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1 Introduction

The spiral inflector steers the beam from the bore in the main magnet into
the median plane to achieve the axial injection with an external ion source. In
a conventional electrostatic inflector, the injection beam energy is limited by
the breakdown voltage on the electrodes. While the injection intensity is also
limited by the small aperture in the electrostatic inflector. Magnetic inflector
is promising to overcome these disadvantages.

Recently, There are two types of magnetic inflector. One is the passive
type which uses the iron in the injection hole to produce the required magnetic
field.[1] The other is the active one which uses a permanent magnet array.[3]
The passive type is more robust because there is no concern about the magnet
degaussing under the high beam loss in the injection hole. But it is only
a concept, that has no existing design. To demonstrate the technology, we
studied the inflection conditions and focal property of the passive magnetic
inflector with a cylindrically symmetric structure.

2 Reference orbit

2.1 Motion equations

In a cylindrically symmetric system. The magnetic vector potential A
only consists of the azimuthal component Ay. Thus, the hamiltonian using
cylindrical coordinates is written as
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Where the canonical momenta are
P’f = Dr
Py = ’ymOQ’rQ + qrAy 2)
PZ = D:

Since the hamiltonian is independent from theta because of the cylindrical
symmetric. We can easily find that the canonical momentum in the azimuthal
direction is a constant. That results the azimuthal momentum py a function
of r-z coordinate. Define a potential function as

Py — qr Ay (r, z))2
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-t (3)

Using the defined potential function U, the motion equation could be written
in the following form, essentially as obtained by Glaser [1]
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Substitled eqt. (2) into eqt.(4). The motion equation is written as
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2.2 Possible analytical solution for the reference orbit

Define a magnetic vector potential to decouple the motion in the 3 direction

Apro

A9 + Bo (Z — Zo) (6)

The motion equation is written as

q
Pl = e pp— (Py — qAoro — qBor (2 — 2)) (Py — qAoro)
Py=0 (7)
P = g By (Py — qAgro — qrBy (2 — 20))

TYmo

The equation 2 is solved using the initial condition py = 0,0 =0

Py = qApro (8)

substitult P into the other 2 equations, the motion equation is totally
decoupled, in combination with , the momenta and coordinates are easily
solved as
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The momenta in z direction arrives at 0 at the exit of the magnetic inflector.
We replace the %t with b, p,o/qBo with R, and p.o/qBo with R., the motion
equation is written as

r=R.b+ 1
b . b
- [ (1)

z = R,sin(b) + 2o
The magnetic field is

0

B, =——Ay(r,2)
%Z Ag (1, 2) (11)
__Y _20Ane)
B, = o Ag (1, 2) .

The magnetic field along the orbit is written as

R_sin(b) (12)

2.3 Numerical solution for a mirror like magnetic vector
potential

The magnetic mirror is a component that used to confine the charged
particles. The vector potential used to define the axial symmetric magnetic
field in a mirror field is given as

o Alﬂ’l“
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Figure 1: Analytical result of the reference orbit.

Where 7/f is the mirror length, 5(A; + A2)/(A; — Ay) is the mirror ratio.

The given magnetic field satisfies the Laplace’s equation, which ensures
the curl of the magnetic field zero. The linear approximation of the vector
potential is given as

Br

5 (A} — Ay cos Bz) (14)

Atheta =

With the initial condition

(15)

The canonical momenta Py is derived as

ymorgd + qryB/2(Ar — A2) (16)

The motion equation in theta direction could be written as
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Under the initial condition rj, = 0, § = —%(Al — As), the motion equation
is simplified as
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Where B, and B, is the magnetic field in z and r direction respectively

B, = —(B°rA,/2)sin(Bz)
B, = (A1 — Aycos(52))

We use the TR100[2] main magnet model as a testbench to study the
injection. Figure 2(a) shows the conceptual model. By tracking the particle
reversely from the median plane to the injection point with different Pitch
angles, the different reference orbits are shown in figure 2(b). The single B,
bump field near the median plane could reduce the pitch angle by about 20°
from the injection point to the median plane.
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Figure 2: Reference orbit in the injection hole.

3 Beam optics

3.1 Coordinates Transformation

In this report, we use the coordinate (a,3,7) in the optical coordinate
system, which moves along the reference orbit as shown in figure 1 [?]. The
~ direction is the same with the velocity of the reference particle. The
direction is perpendicular to the v direction and parallel to the median plane.
At the same time, the cross product of the unit vector of the v direction and



direction should have a positive projection on z-axis. The « direction is defined
by the cross product of the unit vector of the v direction and § direction.
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Figure 3: The moving optical coordinate system.

