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Derivation of Spiral Inflector
central trajectory
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Abstract: The most common device for injecting into a compact cy-
clotron is an electrostatic device known as the spiral inflector. There
is a known analytic solution for the trajectory, and therefore the elec-
trode shape, in the idealized case of a uniform magnetic field. This
is re-derived in this note and the conditions for perfect centring are
found. It is moreover found that the ‘Müller’, or hyperboloid inflector
is actually a special case of the spiral inflector.
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1 Introduction

The function of the inflector is to take the beam from the cyclotron’s axis to
the median plane while its velocity is initially aligned on the axis and finally
also in the median plane. Positionally, we would like to place the beam on
the closed orbit corresponding to its energy. This orbit has radius ρ given by
qBρ = mv, B is the central field of the cyclotron.

Invented by Belmont and Pabot[1], the spiral inflector is most simply under-
stood as a 90◦ cylindrical electrostatic bend that has been modified to keep
the electric force perpendicular to the beam while the beam twists and spirals
due to the cyclotron’s field. The electric field strength (Einf = Vo−Vi

xsep
, the volt-

age difference between the plates divided by their separation) is the parameter
that directly determines the inflector height A = 2V0

Einf
(V0 is the beam’s energy

per charge, i.e. the voltage of extraction from the ion source).

2 No tilt

2.1 Electrostatic 90◦ bend

Let us start by ignoring the magnetic field. Let z be the axis along which the
particle’s initial velocity is aligned, and let x be the direction of the electric field
at the entrance. We choose the cyclotron centre as origin, the electric field is
everywhere orthogonal to the velocity, so the trajectory is on the equipotential
surface (x − A)2 + (z − A)2 = A2. The electric field is in the x-z plane and
radial component (‘radial’ in xz, not radial in the median plane xy) is

qEr = mv2/A = 2qV0/A := qE0. (1)

V0 is the beam energy per unit charge: the bias voltage of the source terminal
in most cases. In the Cartesian frame, the electric field components are

Ex = E0 cos(s/A), Ez = E0 sin(s/A), (2)

where s = v0t is the distance along the trajectory, running from zero to π
2
A.

The equations of motion are simply

x′′ =
1

A
cos b, y′′ = 0, z′′ =

1

A
sin b. (3)

Primes are derivatives with respect to s, and to clean the notation, I introduce
b := s/A. Solutions for initial conditions x = y = x′ = y′ = 0, z′ = −1 are:

x′ = sin b, y′ = 0, z′ = − cos b, (4)
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x = A− A cos b, y = 0, z = A− A sin b. (5)

This is also consistent with the equipotential surface (x−A)2 +(z−A)2 = A2.

2.2 Add the magnetic field

With the magnetic field added, there is a magnetic force ~v× ~B, which adds to
x′′ a term y′/ρ, and to y′′ a term −x′/ρ. The electrodes must be modified to
maintain the electric force orthogonal to ~v. The result is a spiral shape for the
trajectory and the electrodes. In this configuration, it remains the function of
the electric field to rotate the velocity vector from vertical to horizontal; the
magnetic field provides the only radial (xy) force. The electric field that does
this is

Ex = E0 cos kb cos b, Ey = −E0 sin kb cos b, (6)

while Ez is unmodified. We have introduced k := A/ρ. In this way, the
field orthogonal to z-axis remains E0 cos(s/A), but is divided between x and
y according to the needs of the rotation caused by the magnetic field. The
magnitude of the electric field is unchanged from the cylindrical bend, as
E20 = E2x + E2y + E2z .

The equations of motion are now:

x′′ =
1

A
cos kb cos b+

y′

ρ
,

y′′ =
−1

A
sin kb cos b− x′

ρ
, (7)

z′′ =
1

A
sin b.

These are the solutions from a single integration:

x′ = cos kb sin b,

y′ = − sin kb sin b, (8)

z′ = − cos b.

The reader is invited to verify both that the velocity ~v is invariant, and that
~v · ~E = 0.

One more integration yields the equations originally derived (but in a slightly
different form)[1]:

x =
A

k2 − 1
[k sin kb sin b+ cos kb cos b − 1] ,

y =
A

k2 − 1
[k cos kb sin b− sin kb cos b] , (9)

z = A− A sin b.
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(It may look as though the k = 1 case is singular but this is not so; it is a
removable singularity.)

