

0.000000 0.000000 0.2075016 0.3533623 0.000000 001001

-0.2495308 -0.5014689 0.000000 0.000000 -0.1250027 000200

0.000000 0.000000 -0.1460474 0.2919105 0.000000 000101

-0.2500816 -0.1482069 0.000000 0.000000 -0.5039539E-01 000002

------------------------------------------------------------------------------
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symplectic error: 0.2589307634045153E-010

ESP

0.7117938 -0.6972614 0.000000 0.000000 -0.7090489 100000

0.7069680 0.7123671 0.000000 0.000000 -0.2928647 010000

0.000000 0.000000 0.7118297 -0.6968199 0.000000 001000

0.000000 0.000000 0.7074332 0.7123143 0.000000 000100

0.000000 0.000000 0.000000 0.000000 1.000000 000010

0.2928156 0.7093063 0.000000 0.000000 0.1179428 000001

-0.4967818 -0.1054895E-01 0.000000 0.000000 -0.3707249 200000

1.002711 -0.8830090E-02 0.000000 0.000000 -0.7489250 110000

0.2071271 -0.7090427 0.000000 0.000000 -0.3290377 020000

0.000000 0.000000 0.1776334E-01-0.9683271 0.000000 101000

0.000000 0.000000 -1.414055 -0.4050090 0.000000 011000

0.2140086 -0.6851324 0.000000 0.000000 -0.5779540 002000

0.000000 0.000000 0.5606538E-03-0.9806706 0.000000 100100

0.000000 0.000000 -0.1601973E-03 1.012666 0.000000 010100

-1.006252 0.5536150E-02 0.000000 0.000000 0.2539799 001100

0.9930520 1.050299 0.000000 0.000000 0.4025517 100001

0.6111984E-01-0.1054575E-01 0.000000 0.000000 0.1664747 010001

0.000000 0.000000 -0.9317907E-02 0.6428093 0.000000 001001

-0.5003768 0.2548899E-02 0.000000 0.000000 -0.1225465 000200

0.000000 0.000000 -0.3544161 0.9951060 0.000000 000101

-0.2067942 -0.3589569 0.000000 0.000000 -0.4992080E-01 000002

------------------------------------------------------------------------------

symplectic error: 0.9751132434303467E-014

GIOS

TRANSFER MATRIX OF THE SYSTEM AT PATH LENGTH L= 0.78540 LLU

---------------------------------------------------------------

X AND Y IN TLU, A AND B IN RAD, G AND D IN PARTS FROM M0 AND K0

(X,X )=0.71051 (A,X )=-.70027 (T,X )= 1.8042

(X,A )=0.70713 (A,A )=0.71051 (T,A )=0.74585

(X,G )= 0.0000 (A,G )= 0.0000 (T,G )=0.50000

(X,D )=0.29289 (A,D )=0.70850 (T,D )=-.30060

(X,XX )=-.39269 (A,XX )=-.85070 (T,XX )= 1.8658

(X,XA )=-.20751 (A,XA )=-.70335 (T,XA )= 1.1721

(X,XG )= 0.0000 (A,XG )= 0.0000 (T,XG )=0.90210

(X,XD )=0.78708 (A,XD )= 1.7034* (T,XD )=-1.0169

(X,AA )=-.42891E-01 (A,AA )=-.20397 (T,AA )=0.84572

(X,AG )= 0.0000 (A,AG )= 0.0000 (T,AG )=0.37293

(X,AD )=0.20711* (A,AD )=0.70407 (T,AD )=-.45215E-01

(X,GG )= 0.0000 (A,GG )= 0.0000 (T,GG )=-.12500

(X,GD )= 0.0000 (A,GD )= 0.0000 (T,GD )=-.15031
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(X,DD )=-.25000 (A,DD )=-.50342 (T,DD )=0.12896

(X,YY )=0.10525 (A,YY )=0.14985 (T,YY )=-.28221E-01

(X,YB )=0.20711 (A,YB )=0.71050 (T,YB )=-.39111

(X,BB )=-.25000 (A,BB )=-.49999 (T,BB )=0.18860

(Y,Y )=0.70711 (B,Y )=-.70711

(Y,B )=0.70711 (B,B )=0.70711

(Y,YX )=-.20810 (B,YX )=0.70850

(Y,YA )=-.20711 (B,YA )=0.29290

(Y,YG )= 0.0000 (B,YG )= 0.0000

(Y,YD )=0.20710 (B,YD )=0.70711*

(Y,BX )= 1.2095 (B,BX )=-.29288

(Y,BA )=0.50001 (B,BA )=-.70256E-16

(Y,BG )= 0.0000 (B,BG )= 0.0000

(Y,BD )=0.20711* (B,BD )=0.29288

As one can see, GES and ESP are nothing alike in second order, but GES and
GIOS are substantially in agreement1; the differences in the few % range can
be explained by the default fringe field integrals used in GIOS.

