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1 Equation of motion in Cartesian frame

An alpha magnet is a special kind of achromatic bending magnet with the magnetic

field of the form Bz = Gxc, where G = dBz

dxc
is the constant field gradient, while xc is the x

coordinate in the Cartesian plane. Particles of any energy entering the magnet at an angle

of 40.7◦ leave the magnet with zero dispersion.

Figure 1: Trajectories of electrons at 2 (blue), 10 (green) and 20 MeV (purple) in an alpha
magnet with G = −0.1 T/cm.

Assuming the entrance angle of the reference particle 40.7◦, the equations of motion of

the reference charged particle in an alpha magnet were given in [1]. Using the relationship

of dxc

dt = dxc

ds
ds
dt = v dxc

ds , we can rewrite them as follows:

d2xc
ds2

=
qGxc
γmv

dyc
ds

d2yc
ds2

= −qGxc
γmv

dxc
ds

d2zc
ds2

= 0 (1)

where xc, yc and zc are the coordinate in the Cartesian plane. In principle, eqn. 1 have

to be solved numerically, but using the results from [2], the total length travelled can be

estimated by

L = 1.91655 cm

√
βγ

G[T/cm]
(2)



TRI-BN-24-08 Page 2

2 Equation of motion (Hamiltonian) in Frenet-Serret

(FS) Frame

The Hamiltonian of the alpha magnet in FS frame expanded to second order is [3]

Hs =
m2c2

P 2
+
P 2
x

2P
+
P 2
y

2P
+

P 2
z

2Pγ2
− Gqx2Q(s)

2P
+
Gqy2Q(s)

2P
− PzxΩ(s)

+
Gqx2xc(s)Ω(s)

2P
(3)

where Ω(s) =
Gqxc(s)

γmv
is the curvature; Q = sinα− Gqxc(s)

2

2γmv
; P is the momentum of the

reference particle. The equation of motion are as follows:

x′ =
∂Hs

∂Px
=
Px
P

P ′x = −∂Hs

∂x
=
Gqx (Q(s)− Ω(s)xc(s))

P

y =
∂Hs

∂Py
=
Py
P

P ′y = −∂Hs

∂y
= −GqyQ(s)

P

z′ =
∂Hs

∂Pz
=

Pz
Pγ2

− xΩ(s)

P ′z = −∂Hs

∂z
= 0 (4)

Note that when (x, Px, y, Py, z, Pz) = 0, all the first order terms in eq. 4 are zero. This

is the main properties of the FS coordinate.

3 Infinitesimal Matrix

The infinitesimal transfer matrix F (s) is defined as

dX

ds
= FX where X =



x

px

y

py

z

pz


Note that all px, py and pz are the normalized momentum in TRANSOPTR, i.e. px =

Px
P

etc. (the Hamiltonian in eq. 3 is scaled by P). The corresponding F matrix can be obtained
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by taking F = SH, where H is the Hessian Matrix (second order derivative of Hamiltonian),

H =


∂2H
∂x2

∂2H
∂x∂Px

· · · ∂2H
∂x∂Pz

∂2H
∂Px∂x

∂2H
∂P 2

x
· · · ∂2H

∂Px∂Pz

...
...

. . .
...

∂2H
∂Pz∂x

∂2H
∂Pz∂Px

· · · ∂2H
∂P 2

z


and S is the fundamental symplectic matrix,

S =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


Solving eqn 3, the F matrix is given as

F =



0 1 0 0 0 0
Gq(Q(s)−xc(s)Ω(s))

P 0 0 0 0 Ω(s)

0 0 0 1 0 0

0 0 −GqQ(s)
P 0 0 0

−Ω(s) 0 0 0 0 1
γ2

0 0 0 0 0 0


(5)

The evolution of the σ matrix along the reference orbit can be found by

dσ

ds
= Fσ + σFT

The transfer matrix can then obtained by solving the integral of M = I + F ds (I is the

identity matrix).

4 Implementation into TRANSOPTR

In TRANSOPTR, the subroutines for alpha magnet can be found in TALPHA.f in transoptr/src.

The F matrix is as given in 10. The SX and DSX matrix are used to solve eqn. 1. The initial

conditions are given in the subroutine ABENDINTs as:

!initial condition

sx(13,1) = 0.0 !xc0

sx(13,3) = 0.0 !yc0
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sx(13,2) = COS(alpha) !dxc0/ds

sx(13,4) = SIN(alpha) !dyc0/ds

The solutions of the SX matrix (or xc, yc, x
′
c, y
′
c) are given in the FS-x, FS-y, FS-x’, and

FS-y’ columns respectively in the fort.envelope. Similar outputs are also produced in the

traj.dat file, with an extra first column of the total path length travelled. The subroutine

can be called by ALPHABENDs(G,qlab), where G is the field gradient in T/cm, and qlab is

the labelling in string. An example of its usage in sy.f and data.dat are given as follows:

data.dat :

10.0 0.0 0.0 0.510999 -1.0 0.0e-12

-1 5 1e-3 1e-4

0 0.0 1.0 0.0

0.1 0.01 0.1 0.01 0.1 0.05

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0

0

0.001 20

10 0.0 0.95 20

sy.f :

SUBROUTINE TSYSTEM

COMMON/SCPARM/QSC,ISC,CMPS

COMMON/MOM/P,BRHO,pMASS,ENERGK,GSQ,ENERGKi,charge,current

COMMON/PRINT/IPRINT

COMMON/SS/SX(13,6)

c

CMPS=0.1 ! Number of cm per step, for plotting only

wo=1.0 ! Weight aberration from optical elements

G = -0.1 !T/cm

c

call drift(0.0,".")

call ALPHABENDs(G,"alpha")

call drift(0.0,".")

c

call print_transfer_matrix

return

end

Note that when the charge is negative, G should also be negative for a charge particle

travelling clockwise.
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5 Figure-of-merit

A sample calculation was performed using the ALPHABENDs subroutine in TRAN-

SOPTR. The particle was taken to be an electron with energy of 2 MeV. The field gradient

was assumed to be -0.01 T/cm (negative G for negative charge). The result is given below:

The beam envelope in y is initially focused, defocused then focused again upon leaving the
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Figure 2: Beam envelope of a 2 MeV electron beam simulated by TRANSOPTR for G =
−0.01 T/cm. Note that space charge is omitted here.

alpha magnet. This is consistent with the results shown in [4].