The position vector ¢ of the point on the reference orbit under cartesian is
written as

€= (c(8), Ye(s), 2e(s)) (20)

Where s, the distance along the reference orbit, is the independent vari-
able. The base vector € = (€, €3, €,) of the moving optical coordinate on the
reference orbit is written as

€a = (2a(8),Ya(s), za(s))
€5 = (z5(s), ys(s), 25(s)) (21)
&5 = (4(5),45(5), 24(s))
The transformation from cartesian coordinates (z,vy, z) to the moving co-
ordinates (a, 3,7) is written as

Te(s) + awa(s) + Bra(s) + 7wy(s)
Ye(s) + ayals) + Bys(s) + vy, (s) (22)
2e(8) + azo(s) + Bzp(s) + v24(s)

The transformation matrix from the moving coordinates to the cartesian
coordinates is written as

x
Y
z



Ta(s) x5(s) 4(s)
M= yals) ws(s) uy(s) (23)
za(s)  zs(s)  2(s)
The inverse transformation matrix M’ = M7 as the (eq, €3, €,) are orthog-

onal bases. Choosing a possible generating function that is consistent with
Egs. 3

G = —P.lxc(s) + axa(s) + Lya(s) + v2za(s)]
— Pylye(s) + axs(s) + Bys(s) + vz5(s)] (24)
— P.[2(s) + az,(s) + By, (s) +72,(s)]
The new canonical momenta is derived from the given generating function

0G
0G

Py = =55 = Petials) + Pyys(s) + Payi (9) (25)
oG

P’y = _a = sza(s) + PyZ5(S) + PZZ'Y(S)

The canonical momenta under the cartesian coordinate system is given by

P, = mgv, + qA, = movor’ + qA,
P, = mov, + qA, = movoy’ + ¢4, (26)
P, = mgv. + qA. = movoz’ + A,
where the prime denotes differentiation with respect to s, vg is the velocity.
Substitute eqt.7 into eqt.6, the new canonical momenta is written as

Pa x! AJ:
Py | =moueM” | o | +qMT | A, (27)
P, 2 A,
Thus, the canonical momenta on the reference trajectory is
PaO xlc AJ:O
P/jo = TTL()UQMT yé —+ qMT AyO (28)
P’yO Zé AZO

To make the canonical variable small quantities, we subtract eqt.9 from
eqt.8. Thus, the generating function becomes

G = —Pylzc(s) + axa(s) + Bya(s) + 12a(s)]
— Bylye(s) + azs(s) + Bys(s) + vzs(s)]
— Pylzc(s) + axy(s) + Byy(s) + 72,(s)]
+ aPyo + BP0 + 7Py

(29)
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The new momenta is given by

P, ' —al A, — Ay
Py | =moueM” | o/ —yl | +qM" | Ay — Ay (30)
P, 2 -2 A, — Ay

Using eqt.3 and eqt.11, and expand the transform matrix M into a 6 x 6
matrix the transformation from (x, P,,y, Py, 2, P.) to (o, Py, B3, Ps,v, Py) is
given by

«Q T — X, 0
P, movo(z' — ) A, — Ao
B T Y—Yc T 0
=M + gM 31
Pg movo(y' — Y,) K Ay — Ay (31)
ry Z— Zc 0
| P, i move (2’ — 22) | AL — Ay

3.2 Transfer Matrix

In order to calculate the transfer matrix, we need to run 6 particles with
initial coordinates and momenta given as

(a, Py, B, P, P,)) = (1,0,0,0,0,0)
(a, Py, 8, Pg, P,) = (0,1,0,0,0,0)
(a, Py, B, P3, P)) = (0,0,1,0,0,0) )
(a, Py, B, P3, P,) = (0,0,0,1,0,0)
(a, Py, B, P5, P,) = (0,0,0,0,1,0)
(a, Py, B3, P3, P,)) = (0,0,0,0,0,1)

Substitute eqt.13 into eqt.12, the coordinates and momenta under cartesian
system is given as

x « 0 Te
P, P, A, — A MoV T,
0 IV I 0 7 (33)
Py P@ Ay - AyO movoyé
z v 0 Ze
_Pz_ _P,y_ _AZ—AZD_ _mQ"UoZ(/:_

Tracking 6 particles with the given initial conditions, the coordinates and
momenta at the exit of the inflector is calculated. They are given in cartesian
coordinates and could be easily transformed in to the moving coordinates.