To emphasize the point, a more clinical comparison has been made with van-
ishing (actually 0.1 mm) aperture. Only the relevant lines are shown, along
with symplectic checks g2 and g3 from [8]. These are expected to be zero.

GES

0.7071366 -0.7070500 0.000000 0.000000 -0.7071188 100000

0.7071069 0.7071337 0.000000 0.000000 -0.2928931 010000

-0.3976300 -0.8537546 0.000000 0.000000 -0.7278071 200000

-0.2065952 -0.7056108 0.000000 0.000000 -0.4577152 110000

-0.4337109E-01-0.2061276 0.000000 0.000000 -0.3320926 020000

symplectic error: 0.1791276000985399E-011,

g2= 0.1459810050619126E-010, g3= -.4534211894835494E-010

------------------------------------------------------------------------------

ESP

0.7071544 -0.7070065 0.000000 0.000000 -0.7071262 100000

0.7071069 0.7071594 0.000000 0.000000 -0.2928931 010000

-0.4999687 -0.1075439E-03 0.000000 0.000000 -0.3749572 200000

1.000028 -0.8968466E-04 0.000000 0.000000 -0.7499888 110000

0.2071069 -0.7071261 0.000000 0.000000 -0.3320790 020000

symplectic error: 0.2390266367238521E-013,

g2= 0.2220446049250313E-015, g3= -.5014977148831701E-015

1It seems there are 4 errors in the GIOS calculation. These are marked with ‘*’. They
may have been corrected later; I am using a 40-year-old version of GIOS.
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This is for easy comparison with the Valetov paper[8, sections 4.1.1,4.1.5],
which makes the claim that the disagreement between GIOS and the ESP routine
in COSY is explained by the former being incorrect and the latter correct. In
fact as we shall see, the opposite is the case. Note again, that GES values for
second order agree within about 1% with the GIOS values above.

To investigate further, GES was run for the entry fringe field alone:

GES

0.2783365E-09 0.9785234E-11 0.000000 0.000000 0.000000 000000

0.9999786 -0.6774082E-02 0.000000 0.000000 -0.1093746E-01 100000

0.1093732E-01 0.9999473 0.000000 0.000000 -0.5316821E-04 010000

0.000000 0.000000 0.9999340 -0.1093709E-01 0.000000 001000

0.000000 0.000000 0.1093735E-01 0.9999463 0.000000 000100

0.000000 0.000000 0.000000 0.000000 1.000000 000010

0.6645946E-04 0.1093725E-01 0.000000 0.000000 0.2734100E-02 000001

0.4988888****-0.4231316E-02 0.000000 0.000000 -0.1053210E-01 200000

0.1095947E-01-0.9979132**** 0.000000 0.000000 -0.1217889E-03 110000

0.6037104E-04-0.1093734E-01 0.000000 0.000000 -0.2734803E-02 020000

0.000000 0.000000 0.2051418E-02 0.1284744E-01 0.000000 101000

0.000000 0.000000 -0.2349555E-04-0.2029813E-02 0.000000 011000

0.1085322E-02 0.6427298E-02 0.000000 0.000000 -0.2751460E-02 002000

0.000000 0.000000 0.2185152E-01-0.2149924E-02 0.000000 100100

0.000000 0.000000 0.1052144E-03 0.1427831E-06 0.000000 010100

-0.2219241E-04-0.1910681E-02 0.000000 0.000000 0.5974595E-05 001100

0.1754182E-03 0.1014972E-01 0.000000 0.000000 0.1093658E-01 100001

-0.5467420E-02-0.2736212E-04 0.000000 0.000000 0.4651682E-04 010001

0.000000 0.000000 0.6579551E-04 0.5479675E-02 0.000000 001001

-0.6701825E-04-0.1093671E-01 0.000000 0.000000 -0.2734133E-02 000200

0.000000 0.000000 -0.5467981E-02 0.5394849E-04 0.000000 000101

-0.6645505E-04-0.5468580E-02 0.000000 0.000000 -0.2050348E-02 000002

------------------------------------------------------------------------------

symplectic error: 0.2318995512897258E-010

Note that this a nearly unity matrix; the exceptions are the two elements
denoted by ****. These correspond to ∆x/x2 and ∆Px/(xPx) and are in
substantial agreement with the theoretical values (resp.) 2 and 1. They are
expected to approach these values in the limit of zero aperture size, but the
COSY Runge-Kutta integrater begins to break down at very small aperture
(hence the < 1% discrepancy). This confirms that GES is consistent with
theory.