The corresponding transfer matrix is given as follows:

M =



−0.9999831 −21.02228 0 0 0 0.001802935

0.0002616404 −0.9945130 0 0 0 −5.84297× 10−6

0 0 −0.7355179 68.99863 0 0

0 0 −0.00684461 −0.7174889 0 0

6.1728× 10−6 0.00188042 0 0 1 −19.27766

0 0 0 0 0 1


(6)

It was compared with the results generated by ELEGANT in [2] (transverse coordinate
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in m)

Mele =



−1.0 −0.21 0 0 0 0

0 −1.0 0 0 0 0

0 0 −0.74 0.69 0 0

0 0 −0.66 −0.74 0 0

0 0 0 0 1 0.21

0 0 0 0 0 1


(7)

as well as the transfer matrix generated using T. Planche’s FFA alpha (electron with positive

G)

MTP =

−1 −21.02646 0 0 0 0.19044× 10−2

−0.622438× 10−4 −1.001302 0 0 0 −0.24114× 10−5

0 0 −0.735459 68.99606 0 0

0 0 −0.66093× 10−2 −0.739658 0 0

−0.258074× 10−5 −0.195812× 10−2 0 0 1 −19.27754

0 0 0 0 0 1


The symplecticity is also checked as

MTSM − S =

0. −3.52952× 10−6 0. 0. 0. 0.000011544

3.52952× 10−6 0. 0. 0. 0. 0.00379629

0. 0. 0. −5.42711× 10−6 0. 0.

0. 0. 5.42711× 10−6 0. 0. 0.

0. 0. 0. 0. 0. 0.

−0.000011544 −0.00379629 0. 0. 0. 0.


Overall the match are good except for the M56 term. The sign of the M56 term is

flipped, as TRANSOPTR uses z = −β0c∆t (so that particles with ∆t > 0 has a greater z)

as the fifth coordinate. Besides, the fifth coordinate in elegant is not ∆t but the equivalent
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distance travelled, s = βct. Tracking starts from t0 = 0 through the accelerator.

s = (β0 + ∆β)ct

P = βγmc

dP

dβ
= γmc+ β

dγ

dβ
mc

= γmc+ β2γ3mc

= γ3mc

∴ ∆β ≈ ∆P

γ3
0mc

∆βct =
∆β

β0
L

=
∆P

β0γ3
0mc

L

=
∆P

P0γ2
0

L

∴ s = β0ct+
∆P

P0γ2
0

L

In order to account for the difference, M56 in TRANSOPTR can be scaled by L/γ2. For

instance, in this case, −19.27− 42.04

4.91
= −21.01 cm, which is consistent with M56 = 0.21 m

from elegant.

5.1 Space charge effect

If space charge is included, for instance at Q=0.2, 20, and 200 pC, the beam envelope

travelled through the alpha magnet with G = −0.01 T/cm and 20 cm of drift are given in

Fig. 3. Note that in this case the beam dispersion is not zero except for 0.2 pC. This means

that the space charge from the beam mess up the achromatic property of the alpha magnet

significantly.
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Figure 3: Beam envelope of a 2 MeV (top) 0.2, (middle) 2, (bottom) 200 pC electron beam
simulated by TRANSOPTR for G = −0.01 T/cm.
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A Changing the independent variable

In any case if φ given in [1] is used, the independent variable can be changed from s to

φ. This causes a change in the F matrix too.

dσ

dφ
=

dσ

ds

ds

dφ
= Fφσ + σFTφ

dX

dφ
= FφX

Note that Fφ indicates the use of φ as its independent variable. The transfer matrix becomes

M = I + Fφ dφ. Fφ can be obtained from Fs by applying

dX

dφ
=

dX

ds

ds

dt

dt

dxc

dxc
dφ

FφX =

(
v

dt

dxc

dxc
dφ

)
FsX

Fφ =

(
v

dt

dxc

dxc
dφ

)
Fs (8)

Substituting the derivative of 1 and xc(φ) = cosφ

[
2γmv(1 + a)

Gq

]1/2

. into 8,

Fφ =

(
v

1

v
√

1−Q(φ)2
(− sinφ)

[
2γmv(1 + a)

Gq

]1/2
)
Fs

Fφ =

(
− sinφ√
1−Q(φ)2

[
2γmv(1 + a)

Gq

]1/2
)
Fs (9)

The parenthesis of 9 is

ds

dφ
=

− sinφ√
1−Q(φ)2

[
2γmv(1 + a)

Gq

]1/2

where Q(φ) = a sin2 φ− cos2 φ and a = sinα. Substituting everything into the F-matrix in

[3],

Fφ =
− sinφ√
1−Q(φ)2

[
2γmv(1 + a)

Gq

]1/2



0 1 0 0 0 0
Gq(Q(φ)−xc(φ)Ω(φ))

P 0 0 0 0 Ω(φ)

0 0 0 1 0 0

0 0 −GqQ(φ)
P 0 0 0

−Ω(φ) 0 0 0 0 1
γ2

0 0 0 0 0 0


(10)
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where Ω(φ) =
qGxc(φ)

P
.
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