As described so far, this inflector does not have sufficient flexibility to place
the beam on the correctly centred closed orbit. Only the height A is variable.
Figure 1 shows a few examples as seen from above, i.e., as projected onto the
median plane. Note that for the A/ρ = 1 case, the beam arrives on the orbit,
but travelling in the wrong direction. As A/ρ→∞, the beam becomes better
centred. One can show that this inflector places the beam correctly only in the
limit A� ρ. In this limit the beam takes many turns of the spiral (specifically,
A
4ρ

turns) to reach the median plane. Such a tall inflector is impractical for
many reasons, not least of which is that there is no vertical focusing for this
long path. In any case, the idealized case of a uniform axial magnetic field
independent of z as considered here becomes less tenable as the height becomes
much larger than ρ. In general A taller than about 2ρ is unacceptable as it
makes the inflector too large. At the small end of the scale, the beam is placed
very near the centre of the cyclotron and not on the orbit, and in those cases
the electric field is much higher than need be.

Figure 1: Overhead views of four untilted (k′ = 0) inflectors assuming beam
enters the inflector on the cyclotron’s vertical axis (green dot). Left to right:
A/ρ = 0.5, 1, 2, 3. In all cases, the gray orbit is the intended one, and the blue
orbit is the orbit placed by the inflector. In each case, the initial deflection is
in the +x direction, and that this rotates by A

4ρ
turn entry to exit.

3 With tilt

To achieve adjustability for the placement, another parameter is needed and
this is provided by tilting the electrodes. The intent is to add more electric
field in the x-y direction without altering the z component. If the electric force
in the x-y-plane is made to mimic the magnetic force then the equations of
motion will remain unchanged. In reference to eqns. 7,8, we see that the added
electric field must have the form (Ex, Ey) ∝ (cos kb sin b,− sin kb sin b). This is
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achieved by tilting the electrodes and narrowing the gap. The tilt θt is the
angle between the electric field and the vector formed from the cross product
between the beam’s velocity and the orthogonal of this vector that lies parallel
to the median plane. This tilt is applied gradually according to

tan θt = k′ sin b. (10)

In this way, the vertical component of the electric field remains as for the
untilted case, but an additional radial component is gradually applied; while
still orthogonal to the beam, the electric force can augment or diminish the
magnetic force, thus tightening or loosening the orbit’s curvature.

The x and y equations of motion (z is unchanged) become:

x′′ =
1

A
cos kb cos b− k′ sin kb sin b+

y′

ρ
=

=
1

A
[cos kb cos b− k sin kb sin b] , (11)

y′′ =
−1

A
sin kb cos b− k′ cos kb sin b− x′

ρ
=

=
−1

A
[sin kb cos b+ k cos kb sin b] ,

and the parameter k has now been redefined as

k =
A

ρ
+ k′. (12)

With this redefinition of k, the solutions are identical to eqns. 8,9. (Note that
this definition of k is different by a factor of 2 from the definition of K used by
Belmont and Pabot[1] and by Root[2], and also Goswami et al.[3]. Also, these
equations agree with the derivation of Goswami et al. but for a different sign
convention of B.) This parameter turns out to be the number of quarter turns
that the beam’s velocity vector makes through the inflector, as projected onto
the median plane (see Fig. 6).

The reader can show that the beam is placed precisely on the correct closed
orbit when this inflector has the two parameters at A/ρ = 2 and k′ = 1. This
is shown in Fig. 31. Interestingly, there are other perfectly centred solutions
at k′ = ±1, and A

2ρ
is any odd integer (A/ρ = 2, 6, 10, ..., see Fig. 2). (Those

with negative k′ can be ignored as they unnecessarily increase the inflector size
laterally.) These have not been explored. Larger electric radius A means that
the electric fields are lower, but on the other hand, such solutions require a very
tall inflector, over which the magnetic field is to be uniform. As stated above,
making room for such an inflector is problematic, considering the flatness of

1See Appendix for note on how to view in 3D using such stereoscopic pairs.
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Figure 2: The centring error of the orbit placed by the spiral inflector, in units
of the orbit radius, as a function of electric radius A and tilt parameter k′.

Figure 3: The beam’s trajectory for the spiral inflector for the case of perfect
centring (A/ρ = 2 and k′ = 1). This is a stereoscopic view. The initial
horizontal deflection is to the right (+x) and finally is directly away from the
viewer, making a total sweep of kπ/2 = 3π/2 radians or 3/4 turn. The blue
dashed circle is the closed orbit, and found centred at the origin, which is the
cyclotron centre.
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the magnetic field needed on the median plane to keep the beam focused and
isochronous.