Thus, the transfer matrix through the inflector can be easily calculated using
the transformed coordinates.

By tracking the 6 particles in Comsol, figure 1 shows the five orbits in
cartesian coordinate system.

After transforming the coordinates at the end of the orbit into the moving
coordinates with the unit (mm,mrad,mm,mrad,mm,mrad), the transfer matrix
is calculated as

1.9899 0.1493  —1.6822 —0.0167 0.3753  0.1340 |
—5.0231  0.1862 —0.2335 —0.1780 3.8668  0.2139

0.5800 0.0223 0.8386 0.0260 —0.5524 —0.0134
—13.7973 —-0.3713 —8.0835 0.3925 1.9409 —0.6353
—0.0311  0.0394 —0.3041 0.0195  0.6095  0.0989

5.3240 0.2201 —12.4786 0.2672 —5.4282 0.8583

Test the symplectic of the transfer matrix,

0 —0.0043 —0.0258 0.0364  0.0082 —0.0084 ]
0.0043 0 —0.0151 0.0012 —0.0026 —0.0001
RTIR — J — 0.0258  0.0151 0 —0.0024 0.0014  0.0036
—0.0364 —0.0012 0.0024 0 0.0007  —0.0006
—0.0082 0.0026 —0.0014 —0.0007 —0.0000 —0.0008
| 0.0084  0.0001 —0.0036 0.0006  0.0008 0 |

(35)
Where J is given as
[0 1 0 0 0 0]
-1 0 0 0 0 O
0O 0 0 1 0 0
= 0 0 -1 0 0 O (36)
0O 0 0 0 0 1
| 0 0 0 0 -1 0 |

The error is between 1073 and 102, which may be resulted from the non-
linear of the motion and the noise when tracking the particles numerically.

3.3 Beam envelopes

The beam envelope is studied in the a — f — v moving frame. Figure
2 shows the horizontal (8) and vertical («) envelopes with different magnetic
field parameters. A proper beam focusing in both directions could be achieved
by adjusting the mirror length and the mirror ratio.
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Figure 4: Beam envelopes with different mirror length and mirror ratio. On
the right side of each envelopes plot is the reference orbit inside the injection

hole.

4 Magnet design

4.1 A 2D main magnet model

I use a 2D model to calculate the magnetic field in the injection hole, but
with the pseudo material which use a lumped factor k& to calculate the B-H
curve, different £ means different width ratio of the hill, for a 4 sector magnet
with the sector width of 45 degree, k is 0.5. For the yoke, k is 1, thus the B-H
curve is that of the real steel. Figure 2 shows the B-H curve with different

width ratio k.

Calculate the magnetic field using FEA software, figure 3 shows the mag-
netization of the iron and figure 4 shows the magnetic field in the injection

hole along a vertical line.

11



o —a =)
2.0l ® © oo L—(.2|]
o’ a4 k=05
o -

15(8 o= 8 k=08
— (5]
=
o

1.0

0.5

e
— e
0. () bt e |

0 50000 100000 150000 200000 250000
H (A/m)

Figure 5: B-H curve of the pseudo material with different sector width ratio.

4.2 Steel plug to adjust the mirror field

Figure 8 shows the structure of the central plug that we used to optimize
the mirror field in the injection hole. Figure 9 shows the magnetic field of the
optimal magnet model.

5 High intensity simulation

Figure 10 shows the Comsol simulation of the high intensity beam.

6 Conclusion

To maintain the median plane symmetry of the magnet, an electrostatic
plate should be placed at the end of the magnetic inflector, which will finally
deflect the beam into the median plane with 0 vertical momenta. The envelope
study suggests that The beam could be focused both horizontally and vertically
by optimizing the mirror ratio and mirror length. A steel plug in the center
region is designed to optimize the parameters of the magnetic inflector field.
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Figure 7: Magnetic field along r=1 cm.The field could be recognized as 3
sections, there is a uniform B, section, and B, in this section is 0.

Figure 8: Steel plug in the injection hole.
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Figure 10: Envelope simulation considering space charge. The upper plots
shows the simulation under 1 nA injection beam. The lower one shows that
of the 10 mA injection beam. The frame of a spiral pipe in the lower 3D
beam plot shows the reference beam path without considering the space charge
effect. Obviously, the reference orbit is changed by the space charge. A further
design study of a shielding structure is needed to remove the repulsive force
from different turns.
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