Further, it allows very fast calculation to second order, using the known entry
and exit matrices. Thus, when user specifies a zero aperture in GES, the exact
second order matrices are used and no integration through the fringe field
occurs. However, the maps will only be good to second order and a warning
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message given if higher order is requested. As is well known, the third and
higher orders diverge for zero aperture.

Usage of third and higher order is still possible maintaining symplecticity in a
transport system with a second order electrostatic bender, using COSY’s handy
symplectifier routine SY. From this we discover that eq. 1 expands as:

Pxf = Px

(
1 ∓ x

ρ
± x2

ρ2
∓ x3

ρ3
± ...

)
=

Px

1 ± x/ρ
. (4)

The entrance and exit hard-edge fringe field maps MAPENT and MAPEX are coded
as follows:

if lfr=0.;

write 6 ’WARNING: zero fringe field length only valid for order up to 2’;

LOOP I 1 8;MAPENT(I) := XX(i);MAPEX(I) := XX(i);endloop;

MAPENT(1):=MAPENT(1)+DD(1)%(-1)/R;MAPENT(2):=MAPENT(2)-DD(2)%(-1)/R;sy MAPENT;

MAPEX(1):= MAPEX(1)-DD(1)%(-1)/R; MAPEX(2):= MAPEX(2)-DD(2)%(-1)/R; sy MAPEX;

endif;

lfr is the length of the fringe field.

As a second test, we try the case of the bender as a thin lens. Then h = 1/ρ,
let c ≡ k/h, (kind parameter in GES input). From [7, eq. 23], the nonlinear
part of P ′

X = −∂H/∂X is integrated through the bend length L = ρθ to give:

∆Px ≈ θ

ρ2

((
−1 − 3

γ2
+

(
2 +

3

2γ2

)
c− c2

)
x2 +

(
− c

2γ2
+ c2

)
y2
)

(5)

∆Py ≈ θ

ρ2

(
− c

γ2
+ 2c2

)
xy (6)

Set the bend radius to ρ = 1 m again, but angle to θ = 10 mrad so that the
length is only 1 cm and θ/ρ2 = 0.100. The extreme non-relativistic (γ = 1)
spherical (c = 1) case would be

∆Px ≈ 0.0100

(
−3

2
x2 +

1

2
y2
)

(7)

∆Py ≈ 0.0100 (1xy) (8)

The relevant COSY map rows are:

-0.7499812E-04-0.1499925E-01 0.000000 0.000000 -0.1249942E-01 200000

0.000000 0.000000 -0.4999708E-04 0.9999833E-02 0.000000 101000

0.2499854E-04 0.4999417E-02 0.000000 0.000000 -0.2500083E-02 002000
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For extreme relativistic, (γ � 1 not practical for electrostatic, but anyway...)

∆Px ≈ 0.0100
(
0x2 + 1 y2

)
(9)

∆Py ≈ 0.0100 (2xy) (10)

The relevant COSY map rows are:

-0.1807110E-11-0.3614216E-09 0.000000 0.000000 -0.4999224E-02 200000

0.000000 0.000000 -0.1204678E-11 0.1999967E-01 0.000000 101000

0.4999833E-04 0.9999333E-02 0.000000 0.000000 -0.3333954E-06 002000

One more comparison non-relativistic cylindrical bend (c = 0),

∆Px ≈ 0.0100
(
−4x2 + 0 y2

)
(11)

∆Py ≈ 0.0100 (0xy) (12)

The relevant COSY map row is:

-0.1999900E-03-0.3999600E-01 0.000000 0.000000 -0.1499867E-01 200000

(the other two relevant rows are missing since they are null).

These three examples all show good agreement with theory.

4 Conclusion

Current COSY version 10.2 does not include the variation of the orbit’s cur-
vature as a function of the independent variable s in the fringe field of the
electrostatic bends, and thus does not give correct higher order aberrations.
This should be incorporated into the code; it is no different from the variation
ρ(s) that already correctly finds transfer maps for magnetic benders.
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