The hyperboloid inflector[4] is just a special case of the tilted spiral inflector.
Its parameters are: A/ρ =

√
6 and k′ = −

√
6/2. From the figure, one can see

the difficulty of implementing this inflector: the tilt parameter has the wrong
sign, working in opposition to the magnetic force.

Figure 4: The two surfaces of the electrodes of the hyperboloid inflector, in-
cluding the beam’s trajectory. The inner electrode surface is green, and the
outer is red but shown as semi-transparent to make visible the trajectory. This
is a stereoscopic view. The initial horizontal deflection is to the right (+x) and
finally comes toward the viewer with a slight leftward slant, making a total
sweep of kπ/2 =

√
6π/4 ≈ 110◦. The dashed circles are in the x-y-plane; the

gray one is the centred orbit and the blue one is the actual orbit if uncorrected.

Perfect orbit placement can however be achieved even without conforming
to the centring conditions (A/ρ = 2 and k′ = 1); one can compensate by
providing additional horizontal steering. For example in the TRIUMF case,
A/ρ = 2 would require a height of A = 51 cm (since ρ = 25.4 cm) which is
too large and would interfere with the magnet steel at the cyclotron centre.
Choosing A/ρ = 1.2 and k′ = 1.09 allowed the inflector to be only 30 cm in
height, and the centring error could be corrected with a separate horizontal
deflector 6.5 cm downstream of the inflector exit. This is shown in Fig. 5; the
deflector is located where the placed beam’s orbit and the centred orbit cross.

The four cases – hyperboloid, zero tilt, ideally centred, and ideally centred
with large A – are shown in Fig. 6. This clarifies the function of the electrode
tilt.
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Figure 5: The beam’s trajectory for the spiral inflector for the TRIUMF case
A/ρ = 1.2 and k′ = 1.09. This is a stereoscopic view. The blue dashed circle
is the closed orbit as placed by the inflector. To correct the orbit centring, an
electrostatic deflector is placed just downstream of the inflector, where the blue
orbit crosses the gray centred orbit. (Note that actually the TRIUMF beam
rotates anti-clockwise (A/ρ, k′) = (−1.2,−1.09), but shown here as clockwise
to be consistent with the other plots.)

Figure 6: Overhead views of four inflectors assuming beam enters the inflector
on the cyclotron’s vertical axis (green dot). Left to right: the hyperboloid
(A/ρ =

√
6, k′ = −

√
6/2), the zero tilt (k′ = 0) with A/ρ = 2, the ideally

centred (A/ρ = 2, k′ = 1) case, and lastly, the ideally centred tall case where
A/ρ = 6, k′ = 1. In all cases, the gray orbit is the intended one, and the blue
orbit is the orbit placed by the inflector.
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4 Non-ideal cases

By ‘ideal’ is meant that the magnetic field is uniform over the region of the
inflector and the first turn in the cyclotron. This is often not the case, as the
magnetic field begins to decrease going backward up the axis farther than one
half the magnet gap from the median plane.

Secondly, the inflector described above, has a vertical electric field Ez = 2V0/A
while also supplying an inward radial force that is k′ times the vertical one.
For this to be true the electrode gap must narrow by a factor 1/ cos θt =√

1 + k′2 sin2(s/A) with distance s along the inflector. The advantage of this
configuration is that the orbit can be expressed analytically. In actual practice,
the gap is left constant as that will minimize the electric field. The disadvan-
tage is that this makes the inflector somewhat taller, and also the electrode
shape can only be found by iterating between a Laplace solver and a particle
tracker code. But this latter will be true in most cases anyway, because of the
non-uniformity of the magnetic field.

Still, the idealized case allows a very good first step toward a cyclotron design.

3D viewing using stereoscopic pairs

The pairs of figures in Figs. 3,4,5 are to enable you, the reader to view a 3-
dimensional image. This is enabled by having two views from slightly different
angles as would occur when your two eyes actually see a real 3D object. Note
that the figures here are in a ‘parallel-view’, not a ‘cross-view’, which would
requiring crossing one’s eyes.

To view them, imagine the object is far in the distance so that you see 4 images
(2 from each eye), and convince the eyes to superimpose the centre two. Once
that is achieved, try to focus without re-converging the eyes. You may need
to adjust the magnification on screen so that the two images are no farther
apart than your PD (pupillary distance of your eyes).

An alternative and more foolproof method is to place a barricade such as a
sheet of paper between the eyes and extending to the screen or page, between
the images; the intent is that the left eye see only the left image and the right
eye see only the right image.
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